JPS60128210A - Heating method of grain oriented silicon steel slab - Google Patents

Heating method of grain oriented silicon steel slab

Info

Publication number
JPS60128210A
JPS60128210A JP23475183A JP23475183A JPS60128210A JP S60128210 A JPS60128210 A JP S60128210A JP 23475183 A JP23475183 A JP 23475183A JP 23475183 A JP23475183 A JP 23475183A JP S60128210 A JPS60128210 A JP S60128210A
Authority
JP
Japan
Prior art keywords
slab
heating
temp
silicon steel
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23475183A
Other languages
Japanese (ja)
Inventor
Masataka Yamada
政孝 山田
Itaru Hishinuma
菱沼 至
Mitsumasa Kurosawa
黒沢 光正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP23475183A priority Critical patent/JPS60128210A/en
Publication of JPS60128210A publication Critical patent/JPS60128210A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/40Direct resistance heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To obtain the titled steel sheet with less variance in magnetic characterstic by heating electrically a grain oriented silicone steel slab prior to hot rolling in at least the high-temp. region to the prescribed rolling temp. to heat uniformly the slab without generating molten scale and subjecting such slab to hot rolling. CONSTITUTION:A grain oriented silicon steel slab 1 is heated in a heating furnace and in succession thereto, the slab 1 is electrically heated by electrodes 2, 2 to increase the temp. thereof. The temp. region where the slab 1 is heated in the heating furnace is made up to 1,250 deg.C at the max. in ths case and the heating in the succeeding temp. region exceeding said region is accomplished by the conduction of electricity through the electrodes 2, 2. More specifically, the heating to >=1,250 deg.C at which the molten scale consisting essentially of FeO, Fe2O3. SiO2, etc. is liable to be generated is accomplished by conduction of electricity and therefore the deposition of the scale in the heating furnace is prevented. The cost for repairing the furnace is consequently reduced and relatively shorter time is required for heating up on account of the use of electricity. The method is thus advantageous in terms of cost and production efficiency. In the figure, 3, 6 denote cylinders 4 a heat insulating material and 5 a member for holding the heat insulating material, respectively.

Description

【発明の詳細な説明】 この発明は結晶方位がミラー指数で(20)<001>
方位に揃えられた方向性珪素鋼板の製造方法に関するも
ので、特に方向性珪素鋼板用スラブの熱間圧延に先立つ
加熱方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention provides crystal orientation with Miller index (20)<001>.
The present invention relates to a method for manufacturing a grain-oriented silicon steel sheet that is aligned in orientation, and particularly to a heating method prior to hot rolling of a slab for a grain-oriented silicon steel sheet.

周知のように方向性珪素鋼板は、Siを2.5〜4.0
%程度含有するスラブを熱間圧延し、ホットコイルとし
た後に冷間圧延、脱炭焼鈍を行ない、その後最終仕上焼
鈍を施して製造され、その過程−: jl 1 (l)
 <0.01 >方位の結晶が高度に集積した2次再結
晶組織が形成されて磁束密度が高くかつ鉄損が低い優れ
た磁気特性を有するに至り、そのため従来から鉄心材料
等として広く開用されている。
As is well known, grain-oriented silicon steel sheets contain Si of 2.5 to 4.0.
It is manufactured by hot-rolling a slab containing about 1.5% to form a hot coil, followed by cold rolling, decarburization annealing, and then final finishing annealing, and the process: jl 1 (l)
A secondary recrystallized structure is formed in which crystals with a <0.01> orientation are highly concentrated, resulting in excellent magnetic properties with high magnetic flux density and low core loss.For this reason, it has been widely used as iron core material, etc. has been done.

方向性珪素鋼板の製造過程では、焼鈍詩仙方位の結晶粒
の成長を抑制して、(110)<001>方位の結晶粒
を選択的に成長させる必要があることから、珪素鋼スラ
ブには鋳造時に結晶粒の成長を抑制する機能を持つMn
S 、 MnSe 、 AlN等のインヒビターを形成
する元素が添加される。これ等のインヒビターが充分に
その効果を挙げるためには、予めイ、ンヒビター形成元
素を基地金属中に充分固溶させておく必要があシ、その
ため前述の方向性珪素鋼板の製造過程で熱間圧延を行う
際にはそれに先立ってスラブをインヒビター形成元素が
基地金属に完全に固溶する温度まで加熱する必要がある
In the manufacturing process of grain-oriented silicon steel sheets, it is necessary to suppress the growth of crystal grains in the annealed Shisen orientation and selectively grow crystal grains in the (110) <001> orientation. Mn sometimes has the function of suppressing the growth of crystal grains.
Elements that form inhibitors such as S, MnSe, and AlN are added. In order for these inhibitors to be fully effective, it is necessary to form a sufficient solid solution of inhibitor-forming elements in the base metal in advance. Prior to rolling, it is necessary to heat the slab to a temperature at which the inhibitor-forming elements are completely dissolved in the base metal.

従来からそのスラブの加熱にはプッシャー型やウオーキ
ングビーム型等の加熱炉が用いられている。しかし、こ
れ等の加熱炉によって上述の目的でスラブの加熱を行う
場合、それ等に共通して次のような問題が生じていた。
Conventionally, heating furnaces such as pusher type and walking beam type have been used to heat the slab. However, when heating a slab for the above-mentioned purpose using these heating furnaces, the following problems commonly occur.

従来の各種加熱炉では、周知のようにスラブを保持する
ためのスキッドが配設されているが、それ等の加熱炉で
スラブを加熱する場合水冷されたスキッドから抜熱され
ることからスラブを均一に加熱することが非常に困難で
、スラブにはいわゆるスキッドマークが生じる。そのた
め前述したようにスラブの基地金属にインヒビター形成
元素を完全に固溶させるためには、スラブのスキッドか
ら抜熱された最低温度部分を基準として、その最低温度
部分がインヒビターの固溶温度以上の温度となるまでス
ラブ全体を加熱する必要があシ、他の部分については加
熱過剰となり、具体的には1400℃以上の篩温に達す
ることもあった。
As is well known, various conventional heating furnaces are equipped with skids to hold the slab, but when heating the slab in these heating furnaces, the heat is removed from the water-cooled skid, so the slab is heated uniformly. It is very difficult to heat the slab to a high temperature, resulting in so-called skid marks on the slab. Therefore, as mentioned above, in order to completely dissolve the inhibitor-forming elements in the base metal of the slab, the lowest temperature part must be higher than the solid solution temperature of the inhibitor, based on the lowest temperature part where heat is removed from the skid of the slab. It was necessary to heat the entire slab until the temperature was reached, and other parts were overheated, and specifically, the sieve temperature sometimes reached 1400° C. or higher.

その結果、上述の従来の加熱方法では、スキッドマーク
の発生に起因して一連の処理後に得られる製品の磁気特
性にバラツキが生じるという不都合があるのみでなく、
スラブに対する過剰加熱によってスラブの加熱過程にお
いてスラブにはFeOtFe203・S r 02等の
溶融スケールが生成して製品歩留夛が悪化し、またその
溶融スケールが炉内に堆積して炉効率が低丁すると共に
炉寿命が短くなることから、それに対処するために堆積
した溶融スケールを取シ除くべく炉補−修を度々行なわ
なければならず、そのだめの費用の負担が過大となると
いう不都合があった。
As a result, the conventional heating method described above not only has the disadvantage that the magnetic properties of the product obtained after a series of treatments vary due to the occurrence of skid marks, but also
Due to excessive heating of the slab, molten scales such as FeOtFe203 and Sr02 are generated on the slab during the heating process of the slab, which deteriorates the product yield, and the molten scales accumulate in the furnace, resulting in low furnace efficiency. At the same time, the life of the furnace is shortened, and in order to deal with this, the furnace has to be repaired frequently to remove the accumulated molten scale, which causes the inconvenience of incurring excessive costs. Ta.

このような問題に対処する方法として特公昭56−43
291号公報、あるいは特開昭58−25429号公報
にはスラブ表面に酸化防止剤を塗布してスケールの発生
を抑えるという方法が提案されている。。しかし、これ
等の方法ではスラブ表面に酸化防止剤を塗布するため断
M層を形成することとなり、その結果更に高温で長時間
の加熱が必要となるためコスト的に不利となり根本的な
解決とはなっていない。
As a way to deal with such problems,
No. 291 or Japanese Unexamined Patent Publication No. 58-25429 proposes a method in which an antioxidant is applied to the surface of a slab to suppress the formation of scale. . However, these methods require the formation of a fractured M layer in order to coat the surface of the slab with an antioxidant, and as a result, heating at a higher temperature and longer time is required, which is disadvantageous in terms of cost and requires no fundamental solution. It's not.

本発明はこれらの事情に鑑み、スラブを溶融スケールを
発生させずに均一に加熱して熱間圧延に供することによ
り磁気特性のバラツキが少ない方向性珪素鋼板を低コス
トで製造することを可能とする方向性珪素鋼スラブの加
熱方法を提供するととを目的とするものである。
In view of these circumstances, the present invention makes it possible to produce grain-oriented silicon steel sheets with less variation in magnetic properties at low cost by uniformly heating a slab without generating molten scale and subjecting it to hot rolling. An object of the present invention is to provide a method for heating a grain-oriented silicon steel slab.

すなわち本発明の方向性珪素鋼スラブの加熱方法は、方
向性珪素鋼スラブを熱間圧延前に所定の圧延温度に加熱
するにあたシ、上記所定の圧延温度に至る少なくとも旨
温域を通電加熱することを特徴とするものである。
That is, the method for heating a grain-oriented silicon steel slab of the present invention involves, in order to heat the grain-oriented silicon steel slab to a predetermined rolling temperature before hot rolling, to conduct electricity in at least a temperature range up to the predetermined rolling temperature. It is characterized by heating.

以下に本発明をさらに具体的に説明する。The present invention will be explained in more detail below.

第1図および第2図は本発明の実施に供する通電加熱装
置の一例の概略を示したものである。
FIG. 1 and FIG. 2 schematically show an example of an electrical heating device used for carrying out the present invention.

スンプ夏の長手方向両端に当接するべく配設された電極
2はシリンダー3によってスラブ1の長手方向に移動自
在とされ、またスラブ1の西側面には断熱材4が断熱材
保持部材5に取付けられてスラブ1の長手方向に沿って
配設されている。その各断熱材保持部材5はシリンダー
6によってスラブlの長手方向とは直角方向に移動自在
とされ、断熱材4をスラブ1に密着させることKよシス
ラブ1四側向は断熱材4によシカバーされる。なお、上
記電極2には冷却水送給管7が配設されている。
The electrodes 2 arranged so as to come into contact with both ends of the slab 1 in the longitudinal direction are movable in the longitudinal direction of the slab 1 by a cylinder 3, and a heat insulating material 4 is attached to a heat insulating material holding member 5 on the west side of the slab 1. and are arranged along the longitudinal direction of the slab 1. Each of the heat insulating material holding members 5 is movable by a cylinder 6 in a direction perpendicular to the longitudinal direction of the slab 1, so that the heat insulating material 4 can be brought into close contact with the slab 1. be done. Note that the electrode 2 is provided with a cooling water supply pipe 7.

1!lt211!71モ’? ye Alr A II
I +−) L −a Δ’12!暑4+ 4山 +1
m /−z;−を設して構成した方向性珪素鋼板の圧延
ラインの一例を示す概略図であって、電4’lA 2 
、シリンダー3、断熱材4、断熱材保持部材5、シリン
ダー6 i#の通電加熱装置は図示しない加熱炉から、
これ゛も図示しない熱間圧延装置にスラブlを送給する
テーブルローラ8の近傍に配設されている。
1! lt211!71mo'? ye Alr A II
I +-) L -a Δ'12! Heat 4+ 4 mountains +1
m/-z;
, cylinder 3, heat insulating material 4, heat insulating material holding member 5, cylinder 6 The energization heating device of i# is supplied from a heating furnace (not shown).
This is also arranged near a table roller 8 that feeds the slab 1 to a hot rolling device (not shown).

以上のような圧延ラインによってこの発明では次のよう
に七てスラブlの熱間圧延前の加熱が行なわれる。
In the present invention, using the rolling line as described above, heating of the slab 1 before hot rolling is performed as follows.

すなわち、加熱炉から所要温度に加熱されて排出された
造塊、材もしくは連鋳材スラブ1は、チー゛プルU−2
8上を送給され、そのテーブルローラ8上から離脱せし
められて西側面を断熱材4によってカバーされ、かつ両
端部に電極2が当接せしめられる。その後、その状態で
電極2がらスラブlに通電され、スラブlはスラブ1自
体の有する固有抵抗によして発熱し、通軍刀口熱される
That is, the ingot, material, or continuous cast material slab 1 heated to the required temperature and discharged from the heating furnace is assembled into the multiple U-2
8 and is separated from the table roller 8, the west side is covered by the heat insulating material 4, and the electrodes 2 are brought into contact with both ends. Thereafter, in this state, electricity is applied to the slab 1 through the electrode 2, and the slab 1 generates heat due to the specific resistance of the slab 1 itself, and is heated to the point of being heated.

上述の過程において、加熱炉にてスラブlを加熱し、続
いて通電加熱装置によってスラブlを昇温するそれぞれ
の瀉廖@dh冷のrへF h 15半1ことが望ましい
In the above process, it is preferable to heat the slab l in a heating furnace, and then raise the temperature of the slab l by an electric heating device to F h 15 and a half 1 for each furnace.

すなわち、通電加熱装置における熱源は電気であシ、一
般に電気はガス等の熱源に比し、コスト高であることか
ら、個々のスラブを最初から通電加熱装置のみによって
加熱することは、生産能率・コスト両面から適当でない
。しかしながら前述したように方向性珪素鋼を加熱した
ときに発生するスケールはFeO、Fe2O,・S +
 02等を主成分とし、1200℃前後で溶融スケール
として流出を開始する。従って加熱炉においてスラブ1
を加熱する温度領域を最高でも1250℃までとし、つ
づいてそれを越える温度領域の加熱は通電加熱装置で行
なえば、加熱炉内でのスケールの堆積は防止できるので
、前記した炉補修の費用を削減でき、かつあらかじめス
ラブを予熱したのち熱源を電気に切替えるので比較的電
気使用による昇熱時間が短時間ですむため、コスト・生
産能率に問題は生じない。
In other words, the heat source in the current heating device is electricity, and electricity is generally more expensive than heat sources such as gas, so heating each slab only with the current heating device from the beginning will reduce production efficiency and This is not appropriate from both cost standpoints. However, as mentioned above, the scales generated when grain-oriented silicon steel is heated are FeO, Fe2O, ・S +
The main component is 02, etc., and it starts flowing out as molten scale at around 1200°C. Therefore, in the heating furnace, slab 1
If the heating temperature range is set to a maximum of 1250°C, and then the heating in the temperature range exceeding that temperature range is performed using an electric heating device, it is possible to prevent scale accumulation in the heating furnace, thereby reducing the cost of the furnace repair mentioned above. Moreover, since the heat source is switched to electricity after preheating the slab, the heating time due to the use of electricity is relatively short, so there are no problems with cost or production efficiency.

なお、例えば連鋳材スラブを用いる場合には必ずしも従
来の゛加熱炉において加熱を行なう必要はなく、連続鋳
造された連鋳材スラブを熱間圧延ラインに直送し、熱間
圧延前に+jfl記通電加熱装置によって所要温度に加
熱するようにしても良い。また、特にその連鋳材に関し
て、連鋳材は造塊材に比し加熱時の異常粒成長が生じや
すいという欠点を有するが、この発明で行なうように通
電加熱することによってスラブを均一に加熱すればその
ような異状粒成長を防止することができる。
For example, when using a continuously cast material slab, it is not necessarily necessary to heat it in a conventional heating furnace. It may also be heated to a required temperature using an electrical heating device. In addition, in particular, continuous casting materials have the disadvantage that they are more prone to abnormal grain growth when heated than agglomerated materials, but by heating with electricity as performed in this invention, the slab is uniformly heated. By doing so, such abnormal grain growth can be prevented.

次にこの発明の実施例を記す。Next, examples of this invention will be described.

実施例 ウオーキングビーム加熱炉の雰囲気を1320℃で一定
となるように調節し、そのウオーキングビーム加熱炉で
140 tX1050wX5000ノの珪素鋼スラブを
1230℃となるまで加熱し、その後加熱炉から取シ出
したスラブを通電加熱装置によって1300℃まで加熱
した。。
Example The atmosphere in the walking beam heating furnace was adjusted to be constant at 1,320°C, and a silicon steel slab of 140 t x 1,050 w x 5,000 mm was heated in the walking beam heating furnace to 1,230°C, and then taken out from the heating furnace. The slab was heated to 1300°C using an electrical heating device. .

比較例 上記実施例と同様にウオーキングビーム加熱炉の雰囲気
を1320℃で一定となるように調節し、そのウオーキ
ングビーム加熱炉で140tX 1050w×5OO0
1の珪素鋼ス97ヲ1300 ’(、jt’加熱した。
Comparative Example As in the above example, the atmosphere of the walking beam heating furnace was adjusted to be constant at 1320°C, and the walking beam heating furnace was used to generate 140t x 1050w x 5OO0
1 silicon steel was heated to 97° and 1,300°.

上記実施例および比較例で、先ずスラブの加熱前にその
重量を計測し、加熱後再度焼出しスラブの重量を計測し
て、加熱過程における重量減を算出した。その結果を第
1表および第5図に示す。
In the above Examples and Comparative Examples, the weight of the slab was first measured before heating, and the weight of the baked-out slab was measured again after heating to calculate the weight loss during the heating process. The results are shown in Table 1 and FIG.

また、実施例について通電加熱を開始する温度からのス
ラブ加熱効率を計測し、同じ温度からのウオーキングビ
−ム加熱炉におけるスラブ加熱効率を比較例について計
測した。その結果を第1表に示す。
Furthermore, the slab heating efficiency from the temperature at which electrical heating was started was measured for the example, and the slab heating efficiency in the walking beam heating furnace from the same temperature was measured for the comparative example. The results are shown in Table 1.

さらに、実施例および比較例ともに繰り返して行ない、
各々一部について熱間圧延を行なった後、スラブの長手
方向に沿って磁気特性を調べた。その結果を第6図およ
び第7図に示す。
Furthermore, both Examples and Comparative Examples were repeated,
After hot rolling a portion of each slab, the magnetic properties were examined along the longitudinal direction of the slab. The results are shown in FIGS. 6 and 7.

第1表 第1表および第5図から、実施例における重量減が比較
例における重量減よシもはるかに小さいことがわかる。
It can be seen from Table 1 and FIG. 5 that the weight loss in the Examples is much smaller than that in the Comparative Examples.

この加熱過程におけるスラブ屯量減は溶融スケールの発
生・流失によるものであって、第1表および第5図に示
された結果から実施例では溶融スケールの発生・流失が
比較例の場合に較べ格段に少ないことがわかる。これは
、実施例のように通電加熱を行うと、スラブが均一に加
熱されることから、相対的に低温部分が生じるようなこ
とはなく、低温部分を所要温度とするために全体を過剰
に加熱する必要がないためである。
The decrease in slab volume during this heating process is due to the generation and loss of molten scale, and from the results shown in Table 1 and Figure 5, the generation and loss of molten scale in the example was greater than that in the comparative example. It turns out that there are far fewer. This is because when electrical heating is performed as in the example, the slab is heated uniformly, so there is no relatively low-temperature area, and the entire slab is heated excessively to bring the low-temperature area to the required temperature. This is because there is no need to heat it.

また通電加熱によればスラブは内部から加熱されること
からスラブ外面を加熱雰囲気と接触させて内部に比し特
に高温にする必要がなく、スラブを断熱材によってカバ
ーして雰囲気によるスラブ外面の酸化を防止できるから
である。また、第1表から、加熱効率についても実施例
の場合の方が有利であることがわかる。
In addition, since the slab is heated from the inside with electrical heating, there is no need to bring the outer surface of the slab into contact with the heating atmosphere and make it higher in temperature than the inside. This is because it can prevent Furthermore, from Table 1, it can be seen that the examples are more advantageous in terms of heating efficiency.

さらに第6図および第7図を参照すると実施例によって
得られた製品の方が比較例のものに較べて長手方向の磁
気特性が均一であることがわかる。
Furthermore, referring to FIGS. 6 and 7, it can be seen that the products obtained in the examples have more uniform magnetic properties in the longitudinal direction than those of the comparative examples.

これは、実施例では通電加熱によってスラブ全体が均一
に加熱され、加熱炉で加熱する場合のようにスキッドマ
ークが生じて加熱が不均一となることがないからである
This is because in the example, the entire slab is heated uniformly by electrical heating, and skid marks do not occur and the heating becomes uneven, unlike when heating in a heating furnace.

以上のようにこの発明の方向性珪素鋼スラブの加熱方法
によれば、方向性珪素鋼スラブを熱間圧延する前にMn
 、 S 、 Se等をスラブ基地金属に固溶させるべ
く所定の圧延温度まで加熱するにあたシ、その圧延温度
に至る少なくとも高温域を通電加熱することでスラブ全
体を均一に加熱することができ、磁気特性が均一かつ良
好な方向性珪素鋼板を製造することができる。
As described above, according to the method for heating a grain-oriented silicon steel slab of the present invention, Mn
, S, Se, etc. are heated to a predetermined rolling temperature in order to form a solid solution in the base metal of the slab.The entire slab can be uniformly heated by electrically heating at least the high temperature range up to the rolling temperature. , it is possible to produce a grain-oriented silicon steel sheet with uniform and good magnetic properties.

また、スラブ全体を均一に加熱することができることか
ら、スラブを過剰に加熱しなくてもインヒビターをスラ
ブ基地金属に完全に固溶させることができ、本発明によ
ればスラブ加熱過程でスラブに溶融スケールが生じるよ
うなことはない。その結果、方向性珪素鋼板製造におけ
る製品歩走シが向上するのみでなく、スラブ加熱に供す
る加熱炉に溶融スケールが堆積することを防止すること
ができ、そのため炉寿命の短縮や炉効率の低ドを防ぎ、
さらに堆積物を除くための炉補修を行なう必要を無くす
ことができ、その結果方向性珪素鋼の製造コストを低減
することができる。
In addition, since the entire slab can be heated uniformly, the inhibitor can be completely dissolved in the slab base metal without overheating the slab, and according to the present invention, the inhibitor can be melted into the slab during the slab heating process. No scale occurs. As a result, it not only improves product run-through in the production of grain-oriented silicon steel sheets, but also prevents molten scale from accumulating in the heating furnace used for slab heating, thereby shortening the furnace life and reducing furnace efficiency. to prevent
Furthermore, it is possible to eliminate the need for furnace repair to remove deposits, and as a result, the manufacturing cost of grain-oriented silicon steel can be reduced.

【図面の簡単な説明】 、 第1図はこの発明の実施に供するスラブ通電加熱装
置の一例を示す平面図、第2図は同じく側面図、第3図
は第1図および第2図に示す通電加熱装置を配設して構
成した方向性珪素鋼板の圧延・焼鈍ラインの一例を示す
概略図、第4図は第3図A矢視図、第8図は実施例と比
較例のスラブ重量減率を示す図、第6鯛はこの発明の実
施例によって得られた方向性珪素鋼板について、その長
手方向に沿って磁気特性の変化を調べた結果を示す図、
第7図は従来方法を行なって得られた方向性珪素鋼板に
ついて、その長手方向に沿って磁気特性の変化を調べた
結果を示す図である。 l・・・スラブ4.2・・・電極、3・・・シリンダー
、4・・・断熱材、5:]・断熱材保持部材、6・・・
シリンダー、。 8・・・テーブルローラ。 出願人 川崎製鉄株式会社 代理人 弁理士豊田武人 (ほか1名) 第5図 欠Φφ本相−−−↓−一−νヒ、中文、イラミ八第6図 スラブ長、8方菌 第7図 スラブ長ケ方向
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a plan view showing an example of a slab energization heating device used for carrying out the present invention, Fig. 2 is a side view of the same, and Fig. 3 is shown in Figs. 1 and 2. A schematic diagram showing an example of a rolling/annealing line for grain-oriented silicon steel sheets configured with an electrical heating device, FIG. 4 is a view in the direction of arrow A in FIG. 3, and FIG. 8 is a slab weight of an example and a comparative example. The sixth figure is a diagram showing the loss rate, and the sixth figure is a diagram showing the results of examining changes in magnetic properties along the longitudinal direction of the grain-oriented silicon steel plate obtained by the example of the present invention.
FIG. 7 is a diagram showing the results of examining changes in magnetic properties along the longitudinal direction of grain-oriented silicon steel sheets obtained by the conventional method. l...Slab 4.2...Electrode, 3...Cylinder, 4...Insulating material, 5: ]-Insulating material holding member, 6...
cylinder,. 8...Table roller. Applicant Kawasaki Steel Co., Ltd. Agent Patent attorney Takehito Toyota (and 1 other person) Figure 5 Missing Φφ main phase --- ↓ - 1-νhi, Chinese, Irami 8 Figure 6 Slab length, 8-sided bacteria Figure 7 Slab length direction

Claims (1)

【特許請求の範囲】[Claims] 方向性珪素鋼スラブを熱間圧延前に所定の圧延温度に加
熱するにあたシ、上記所定の圧延温度に至る少なくとも
高温域を通電加熱することを特徴とする方向性珪素鋼ス
ラブの加熱方法。
A method for heating a grain-oriented silicon steel slab, which comprises heating the grain-oriented silicon steel slab to a predetermined rolling temperature before hot rolling, by electrically heating the grain-oriented silicon steel slab at least in a high temperature range up to the predetermined rolling temperature. .
JP23475183A 1983-12-13 1983-12-13 Heating method of grain oriented silicon steel slab Pending JPS60128210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23475183A JPS60128210A (en) 1983-12-13 1983-12-13 Heating method of grain oriented silicon steel slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23475183A JPS60128210A (en) 1983-12-13 1983-12-13 Heating method of grain oriented silicon steel slab

Publications (1)

Publication Number Publication Date
JPS60128210A true JPS60128210A (en) 1985-07-09

Family

ID=16975779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23475183A Pending JPS60128210A (en) 1983-12-13 1983-12-13 Heating method of grain oriented silicon steel slab

Country Status (1)

Country Link
JP (1) JPS60128210A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111266416A (en) * 2020-01-21 2020-06-12 鞍钢股份有限公司 Production method for controlling warping of non-oriented silicon steel rough rolling plate blank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111266416A (en) * 2020-01-21 2020-06-12 鞍钢股份有限公司 Production method for controlling warping of non-oriented silicon steel rough rolling plate blank

Similar Documents

Publication Publication Date Title
US4623407A (en) Method for producing a grain-oriented electrical steel sheet having a high magnetic flux density
SE460482B (en) CORN-ORIENTED ELECTRICAL TUB
JPH0686631B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
JP2001152250A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JPH01230721A (en) Manufacture of grain-oriented silicon steel sheet having high saturation magnetic flux density
JPS6160895B2 (en)
JPS631371B2 (en)
JPS60128210A (en) Heating method of grain oriented silicon steel slab
CN117460851A (en) Method for producing oriented electrical steel sheet
JPH08100216A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3369443B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP4894146B2 (en) Heating method for grain-oriented electrical steel slab
JPH05214444A (en) Production of nonoriented silicon steel sheet minimal inplane anisotropy of magnetic property
JP4206538B2 (en) Method for producing grain-oriented electrical steel sheet
JP3359385B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2533987B2 (en) Hot rolling method for continuous cast slab for unidirectional electrical steel sheet.
JP3336172B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JPS63109115A (en) Production of grain oriented silicon steel sheet having good electromagnetic characteristic
JP2004285442A (en) Finish-annealing method for grain oriented electrical steel sheet
JPH02263921A (en) Production of grain-oriented silicon steel plate
JP2637632B2 (en) Heating method for silicon steel slab and holding device for slab in heating furnace
JPS62284017A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density and low iron loss
EP0206703B1 (en) Method for producing a grain-oriented electrical steel sheet
JPH0699750B2 (en) Method for producing grain-oriented silicon steel sheet having good electromagnetic characteristics
JPH0524202B2 (en)