JPS60127458A - Detecting apparatus of welded part - Google Patents

Detecting apparatus of welded part

Info

Publication number
JPS60127458A
JPS60127458A JP58235786A JP23578683A JPS60127458A JP S60127458 A JPS60127458 A JP S60127458A JP 58235786 A JP58235786 A JP 58235786A JP 23578683 A JP23578683 A JP 23578683A JP S60127458 A JPS60127458 A JP S60127458A
Authority
JP
Japan
Prior art keywords
receiving
coil
welding
transmitting
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58235786A
Other languages
Japanese (ja)
Inventor
Yoshihiko Takishita
芳彦 瀧下
Takashi Kadowaki
門脇 孝志
Kazuya Sato
佐藤 弌也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd, Hitachi Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP58235786A priority Critical patent/JPS60127458A/en
Publication of JPS60127458A publication Critical patent/JPS60127458A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2412Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds
    • G01N2291/2675Seam, butt welding

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To attain the automation and capacity enhancement of a welded part detecting apparatus by enabling the leading-out of a reference pulse hight, by arranging comparing transmitting and receiving coils in the vicinity of measuring transmitting and receiving coils. CONSTITUTION:A vertical electromagnetic ultrasonic probe 11 is equipped with an electromagnet 12 for applying a DC magnetic field to a matrix material 1, a transmitting comparison coil 13s generating an ultrasonic wave, a transmitting measuring coil 13m, a receiving comparison coil 14s for detecting the reflected echo amount from the bottom surface of the matrix material 1 as a receiving signal and a receiving measuring coil 14m and, when the coils 13s, 14s are present at a position receiving no influence of a welded part 3, the coils 13m, 14m can correspond to the welded root part 3A or welding stop end position 3B of the welded part 3. The receiving output of the coil 14s is reduced by half by an attenuator 17 and the outputs of the coils 14m, 14s are applied to a differential circuit through differential operators 18m, 18s, and the pulse hight at the position receiving no influence of the welded part 3 and the crest value at the melting position of the welded part 3 are simultaneously detected and the melting position is detected from a position where each pulse hight comes to zero.

Description

【発明の詳細な説明】 本発明は、電磁超音波を用いた溶接部検出装置に関し、
特に溶接構造物の溶接部の検査、管理や、溶接トーチと
連動して溶接作業等を行なうのに好適な溶接部検出装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a weld detection device using electromagnetic ultrasonic waves.
In particular, the present invention relates to a welded part detection device suitable for inspecting and managing welded parts of welded structures, and for performing welding work in conjunction with a welding torch.

近時、溶接作業の自動化に伴なって、溶接部、特に溶接
部の溶込み先端位置または溶込み止端位置(以下、これ
らを「溶込み位置」という)を検査し、合否を判定する
自動溶接検査機が開発され、また溶接トーチを二つの母
材間の溶接線に沿って動かしつつ溶接を行なう自動溶接
機まだは溶接口ぎット(以下、これらを「自動溶接機」
という)が開発されている。
Recently, with the automation of welding work, automatic inspection of the welding part, especially the penetration tip position or penetration toe position (hereinafter referred to as "penetration position") of the welding part, and determining pass/fail. A welding inspection machine was developed, and an automatic welding machine that performs welding by moving the welding torch along the welding line between two base materials is still called a welding machine (hereinafter referred to as "automatic welding machine").
) has been developed.

前述した自動溶接検査機や自動溶接機のうち、例えば自
動溶接機を用いて二つの母材m1をT継手溶接する場合
、一方の母材と他の母材とを直角に保持した状態で溶接
トーチを溶接線に沿って動かすことによシティーチング
を行ない、その後当該ティーチング内容に従ってプレイ
バック動作させることにより、溶接トーチを溶接線に沿
って動かしつつ溶接作業を施こすようになっている。し
かし、このような自動溶接機においては、浴接線が長い
と溶接トーチがティーチング内容辿りに動作しても、溶
接熱による歪等のために溶接トーチが適切な溶接位置か
らずれたシ、母材間のギャップの大きさ、バラツキ等に
対して溶接条件を対応することができないという問題が
ある。
Among the automatic welding inspection machines and automatic welding machines mentioned above, for example, when welding two base materials m1 into a T-joint using an automatic welding machine, welding is performed with one base metal and the other base metal held at right angles. City teaching is performed by moving the torch along the welding line, and then a playback operation is performed according to the teaching content, so that welding work is performed while moving the welding torch along the welding line. However, in such automatic welding machines, if the bath tangent is long, even if the welding torch operates according to the teaching contents, the welding torch may deviate from the appropriate welding position due to distortion due to welding heat, or the base metal may be damaged. There is a problem in that the welding conditions cannot be adjusted to the size of the gap between the two, variations, etc.

このような問題点を解決するために、母材間に形成され
る溶接部に超音波を投射し、その反射エコー量から溶接
部の溶込み位置を検出する超音波溶接部検出装置を用い
、該検出装置によって溶接中または溶接直後の溶込み位
置を検出することによって、その検出結果を演算処理装
置に入力し、ティーチング内容に補正演算を加えながら
溶接トーチを動作せしめ、良好な溶接部を形成するよう
にしだものが従来から知られている。そして、前述した
超音波による溶接部検出装置として、超音波探触子によ
る垂直6dBドロツプ法がある。
In order to solve these problems, we use an ultrasonic weld detection device that projects ultrasonic waves onto the weld formed between the base metals and detects the penetration position of the weld from the amount of reflected echoes. By detecting the penetration position during welding or immediately after welding with the detection device, the detection result is input to the arithmetic processing device, and the welding torch is operated while adding correction calculations to the teaching contents to form a good weld. Things that do this have been known for a long time. As the above-mentioned ultrasonic weld detection device, there is a vertical 6 dB drop method using an ultrasonic probe.

以下、垂直6dBドロツグ法を用いた従来技術による溶
接部検出装置について、第1図および第2図によシ説明
する。
Hereinafter, a conventional weld detection device using a vertical 6 dB drop method will be explained with reference to FIGS. 1 and 2.

第1図において、被検Iとなる1、2は母材を示し、該
各母材1,2は浴接部3にょ9臣に固着され、T継手溶
接を構成している。4は母材1上に非接触状態で配設さ
れた垂直電磁超音波探触子を示しく以下、「探触子4」
という)、該探触子4け母材1に直流磁界を与える直流
電磁石5と、該電磁石5と母材1との間に位置しパルス
が印加されることによって母材1に超音波を発生する送
信コイル6と、該送信コイル6の下側に位置し母材1の
底面からの反射エコー量を受信信号として検出する受信
コイル7とから構成されている。8は送信コイル6に高
周波・母ルスを印加する・やルス発生器、9は受信コイ
ル7がらの受信信号を増幅する増幅器、1oは該増幅器
9の次段に設けられた処理回路で、該処理回路1oは受
信信号の信号レベルから溶接部3の溶込み位置を判定す
る機能を有する。なお、第1図中3Aは溶接部3の溶込
み先端位置となる溶接ルート部、3Bは溶接部3と毎月
1との接点となる溶接止端部を示す。
In FIG. 1, reference numerals 1 and 2, which serve as the test object I, indicate base metals, and the base metals 1 and 2 are fixed to the bath contact portion 3 to form a T-joint weld. 4 indicates a vertical electromagnetic ultrasonic probe disposed on the base material 1 in a non-contact state; hereinafter referred to as "probe 4"
), a DC electromagnet 5 that applies a DC magnetic field to the base material 1 of the probe, and a DC electromagnet 5 that is located between the electromagnet 5 and the base material 1 and generates ultrasonic waves in the base material 1 by applying pulses. The receiving coil 7 is located below the transmitting coil 6 and detects the amount of echoes reflected from the bottom surface of the base material 1 as a received signal. Reference numeral 8 denotes a pulse generator that applies a high-frequency pulse to the transmitter coil 6, 9 an amplifier that amplifies the received signal from the receiver coil 7, and 1o a processing circuit provided at the next stage of the amplifier 9. The processing circuit 1o has a function of determining the penetration position of the welded portion 3 from the signal level of the received signal. In addition, in FIG. 1, 3A indicates a weld root portion which is the penetration tip position of the weld portion 3, and 3B indicates a weld toe portion which is a contact point between the weld portion 3 and the monthly 1.

このように構成される溶接部検出装置においては、直流
電磁石5を励磁して母材1に磁界を与えた状態で、送信
コイル6をパルス発生器8がらの所定パルスで励磁する
と、該母材1の表面に渦電流が流れ、7レミングの左手
の法則に基づくローレンツ力が該母料1に働き、機械的
変位(超音波)を発生する。この超音波は母材1の表面
から垂直に伝搬し、母1’ 1の底面で反射して再び表
面側に戻るから、この戻ってきた超音波を発生時と逆の
過程を経て受信コイル7で電圧信号として受信し、さら
にこの受信信号を増幅器9を介して処理回路10で判定
することによシ、溶接部3を検出することができる。
In the welding part detection device configured as described above, when the transmitting coil 6 is excited with a predetermined pulse from the pulse generator 8 while the DC electromagnet 5 is excited to apply a magnetic field to the base material 1, the base material 1 is excited. An eddy current flows on the surface of the base material 1, and a Lorentz force based on Lemming's left-hand rule acts on the base material 1, generating mechanical displacement (ultrasonic waves). This ultrasonic wave propagates perpendicularly from the surface of the base material 1, is reflected from the bottom surface of the base material 1'1, and returns to the surface side again, so the returned ultrasonic wave is sent to the receiving coil 7 through the reverse process of generation. The welded portion 3 can be detected by receiving the voltage signal as a voltage signal and further determining the received signal by the processing circuit 10 via the amplifier 9.

即ち、探触子4を構成する送信コイル6および受信コイ
ル7の中心が溶接部3がら離れた位置Aにあるときには
母料1底面からの反射エコー量は第2図に示す如< W
Aにある。次に、この位RAから探触子4を溶接ルート
部3Aに向は徐々に移動させ、該溶接ルート部3Aと対
応する位置Bにくると、その時の反射エコー散WBはw
Aの1/2に低下(−6dB)する。次に、探触子4を
この位置Bから溶接部3の中央部分に移動させると、超
音波の大部分は該溶接部3を透過し、その時の反射エコ
ー量WcはWnよシ低下する。さらに、探触子4をこの
位置Cから溶接止端部3Bに対応する位置りに移動させ
ると、反射エコー量はWnと再び等しくなシ、この位置
りから溶接部3と離れた位置Eまで移動させると、反射
エコー量は再びwAと等しくなる。かくして、探触子4
を適宜の位置Aから溶接部3に向けて移動させ、その反
射エコー量がWA/2となる場所を処理回路1oによっ
て探せば、溶接ルート部3Aの位置を判定することがで
き、7・かる検出方法は垂直6 dBドロップ法として
従来から知られている。一方、溶接止端部3Bについて
も同様にして検出することができる。
That is, when the centers of the transmitting coil 6 and the receiving coil 7 that constitute the probe 4 are at a position A away from the welding part 3, the amount of reflected echo from the bottom surface of the base material 1 is as shown in FIG.
It's in A. Next, the probe 4 is gradually moved from this point RA toward the welding root portion 3A, and when it comes to a position B corresponding to the welding root portion 3A, the reflected echo scattering WB at that time is w.
It decreases to 1/2 of A (-6 dB). Next, when the probe 4 is moved from this position B to the central part of the welded part 3, most of the ultrasonic waves are transmitted through the welded part 3, and the amount of reflected echoes Wc at that time decreases by more than Wn. Furthermore, when the probe 4 is moved from this position C to a position corresponding to the weld toe 3B, the amount of reflected echoes becomes equal to Wn again, and from this position to the position E, which is distant from the welding part 3. When moved, the amount of reflected echoes becomes equal to wA again. Thus, probe 4
The position of the welding root part 3A can be determined by moving it from an appropriate position A toward the welding part 3 and searching for a place where the amount of reflected echo is WA/2 using the processing circuit 1o. The detection method is conventionally known as the vertical 6 dB drop method. On the other hand, the weld toe 3B can also be detected in the same manner.

このように、従来技術による溶接部検出装置においても
、送信コイル6および受信コイル7が溶接部3から離れ
た位置における受信信号の波高値(以下、この波高値を
[基準波高値」という)に対し、−6dBを示す位置を
検出することにより、溶接ルート部3Aまたは溶接止端
部3Bを検出することができる。
In this way, even in the welding part detection device according to the conventional technology, the transmitting coil 6 and the receiving coil 7 adjust the peak value of the received signal at a position away from the welding part 3 (hereinafter, this peak value is referred to as the "reference peak value"). On the other hand, by detecting the position showing -6 dB, the weld root portion 3A or the weld toe portion 3B can be detected.

しかし、このような従来技術によるものは、母材1の材
質、板厚および表面状態等の変化によって、標準波高値
が大きく変動する。このため、溶接すべき母材1の材質
、形状等をかえる度に、溶接部3の影響を受けない位置
(第1図中の位置AまたはF、)Kおける標準波高値を
予め調べなくてはならないという欠点がある。
However, in the conventional technology, the standard wave height value varies greatly due to changes in the material, plate thickness, surface condition, etc. of the base material 1. For this reason, every time the material, shape, etc. of the base metal 1 to be welded is changed, it is necessary to check the standard wave height value at a position (position A or F in Fig. 1) that is not affected by the welding part 3 in advance. There is a drawback that it cannot be used.

本発明は、前述した従来技術による欠点に鑑みなされた
もので、溶接部の影響を受けない位置の波高値と、溶接
部の溶込み位置の波高値とをほぼ同時に検出し、両者の
波高値が零となる位置から当該溶込み位置を検出しうる
ようにした溶接部検出装置を提供することを目的とする
ものである。
The present invention was made in view of the drawbacks of the prior art described above, and detects the wave height value at a position not affected by the welding part and the wave height value at the penetration position of the welding part almost simultaneously, and detects the wave height value of both. It is an object of the present invention to provide a welding part detection device capable of detecting the penetration position from a position where is zero.

上記目的を達成するために、本発明が採用する構成の特
徴は、被検材に直流磁界を与える電磁石と該被検材との
間には一対の送受信コイルを設け、一方の送受信コイル
の出力側には受信信号レベルをほぼ半分に減衰させる減
衰器を設け、前記他方の送受信コイルと減衰器の出力側
にはこれらからの受4N信号を差動演算する演算器を設
け、該演算器によって両受倍信号の差が零となる位置を
見い出すことにより、溶接部を検出するようにしたこと
にある。
In order to achieve the above object, the feature of the configuration adopted by the present invention is that a pair of transmitter/receiver coils are provided between the electromagnet that applies a DC magnetic field to the test material and the test material, and the output of one transmitter/receiver coil is An attenuator that attenuates the received signal level by approximately half is provided on the side, and an arithmetic unit is provided on the output side of the other transmitting/receiving coil and the attenuator to perform differential calculations on the received 4N signals. The welded portion is detected by finding the position where the difference between the two multiplied signals becomes zero.

以下、本発明について第3図ないし第5図に示す実施例
に基づき説明するに、母材1,2は溶接部3により互い
に固着され、T継手溶接を構成している点、従来技術と
変るところがない。
Hereinafter, the present invention will be explained based on the embodiment shown in FIGS. 3 to 5. The difference from the prior art is that base materials 1 and 2 are fixed to each other by a welding part 3, forming a T-joint weld. However, there is no such thing.

然るに、11は本発明に用いる垂直電磁超音波探触子を
示しく以下、「探触子11」という)、該探触子11は
母イ第1に直流磁界を与える直流電磁石12と、該電磁
石12と母材1との間に位置しパルスが印加されること
によって母材1に超音波を発生する送信用比較コイル1
33および送信用測定コイル13mと、該各コイル13
s、13mの下側に位置し母材1の底面からの反射エコ
ー量を受信信号として検出する受信用比較コイル148
および受信用測定コイル14mとから構成される。そし
て、前記各比較コイル138゜148と、測定コイル1
3m、14mとは互いに所定間隔りだけ離間し、該各比
較コイル138.148が溶接部3から離れ該溶接部3
の影響を受けない位置にあるとき、各測定コイル13m
、 14mは溶接部3の溶接ルート部3Aまたは溶接止
端位置3Bと対応する位置とすることができるようにな
っている。
However, 11 indicates a vertical electromagnetic ultrasonic probe used in the present invention (hereinafter referred to as "probe 11"), and the probe 11 includes a DC electromagnet 12 that applies a DC magnetic field to the main body, and A transmission comparison coil 1 is located between the electromagnet 12 and the base material 1 and generates ultrasonic waves in the base material 1 by applying pulses.
33 and the transmitting measurement coil 13m, and each coil 13
A receiving comparison coil 148 is located below s, 13m and detects the amount of echoes reflected from the bottom surface of the base material 1 as a received signal.
and a receiving measurement coil 14m. Then, each of the comparison coils 138° 148 and the measuring coil 1
3m and 14m are spaced apart from each other by a predetermined distance, and each of the comparison coils 138 and 148 is separated from the welding part 3.
Each measuring coil 13 m when in a position not affected by
, 14m can be set at a position corresponding to the weld root portion 3A or weld toe position 3B of the weld portion 3.

15は送信用比較コイル13s1送信用測定コイル13
mに所定の、41ルスを印加するパルス発生器、168
.16mは受信用比較コイル149、受信用測定コイル
14mからの受信信号を増幅する増幅器である。17は
増幅?、?r16 Sの次段に設けられた減衰器を示し
、該減衰器17は増幅器168を介して入力される受信
用比較コイル148からの受信信号レベルをほぼ50饅
、即ち6 dBだけ減衰させる機能を有する。1881
18mは減衰器17、増幅器16m の次段に設けられ
た波形整形回路で、該波形成形回路1.88.18.y
、は受信用比較コイル1dll、受信用61す定コイル
14mによってそれぞれ検出された゛電圧信号の最高波
高値に基づき、当該波高値に応じた矩形波信号に波形整
形する。なお、前記波形整形回路188.18mには・
七ルス発生器15からの・やルスに同期して信号を取込
むに必要な所定ダート時間だけケ9−卜を開くダート回
路、前記ダート時間の中で最も高い波高値をホールドす
るピークホールド回路が必要に応じて内蔵されている。
15 is a comparison coil for transmission 13s1 measurement coil for transmission 13
a pulse generator for applying a predetermined 41 rus to m, 168
.. 16m is an amplifier that amplifies the received signals from the receiving comparison coil 149 and the receiving measuring coil 14m. Is 17 amplified? ,? The attenuator 17 is provided at the next stage of r16S, and the attenuator 17 has the function of attenuating the level of the received signal from the receiving comparison coil 148 inputted via the amplifier 168 by approximately 50 dB, that is, 6 dB. have 1881
18m is a waveform shaping circuit provided at the next stage of the attenuator 17 and the amplifier 16m, and the waveform shaping circuits 1.88.18. y
Based on the maximum peak value of the voltage signal detected by the receiving comparison coil 1dll and the receiving 61 constant coil 14m, the waveform is shaped into a rectangular wave signal according to the peak value. In addition, the waveform shaping circuit 188.18m includes:
a dart circuit that opens the gate for a predetermined dart time necessary to capture the signal in synchronization with the signal from the pulse generator 15; and a peak hold circuit that holds the highest peak value during the dart time. is built in as required.

19は前記各波形整形回路1811.18mの次段に設
けられた差動回路で、該差動回路19は各波形整形回路
18s、18mからの入力を減算し、両信号の差分の信
号を出力する機能を有する。
19 is a differential circuit provided at the next stage of each waveform shaping circuit 1811.18m, and this differential circuit 19 subtracts the input from each waveform shaping circuit 18s and 18m, and outputs a signal of the difference between both signals. It has the function of

20は前記差動回路19からの出力を処理する処理回路
である。なお、本発明の溶接部検出装置を自動溶接検査
機に適用した場合は、前記処理回路20は溶接部3の合
否を判定する検査用モニタまたは記録装置等であり、ま
た自動溶接機に適用した場合には、ティーチング内容に
従ったグレイバ7り信号に対し、差動回路19からの差
分信号を補正演算しつつ溶接トーチを動作せしめるフィ
ードバック用の補正演算装置に該当する。
A processing circuit 20 processes the output from the differential circuit 19. In addition, when the welding part detection device of the present invention is applied to an automatic welding inspection machine, the processing circuit 20 is an inspection monitor or recording device, etc. for determining the pass/fail of the welding part 3, and when applied to the automatic welding machine. In this case, it corresponds to a correction calculation device for feedback that operates the welding torch while correcting the difference signal from the differential circuit 19 with respect to the gray bar 7 signal according to the teaching content.

本発明は前述のように構成されるが、次にその作動につ
いて述べる。
The present invention is constructed as described above, and its operation will now be described.

まず、第4図(イ)に示す如く、探触子11の受信用比
較コイル14B1受信用測定コイル14mが溶接部3の
影響を受けない位置にある場合について、第5図(イ)
の特性線図を参照しつつ述べる。
First, as shown in FIG. 4(a), the case where the receiving comparison coil 14B1 of the probe 11 and the receiving measuring coil 14m are located at a position not affected by the welding part 3 is shown in FIG. 5(a).
This will be explained with reference to the characteristic diagram.

この場合には、直流電磁石12を励磁して母材1に磁界
を与えた状態で、ノソルス発生器15から第5図(−)
に示す如く・ぐルス電流を出力し、これを送信用比較コ
イル13.1送信用測定コイル13mに供給する。この
結果、母材1に超音波が発生し、受信用比較コイル14
Bは母材1の底面から反射される第1反射波pi、第2
反射波P 2 、第3反射波P3と徐々に減衰する電圧
信号を受信し、この受信信号は増幅器16sによって増
幅され、第5図(b)に示す如き比較信号として出力さ
れる。この際、受信用比較コイル148は溶接部と離れ
た位置にあるから、このときの第1反射波plの波高値
はEとなる。また、受信用比較コイル14m も母料1
の底面から反射される第1反射波P1%第2反射(11
P 2 、第3反射波P3と徐々に減衰する電圧信号を
受信するが、該受信用測定コイル14mも溶接部3から
離れた位置にあるから、増幅器16mからは第5図(e
)に示す測定信号が出力され、当該測定信号の第1反射
波p、の波高値はEとなっている。
In this case, in a state where the DC electromagnet 12 is excited and a magnetic field is applied to the base material 1, the nosolus generator 15 as shown in FIG.
As shown in FIG. 1, a positive current is output and supplied to the transmitting comparison coil 13.1 and the transmitting measuring coil 13m. As a result, ultrasonic waves are generated in the base material 1, and the receiving comparison coil 14
B is the first reflected wave pi reflected from the bottom surface of the base material 1, the second reflected wave
A reflected wave P 2 , a third reflected wave P3, and a gradually attenuating voltage signal are received, and this received signal is amplified by an amplifier 16s and output as a comparison signal as shown in FIG. 5(b). At this time, since the receiving comparison coil 148 is located away from the welding part, the peak value of the first reflected wave pl at this time is E. In addition, the receiving comparison coil 14m is also the base material 1.
The first reflected wave reflected from the bottom surface of P1% second reflected wave (11
P 2 , the third reflected wave P3, and a gradually attenuating voltage signal are received, but since the receiving measuring coil 14m is also located away from the welding part 3, the amplifier 16m receives the voltage signal shown in FIG.
) is output, and the peak value of the first reflected wave p of the measurement signal is E.

一方、増幅器168からの比較信号は、減衰器17によ
って半分(−6da)の波高値、即ち第1反射波Plが
V2の波高値となるように信号処理され、第5図(e)
に示す減衰信号P’(+ P’2 r P’sを出力す
る。
On the other hand, the comparison signal from the amplifier 168 is processed by the attenuator 17 so that the peak value is half (-6 da), that is, the first reflected wave Pl becomes the peak value of V2, as shown in FIG. 5(e).
It outputs the attenuated signal P'(+P'2 r P's) shown in FIG.

次に、減衰器17からの減衰信号は波形整形回路183
 に入力され、該波形整形回路188はパルス発生器1
5からの・母ルスに同期して減衰信号を取込むに必要な
所定のダート時間だけ(例えば、減衰信号p/lに対応
する時間)ダートを開き、最も波高値の高い第1反射波
P1に対応する減衰信号p/lの波高値V2をピークホ
ールドし、第5図(d)に示す如く波高値E/2で、パ
ルス時間Tの矩形波信号を出力する。同様に、増幅器1
6mからの測定信号も波形整形回路18mに入力され、
該波形整形回路18mは・ぐルス発生器15からのパル
スに同期して所定のダート時間だけダートを開き、最も
波高値の高い第1反射波P、の波高値Eをピークホール
ドし、第5図(f)に示すように波高値Eで、パルス時
間Tの矩形波を出力する。
Next, the attenuated signal from the attenuator 17 is transferred to a waveform shaping circuit 183.
The waveform shaping circuit 188 is input to the pulse generator 1.
The dart is opened for a predetermined dart time necessary to capture the attenuation signal in synchronization with the mother pulse from 5 (for example, the time corresponding to the attenuation signal p/l), and the first reflected wave P1 with the highest peak value is detected. The peak value V2 of the attenuated signal p/l corresponding to is held at the peak, and a rectangular wave signal of pulse time T is outputted at a peak value E/2 as shown in FIG. 5(d). Similarly, amplifier 1
The measurement signal from 6m is also input to the waveform shaping circuit 18m,
The waveform shaping circuit 18m opens the dart for a predetermined dart time in synchronization with the pulse from the pulse generator 15, peak-holds the wave height value E of the first reflected wave P, which has the highest wave height value, and As shown in Figure (f), a rectangular wave with a peak value E and a pulse time T is output.

次に、各波形整形回路18..18mからの出力は差動
回路19に入力され、波形整形回路18mの出力から波
形整形回路18aの出力を減算する差動演算を行なう。
Next, each waveform shaping circuit 18. .. The output from the waveform shaping circuit 18m is input to a differential circuit 19, which performs a differential operation of subtracting the output of the waveform shaping circuit 18a from the output of the waveform shaping circuit 18m.

ところで、探触子11が第4図(イ)の位置にあるとき
には、前述した如く波形整形回路18mの出力の方がE
/2だけ波高値が高いから、該差動回路19は第5図(
g)に示すように波高値E/2の差分信号を処理回路2
0に出力する。
By the way, when the probe 11 is in the position shown in FIG. 4(a), the output of the waveform shaping circuit 18m is higher than E
Since the peak value is high by /2, the differential circuit 19 is as shown in FIG.
As shown in g), the differential signal of peak value E/2 is processed by the processing circuit 2.
Output to 0.

かくして、処理回路20を自動溶接検査機に適用した場
合には、溶接機の動きと連侃1して溶接線方向に本発明
による溶接部検出装置を動かしつつ溶接部3の位置を監
視し、検査用モニタまたは記録装置に第4図(イ)に示
す位置には溶接部3の溶接ルート部3Aが存在していな
い旨記録し、これらの記録の集合から溶接作業の終了後
に溶接部3の合否を判定する。一方、処理回路20全自
動溶接機に適用した場合には、本発明による溶接部検出
装置を溶接トーチと連動して溶接方向に動かしつつ溶接
ルート部3Aを監祝し、溶接トーチを第4図(イ)の位
置から第4図(ロ)の位置に移動させるべき補正演算を
行なう。
Thus, when the processing circuit 20 is applied to an automatic welding inspection machine, the position of the weld 3 is monitored while moving the weld detection device according to the present invention in the direction of the weld line in conjunction with the movement of the welding machine, Record on the inspection monitor or recording device that the weld root section 3A of the weld section 3 does not exist at the position shown in Figure 4 (a), and from the collection of these records, it can be determined that the weld section 3 is not present at the position shown in Figure 4 (a). Determine pass/fail. On the other hand, when the processing circuit 20 is applied to a fully automatic welding machine, the welding part detection device according to the present invention is moved in the welding direction in conjunction with the welding torch while supervising the welding route part 3A, and the welding torch is moved as shown in FIG. A correction calculation is performed to move from the position shown in (a) to the position shown in FIG. 4 (b).

次に、第4図(ロ)に示す如く、探触子11の受信用測
定コイル14mのみが溶接部3の溶接ルート3Aの真上
に存在している場合について、第5図(ロ)の特性線図
を参照しつつ述べる。
Next, as shown in FIG. 4(B), for the case where only the receiving measurement coil 14m of the probe 11 is present directly above the welding route 3A of the welding part 3, the case shown in FIG. 5(B) is as follows. This will be explained with reference to the characteristic diagram.

この場合にも、受信用比較コイル148は溶接部3の影
響を受けない位置にあるから、増幅器16゜からの比較
信号、減衰器17がらの減衰信号、波形整形回路188
からの矩形波信号等は、前述した場合と同様に全く変る
ところがない。
In this case as well, since the receiving comparison coil 148 is located at a position where it is not affected by the welding part 3, the comparison signal from the amplifier 16°, the attenuated signal from the attenuator 17, and the waveform shaping circuit 188
There is no change in the rectangular wave signal etc. from the above case, as in the case described above.

ところが、受信用測定コイル14mは溶接ルート部3A
の真上に位置しているから、該受信用測定コイル14m
によって受信される反射エコー量は1/2に低下(−6
dB )する。この結果、受信用測定コイル14mで受
信される第1反射波pi、第2反射波P2、第3反射波
P3の検出電圧値も1/2となり、増幅器16mからの
測定信号出力は第5図(e)に示す如く、その第1反射
波P、の波高値はE/2となる。
However, the receiving measuring coil 14m is connected to the welding route 3A.
Since it is located directly above the receiving measuring coil 14 m.
The amount of reflected echoes received by
dB). As a result, the detection voltage values of the first reflected wave pi, second reflected wave P2, and third reflected wave P3 received by the receiving measurement coil 14m are also halved, and the measurement signal output from the amplifier 16m is as shown in FIG. As shown in (e), the wave height value of the first reflected wave P is E/2.

そして、前記第1反射波Plは波形整形回路18mによ
って波形整形され、第5図(f)に示すように波高値E
/2で、・ぐルス時間Tの矩形波を出力する。
Then, the first reflected wave Pl is waveform-shaped by the waveform shaping circuit 18m, and has a wave height E as shown in FIG. 5(f).
/2, outputs a rectangular wave with pulse time T.

前記波形整形回路is8.ismからの管形波信号は差
動回路19に入力され、波形整形回路18mの出力から
波形整形回路188の出力を減算する差動演算を行なう
。ところで、探触子11が第4図(ロ)の位置にあると
きには、波形整形回路18s。
The waveform shaping circuit is8. The tube wave signal from the ism is input to the differential circuit 19, which performs a differential operation of subtracting the output of the waveform shaping circuit 188 from the output of the waveform shaping circuit 18m. By the way, when the probe 11 is in the position shown in FIG. 4(b), the waveform shaping circuit 18s.

18mから出力される矩形波信号の波高値は共にV2で
あるから、差動回路19からの差分信号は第5図(g)
に示すように零となり、所定のノeルス時間Tの間には
処理回路20に何らの信号も入づjされない。
Since the peak values of the rectangular wave signals output from 18m are both V2, the difference signal from the differential circuit 19 is as shown in FIG. 5(g).
As shown in FIG. 2, the signal becomes zero, and no signal is input to the processing circuit 20 during the predetermined reference time T.

かくして、処理回路20を自動溶接検査機に適用した場
合には、第4図(+’)に示す位置に溶接ルート部3A
が存在している旨を検査用モニタまたは記録装置に記録
する。一方、処理回路20を自動溶接機に適用した場合
には、溶接トーチは溶接線に沿って移動しているものと
判定し、プレイ/%’ツク信号に何らの補正演算を加え
ることなく該溶接トーチをひき続き溶接動作せしめる。
Thus, when the processing circuit 20 is applied to an automatic welding inspection machine, the welding route portion 3A is located at the position shown in FIG. 4 (+').
Record the existence of the test on the inspection monitor or recording device. On the other hand, when the processing circuit 20 is applied to an automatic welding machine, it is determined that the welding torch is moving along the welding line, and the welding is performed without adding any correction calculation to the play/%'tsuku signal. Continue the welding operation with the torch.

このように、本実施例においては、基準波高値となる比
較信号の波高値Eと測定信号の波高値とは、同一の母材
1を対象として同時にIfl11定することができる。
In this manner, in this embodiment, the peak value E of the comparison signal serving as the reference peak value and the peak value of the measurement signal can be determined simultaneously for the same base material 1.

従って、従来技術の如く被検出材となる母材1の材質、
板厚、表面形状等に応じてその都度、基準波高値を測定
して記憶する必要がなく、自動溶接検査機や自動溶接機
等の完全自動化を促進させることができる。
Therefore, as in the prior art, the material of the base material 1, which is the material to be detected,
There is no need to measure and store the reference wave height value each time according to plate thickness, surface shape, etc., and it is possible to promote complete automation of automatic welding inspection machines, automatic welding machines, etc.

なお、本発明の実施例においては、送信用比較コイル1
3gと受信用比較コイル1411が一方の送受信コイル
の具体例であり、送信用測定コイル13mと受信用測定
コイル14mが他方の送受信コイルの具体例であるが、
送信コイルと受信コイルとを兼用した単一の送受信コイ
ルとしてもよく、この場合には直流電磁石12と母材1
との1&I]に比較用送受信コイルと測定用送受信コイ
ルを所定距離りだけ隔てて配設すればよい。
In addition, in the embodiment of the present invention, the transmission comparison coil 1
3g and the receiving comparison coil 1411 are specific examples of one transmitting/receiving coil, and the transmitting measuring coil 13m and the receiving measuring coil 14m are specific examples of the other transmitting/receiving coil.
A single transmitter/receiver coil may be used as both a transmitter coil and a receiver coil, and in this case, the DC electromagnet 12 and the base material 1
1&I], the comparative transmitting/receiving coil and the measuring transmitting/receiving coil may be arranged separated by a predetermined distance.

一方、実施例では水平な母材1と垂直な母材2とをT継
手溶接するものとして述べたが、これに限ることなく突
き合せ溶接、あて金溶接、重ね溶接等にも適用しうるも
のであシ、一方溶接部が母材の上面側であるときには探
触子11は下面側r(配設すればよいものである。
On the other hand, in the embodiment, the horizontal base metal 1 and the vertical base metal 2 are T-jointed welded, but the present invention is not limited to this and can be applied to butt welding, patch welding, lap welding, etc. On the other hand, when the welded portion is on the upper surface side of the base metal, the probe 11 may be placed on the lower surface side (r).

さらに、本発明が適用される対象として自動溶接検査機
、自動溶接機または溶接ロビットを例に挙げ述べたが、
溶接部を検出して所定の整視またはフィードバック制御
等を必要とする装置には広く適用しつるものである。
Furthermore, although automatic welding inspection machines, automatic welding machines, or welding robots have been described as examples to which the present invention is applied,
It is widely applicable to devices that detect welds and require predetermined viewing or feedback control.

本発明に係る溶接部検出装置は、以上詳細に述べた如く
であるから、下記各項の効果を奏する。
Since the welding part detection device according to the present invention has been described in detail above, it achieves the following effects.

■ 従来技術によるものは、被検出材が変る度に、溶接
部の影響を受けない位置における基準波高値を予め測定
する必要があるが、本発明においては測定用送受化コイ
ルの近傍に比較用送受信コイルを配設し、該比較用送受
信コイルによる受信信号を基準波高値として使用しうる
から、溶接部検出装置の自動化を促進させることができ
る。
■ In the conventional technology, it is necessary to measure the reference wave height value in advance at a position unaffected by the weld every time the material to be detected changes. Since a transmitter/receiver coil is provided and the signal received by the comparison transmitter/receiver coil can be used as a reference peak value, automation of the welding portion detection device can be promoted.

■ 超音波探触子として、非接触型の電磁超音波探触子
を用いているから、超音波振動子として水晶振動子の如
き圧電振動子やチタン酸バリウムの如き亀71振動子等
、接触型振動子音用いたものに比較して、接触圧力によ
る受信信号レベルの変動がなく、安定した信号を得るこ
とができ、装置の信頼性を高めることができる。
■ Since a non-contact type electromagnetic ultrasonic probe is used as the ultrasonic probe, a piezoelectric vibrator such as a crystal vibrator or a turtle 71 vibrator such as barium titanate can be used as an ultrasonic transducer. Compared to those using type vibrating consonants, there is no fluctuation in the received signal level due to contact pressure, a stable signal can be obtained, and the reliability of the device can be improved.

■ 前記0項に関連して、接触型振動子は常温の被検出
材にしか適用できないが、電磁゛超音波振動子を用いた
場合には、溶接中または溶接直後の高温時にも適用でき
、自動溶接機等との連動を簡単に行なうことができる。
■ In relation to item 0 above, a contact type vibrator can only be applied to the material to be detected at room temperature, but if an electromagnetic or ultrasonic vibrator is used, it can be applied even at high temperatures during or immediately after welding. It can be easily linked with automatic welding machines, etc.

■ 測定信号と比較信号の差を演算するものであるから
、溶接部の溶込み位置を高精度に検出することができる
■ Since the difference between the measurement signal and the comparison signal is calculated, the penetration position of the weld can be detected with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来技術による溶接部検出装置を
示し、第1図はその原理説明図、第2図は第1図中の位
置A、B、C,D、Eにおける反射エコー量を示す特性
線図、第3図ないし第5図は本発明による溶接部検出装
置を示し、第3図はその全体構成図、第4図は探触子を
位置(イ)から(ロ)に移動させた状態を示す説明図、
第5図は第4図中の探触子位置(イ)および(ロ)にお
ける波形特性線図を示す。 1,2・・・母料、3・・・溶接部、3A・・・溶接ル
ート部、3B・・・溶接止端部、11・・・探触子、1
2・・・直流電磁石、13.・・・送信用比較コイル、
13m・・・送信用測定コイル、14.・・・受信用比
較コイル、14m・・・受信用測定コイル、15・・・
ノ9ルス発生器、163116m・・・増幅器、17・
・・減衰器、183 。 18m・・・波形整形回路、 19・・・差動回路、2
001、処理回路。 特許出島人 日立建機株式会社 ”00,1 に σ \−/ \−〆 \、ノ \−/
Figures 1 and 2 show a conventional weld detection device, Figure 1 is an explanatory diagram of its principle, and Figure 2 is the amount of reflected echoes at positions A, B, C, D, and E in Figure 1. FIGS. 3 to 5 show the weld detection device according to the present invention, FIG. 3 is its overall configuration, and FIG. An explanatory diagram showing a moved state,
FIG. 5 shows waveform characteristic diagrams at probe positions (a) and (b) in FIG. 4. DESCRIPTION OF SYMBOLS 1, 2... Base metal, 3... Welding part, 3A... Welding root part, 3B... Welding toe part, 11... Probe, 1
2...DC electromagnet, 13. ...transmission comparison coil,
13m...transmission measurement coil, 14. ...Receiving comparison coil, 14m...Receiving measurement coil, 15...
No9 Luss generator, 163116m...Amplifier, 17.
...Attenuator, 183. 18m... Waveform shaping circuit, 19... Differential circuit, 2
001, processing circuit. Patent Dejima Hitachi Construction Machinery Co., Ltd.”00,1 σ \-/ \-〆 \,ノ \-/

Claims (1)

【特許請求の範囲】[Claims] 被検材に直流磁界を力える直流電磁石と、該電超音波の
受信信号レベルに基づいて、該被検材の溶接部を検出す
るようにした溶接部検出装置において、前記送受信コイ
ルを一対設け、一方の送受信コイルの出力側には受信信
号レベルをほぼ半分に減衰させる減衰器を設け、前記他
方の送受信コイルと減衰器の出力側にはこれらからの受
信信号を差動演算する演算器を設け、該演算器によって
両受倍信号の一差が零となる位置を見い出すことにより
、溶接部を検出するように構成したことを特徴とする溶
接部検出装置。
In a welding part detection device that detects a welded part of the tested material based on a DC electromagnet that applies a DC magnetic field to the tested material and a received signal level of the electro-ultrasonic wave, a pair of the transmitting and receiving coils are provided. , an attenuator is provided on the output side of one transmitter/receiver coil to attenuate the received signal level by approximately half, and an arithmetic unit is provided on the output side of the other transmitter/receiver coil and the attenuator to perform differential calculations on the received signals from these. 1. A welding part detecting device, characterized in that the welding part detection device is configured to detect a welding part by finding a position where a difference between both multiplied signals becomes zero using the arithmetic unit.
JP58235786A 1983-12-14 1983-12-14 Detecting apparatus of welded part Pending JPS60127458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58235786A JPS60127458A (en) 1983-12-14 1983-12-14 Detecting apparatus of welded part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58235786A JPS60127458A (en) 1983-12-14 1983-12-14 Detecting apparatus of welded part

Publications (1)

Publication Number Publication Date
JPS60127458A true JPS60127458A (en) 1985-07-08

Family

ID=16991226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58235786A Pending JPS60127458A (en) 1983-12-14 1983-12-14 Detecting apparatus of welded part

Country Status (1)

Country Link
JP (1) JPS60127458A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174012A (en) * 2013-03-08 2014-09-22 Nippon Steel & Sumitomo Metal Measurement device, measurement method, program and storage medium
CN108872370A (en) * 2018-07-26 2018-11-23 爱德森(厦门)电子有限公司 A kind of householder method for assessing orthogonal eddy current sensor detection weld seam validity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174012A (en) * 2013-03-08 2014-09-22 Nippon Steel & Sumitomo Metal Measurement device, measurement method, program and storage medium
CN108872370A (en) * 2018-07-26 2018-11-23 爱德森(厦门)电子有限公司 A kind of householder method for assessing orthogonal eddy current sensor detection weld seam validity

Similar Documents

Publication Publication Date Title
US4419562A (en) Nondestructive real-time method for monitoring the quality of a weld
US3986391A (en) Method and apparatus for the real-time monitoring of a continuous weld using stress-wave emission techniques
US3965726A (en) Method and apparatus for the real-time evaluation of welds by emitted stress waves
JPS60127458A (en) Detecting apparatus of welded part
US4086817A (en) Method and apparatus for determining the acceptability of a weld formed by applying repetitive pulses of energy to the weld site
JP3525595B2 (en) Multi-channel automatic ultrasonic flaw detection method and apparatus for rolled metal sheet
JPS6342744B2 (en)
US4292849A (en) Method for correcting the sensitivity of an electromagnetic ultrasonic probe
JP2943567B2 (en) Pipe shape inspection device
JPS6044618B2 (en) Ultrasonic flaw detection method and device for dissimilar metal welds
US4171644A (en) Means for ultrasonic testing when material properties vary
JPS5896247A (en) Detector for welded part
JPH0493763A (en) Ultrasonic apparatus for flaw detection
Florea et al. Nondestructive Testing of Linear-Butt Welding with the Phaser XS
CA1067614A (en) Pulse-echo method and system for testing wall thicknesses
JPS589365B2 (en) How to measure weld groove gap
JPS6247253B2 (en)
JPS5837506B2 (en) Ultrasonic flaw detection equipment
JPH01203967A (en) Temperature compensation type ultrasonic flaw detector
JP3002065U (en) Multiple reflected wave automatic extinction device
JP2021179363A (en) Machining quality determination system, machining quality determination method, and machining quality determination program
SU1133543A1 (en) Device for automatic ultrasonic inspection of articles
JPS5914189B2 (en) Ultrasonic inspection device for resistance spot welds
SU1633354A1 (en) Sonic method for testing triple layer structures and device thereof
JPH02102409A (en) Measuring method for heat treatment depth