JPS60127230A - Preparation of photo-conductive cadmium sulfide - Google Patents

Preparation of photo-conductive cadmium sulfide

Info

Publication number
JPS60127230A
JPS60127230A JP23548483A JP23548483A JPS60127230A JP S60127230 A JPS60127230 A JP S60127230A JP 23548483 A JP23548483 A JP 23548483A JP 23548483 A JP23548483 A JP 23548483A JP S60127230 A JPS60127230 A JP S60127230A
Authority
JP
Japan
Prior art keywords
cds
flux
temperature
amount
cadmium sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23548483A
Other languages
Japanese (ja)
Inventor
Atsuko Yamamoto
山本 亜津子
Kiyoshi Suzuki
鈴木 洌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP23548483A priority Critical patent/JPS60127230A/en
Publication of JPS60127230A publication Critical patent/JPS60127230A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To prepare uniform particles of photo-conductive CdS having improved durability, by blending CdS containing a proper amount of Cu with a suitable amount of flux, calcining it at a temperature higher than the melting point of the flux, heat-treating it again at a temperature corresponding to the amount of Cu added. CONSTITUTION:CdS mixed with Cu during formation of CdS precipitate is blended with >=20wt% flux, and calcined at a temperature >=50 deg.C higher than the melting point of the flux. A mixture of CdCl2 and NaCl having 10-90mol% NaCl is preferably used as the flux used. The flux is removed from the prepared calcined material by washing, the material is heat-treated again at a temperature range satisfying an inequality shown by the formula -250/8A+ 250<T<-200/3A+600 wherein reheating temperature is T, and an amount of Cu added is AX10<-4>mol based on 1mol CdS (with the proviso that A>=4X 10<-4>mol, and T>=50 deg.C), to give photoconductive CdS consisting of uniform and simple particles having high crystallizability.

Description

【発明の詳細な説明】 本発明は光導電性硫化カドミウムの製造方法に関するも
ので、特に耐久性の良い、結晶性が高く均一単一な粒子
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing photoconductive cadmium sulfide, and particularly to a method for producing highly durable, highly crystalline, uniform, and single particles.

電子写真感光材料を代表例として用いられる光導電性硫
化カドミウム(CdS )の製造の最も一般的な方法は
、硫酸カドミウム、塩化カドミウム、などのカドミウム
の水溶性塩に硫化水素を作用させて硫化カドミウム粒子
の沈澱を得、次いでこの硫化カドミウム粒子に活性剤を
ドーピングするために高温焼成して得るものである。即
ち、光導電 ゛性硫化カドミウムは、硫化カドミウム粒
子に活性剤としてCuC42,CuSO4等また、融剤
として倣4゜Zn C12等のハロゲン化物を少量混入
して焼成を行なうことにより、Curct等を硫化カド
ミウム中にドープさせ製造するのが一般である。
The most common method for producing photoconductive cadmium sulfide (CdS), which is typically used in electrophotographic materials, is to react hydrogen sulfide with water-soluble salts of cadmium, such as cadmium sulfate or cadmium chloride, to produce cadmium sulfide. The cadmium sulfide particles are precipitated and then calcined at a high temperature to dope the cadmium sulfide particles with an activator. That is, photoconductive cadmium sulfide is produced by mixing cadmium sulfide particles with a small amount of a halide such as CuC42, CuSO4, etc. as an activator, and a small amount of a halide such as ZnC12 as a fluxing agent, and then firing the mixture. It is generally manufactured by doping cadmium.

しかしながら、この様な従来の方法によシ得られた光導
電性硫化カドミウム粒子は互いに集合し合って形成され
た強い凝集体である2次粒子からなっておシ、この2次
粒子は3次元的に集合して団塊状であったりあるいは2
次元的に集合して平板状であったシ様々であるがその中
には大きなものは10数ミクロンから100ミクロンに
及ぶものがある。
However, the photoconductive cadmium sulfide particles obtained by such conventional methods are composed of secondary particles that are strong aggregates formed by aggregating each other, and these secondary particles are three-dimensional. They may gather together in a lump-like shape, or 2
There are various types of particles that are dimensionally aggregated and shaped like a flat plate, and some of them are large in size, ranging from 10-odd microns to 100 microns.

この様な粗大粒子を多数含むCdSを用いて作成される
感光体は、その表面状態が劣悪となり1、その結果得ら
れる画像はガサつきが激しく、解像力も不十分となる。
A photoreceptor made using CdS containing a large number of such coarse particles has a poor surface condition1, resulting in images that are extremely rough and have insufficient resolution.

また、さらに絶縁層を設ける感光体の場合には、絶縁層
のCdS層へのしみ込み等がおこシ、良好な感光体を得
ることが困難となる。
Furthermore, in the case of a photoconductor further provided with an insulating layer, the insulating layer may seep into the CdS layer, making it difficult to obtain a good photoconductor.

前記欠点については特開昭57−129825号公報に
記載されているような方法によって、克服されている。
The above drawbacks have been overcome by a method as described in Japanese Patent Laid-Open No. 57-129825.

しかし、高速複写機への適用などの場合のように、今ま
で以上に耐久性を要求されるようになると、銅の添加量
の少ないタイプの硫化カドミウムでは、その要求を満た
すことが出来ない。
However, when greater durability is required than ever before, such as when used in high-speed copying machines, cadmium sulfide with a small amount of copper cannot meet that requirement.

本発明はこのような要求を満たすように特に耐久性を改
良したもので、得られるCdS粒子はほぼ均一単一粒子
化をとるため、以下の付随的な効果も現われる。
The present invention has particularly improved durability in order to meet such requirements, and since the obtained CdS particles are almost uniformly formed into single particles, the following additional effects also appear.

1、 感光体製造時の塗工性に優れ、良質な画像が得ら
れる。
1. Excellent coating properties during photoreceptor production and high quality images can be obtained.

2、湿度や温度の影響を受けにくい。2. Not easily affected by humidity and temperature.

3、非常に結晶性が高く光キャリアーのトラップ準位と
なる表面欠陥が少ない。
3. It has very high crystallinity and has few surface defects that become trap levels for photocarriers.

一般に電子写真用CdSは、ドナー、アクセプター不純
物を添加、そのバランスによって特性をコントロールし
ている。しかしCdS粒子表面には、欠陥に基づくドナ
ーが存在する。本発明に用いられる焼成法によって製造
されるCdSはその表面欠陥を利用することによシ、そ
の他にドナー不純物を添加する必要はない。この系にお
いては銅の添加量および再加熱処理によって表面に存在
する表面欠陥量を補償し、アクセプター/ドナーのバラ
ンスを取っている。耐久性を向上させる簡便な方法は銅
の添加量を増すことであるが、これはアクセゾター濃度
を同時に増加させることとなシ、電子写真用として使用
される特性を得るためには、粒子表面のドナー量を増さ
なければならない。一般に再加熱温度によってドナーと
して作用する表面欠陥の補償量は異っておシ、ドナー/
アクセプターのバランスをとるためには再加熱温度を下
げる必要がある。
In general, CdS for electrophotography is doped with donor and acceptor impurities, and its properties are controlled by the balance between them. However, there are defect-based donors on the CdS particle surface. CdS produced by the sintering method used in the present invention utilizes its surface defects, and there is no need to add donor impurities. In this system, the amount of copper added and the reheating treatment compensate for the amount of surface defects present on the surface and maintain an acceptor/donor balance. A simple way to improve durability is to increase the amount of copper added, but this does not simultaneously increase the accessor concentration, and in order to obtain the properties used for electrophotography, it is necessary to increase the particle surface. Donor amount must be increased. In general, the amount of compensation for surface defects that act as donors varies depending on the reheating temperature.
In order to balance the acceptors, it is necessary to lower the reheat temperature.

本発明者は多数の実験結果第1図の斜線部分に再加熱温
度、銅添加量の適正な組合わせがあることを見い出した
。すなわちCdSに対して20%以上の融剤を混ぜて融
剤の融点よシも50℃高い温度で焼成した後、再び加熱
処理する工程を含む光導電性CdSの製造方法において
再加熱温度をT1銅添加量をCdS 1モル当りA X
 10−’ モルとしたとき −ろPA +250 <T (−’p A + 600
(但しA≧4X10”−’、T≧50℃)なる不等式で
あられされる領域が適正領域であることを確認した。
As a result of numerous experiments, the present inventor has found that the shaded area in FIG. 1 has an appropriate combination of reheating temperature and amount of copper added. That is, in a method for manufacturing photoconductive CdS that includes a step of mixing 20% or more flux with CdS, firing at a temperature 50°C higher than the melting point of the flux, and then heat-treating again, the reheating temperature is set to T1. The amount of copper added is A per 1 mole of CdS
When it is 10-' mole, -'p A + 600
It was confirmed that the region defined by the inequality (where A≧4×10″−′, T≧50° C.) is an appropriate region.

Aは耐久性の改良という目的を達成するために4 X 
10−’モル以上必要であシ、l0XIO−’モル以上
では表面のアクセプターが過剰となシ、再加熱処理等に
よって適正領域が得られなくなる。
A is 4 X to achieve the purpose of improving durability.
10-' mole or more is required; if it is more than 10XIO-' mole, the acceptor on the surface becomes excessive and an appropriate area cannot be obtained by reheating treatment or the like.

一方、再加熱温度は、銅の添加量によって決ってくるも
のであるが、余り低いと加熱効果が現われないため、5
0℃以上の温度が必要である。
On the other hand, the reheating temperature is determined by the amount of copper added, but if it is too low, the heating effect will not appear.
A temperature of 0°C or higher is required.

本発明の具体的方法としては、再加熱処理の前(5) に焼成工程が必要である。この工程は、CdSに対して
20重量%以上の融剤を添加均一に混合した後、融剤の
融点より50℃以上高い温度で焼成する。使用する融剤
は、活性剤をCdS中に拡散する際に一般的に用いられ
ている融剤で、CdC62゜ZnCA2. KCl 、
 NaC1、NH2Cl 、 CdSO4等の1つある
いは数種類を適当な比率に混合したものである。
As a specific method of the present invention, a firing step is required before the reheating treatment (5). In this step, a flux of 20% by weight or more is added to CdS and mixed uniformly, and then fired at a temperature 50° C. or more higher than the melting point of the flux. The flux used is a flux commonly used when diffusing an activator into CdS, and CdC62°ZnCA2. KCl,
It is a mixture of one or more of NaCl, NH2Cl, CdSO4, etc. in an appropriate ratio.

混合して用いる場合の好適例としてCdC22とアルカ
リ金属の塩化物との混合物が挙げられる。アルカリ金属
の塩化物としては、NaCtとKClが代表的なもので
ある。アルカリ金属の塩化物の融剤全体における含有量
は90モルチ以下で10モルチ以上が好適である。
A preferred example of a mixture of CdC22 and an alkali metal chloride is a mixture of CdC22 and an alkali metal chloride. Typical alkali metal chlorides are NaCt and KCl. The content of the alkali metal chloride in the entire flux is preferably 90 molti or less and 10 molti or more.

本発明における前述の再加熱処理の適正範囲は、上述の
如きCdS製造条件を前提として多数の実施結果発明の
目的を達する領域を定めたものでおる。
The appropriate range of the above-mentioned reheating treatment in the present invention is defined as a range in which the objective of the invention can be achieved as a result of numerous implementations, assuming the above-mentioned CdS production conditions.

以下、本発明を実施例によって更に詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 CdS沈澱生成時にすでに銅がモル比で6.0 X 1
0(6) モル添加されているCdS生粉100y−に、cdct
2を20?とNaC1f 30 y−添加し、よく混合
した上で石英ルツ?に充填し、530℃で6分焼成した
(なお、CdC62とNaC1の混合融剤の融点は、状
態図からCdC42・2NaC4の融点の426℃に相
当する)。
Example 1 When CdS precipitate is formed, the molar ratio of copper is already 6.0 x 1
Cdct
2 to 20? and NaC1f 30 y- were added, mixed well, and then mixed with quartz rutz? (The melting point of the mixed flux of CdC62 and NaC1 corresponds to the melting point of CdC42.2NaC4 at 426°C from the phase diagram).

これを主に融剤を除去することを目的に、洗浄処理を施
した後、再び150℃で60分加熱した。
This was washed for the purpose of mainly removing the flux, and then heated again at 150° C. for 60 minutes.

この様にして得られたCdSの大方度は、1oonであ
シ、1万倍の電子顕微鏡写真によれば粒子表面は非常に
滑らかで、六方晶形特有の形状を持ち、各粒子は、2〜
5μの径の単一粒子となっているのが認められた。
The CdS obtained in this way has a major orientation of 1 oon, and according to an electron micrograph at a magnification of 10,000 times, the particle surface is extremely smooth and has a unique hexagonal crystal shape, with each particle having a
A single particle with a diameter of 5μ was observed.

このCdS i塩化ビニル/酢酸ビニル共重合体中に分
散させた後アルミニウム基板上に40μの厚さに塗布乾
燥させて得た感光板に15μ厚のポリエステルフィルム
をはυつけ三層構成の感光体を得たところ、表面が非常
に平滑であった。この感光板に一次帯電、次いで画像露
光AC除電、次いで全面露光の高速電子写真プロセスを
適用したところ、十分な静電コントラストと、十分な感
度に基く良質の画像が得られた。特に解像力は、6本/
−s以上あシ、シャーグな画像が得られた。さらにこの
感光板を温度35℃、湿度85チの高温・高湿中に、2
4時間放置後、再び複写機において画像出しを行なった
結果明暗部のコントラストの低下も感度の低下も認めら
れず、良質の画像が得られた。また、この感光体を複写
機中に12時間放置後dark電位を測定したところ、
1枚目が500v150枚目が510■とその差はIO
Vであった。また、5℃と50℃において測定した電位
コントラストの変化は、10vと小さかった。この結果
、本実施例の感光体は優れた電子写真特性を有すること
が認められた。
This CdS i was dispersed in vinyl chloride/vinyl acetate copolymer, then coated on an aluminum substrate to a thickness of 40 μm and dried. A 15 μm thick polyester film was attached to the resulting photosensitive plate to obtain a three-layered photoreceptor. When obtained, the surface was extremely smooth. When this photosensitive plate was subjected to a high-speed electrophotographic process of primary charging, image exposure, AC static elimination, and then full-surface exposure, high-quality images with sufficient electrostatic contrast and sufficient sensitivity were obtained. Especially the resolution is 6/
-S or more, sharp and sharp images were obtained. Furthermore, this photosensitive plate was placed in a high temperature and high humidity environment of 35°C and 85°C for 2 hours.
After leaving it for 4 hours, the image was produced again using a copying machine. As a result, no decrease in contrast between bright and dark areas nor decrease in sensitivity was observed, and a good quality image was obtained. Furthermore, when this photoreceptor was left in a copying machine for 12 hours, the dark potential was measured.
The first piece is 500v150th piece is 510■ and the difference is IO
It was V. Further, the change in potential contrast measured at 5°C and 50°C was as small as 10V. As a result, it was confirmed that the photoreceptor of this example had excellent electrophotographic properties.

表 1 銅 再加熱温度 実施例2 4.0(刈O−4モル胸5−ax) 250
℃実施例3 8.0 60℃ 実施例2,3 実施例1と同様の製法で添加鋼量と再加熱の温度のみを
表1の様に変えたところ、粒子形状は実施例1並で、塗
工性・電子写真特性は実施例1と同程度の良好な特性が
得られた。
Table 1 Copper Reheating Temperature Example 2 4.0 (Kari O-4 Mol Breast 5-ax) 250
℃Example 3 8.0 60℃Examples 2 and 3 When the same manufacturing method as Example 1 was used, only the amount of added steel and the reheating temperature were changed as shown in Table 1, the particle shape was the same as in Example 1, As for coating properties and electrophotographic properties, good properties comparable to those of Example 1 were obtained.

次にこれら感光板を正帯電、AC除電同時露光、全面露
光を基本プロセスとすると複写機でそれぞれ20000
0回耐久試験を行い、耐久後の電位保持率を測定した所
、表のような結果が得られ、銅の添加量をlXl0−’
モル再加熱温度を450℃とした比較例にくらべて保持
率が高く、本発明の効果が明らかになった。
Next, if these photosensitive plates are subjected to the basic process of positive charging, AC static neutralization simultaneous exposure, and full-surface exposure, each photosensitive plate will cost 20,000 yen with a copying machine.
When we conducted a 0-time durability test and measured the potential retention rate after durability, we obtained the results shown in the table.
The retention rate was higher than that of the comparative example in which the molar reheating temperature was 450°C, demonstrating the effect of the present invention.

以上の実施例について電子写真的な分光感度を測定した
サンプルは全て実施例1に示したと同様の方法で感光板
化したものを用いた。
All of the samples whose electrophotographic spectral sensitivities were measured in the above Examples were made into photosensitive plates in the same manner as in Example 1.

(9) 測定は第2図に示す測定装置を用いて次の様に行なった
。即ち、感光体1の絶縁層面に透明電極2を押付けた。
(9) Measurements were carried out as follows using the measuring device shown in FIG. That is, the transparent electrode 2 was pressed against the insulating layer surface of the photoreceptor 1.

透明電極2はリレースイッチ81を介して高圧電源9に
接続される。測定は前露光として光源41の白色光をシ
ャッター51により0.2sec照射し、0.2sec
放置した後、リレースイッチ81を0.2saa閉じて
高電圧を光導電層に印加される電圧V、が600Vとな
るように印加し、0.2geeオーブン後、光を0.2
aec間照射し、その時の電圧変化V、を感光体と同電
圧にある金属板10と表面電位計11で測定した。感度
は電圧印加と同時に光源42の光をフィルタ62を通し
てシャッター52によシ照射し露光量を変化させること
により、Vpの変化を測定しE−V曲線をめた後、この
曲線から半減露光量を得た。さらにフィルタ62を変え
ることにより、各波長における半減露光量をめ、分光感
度を測定した。
Transparent electrode 2 is connected to high voltage power supply 9 via relay switch 81. The measurement was performed by irradiating white light from the light source 41 for 0.2 seconds with the shutter 51 as pre-exposure.
After leaving it for a while, the relay switch 81 was closed by 0.2 saa, a high voltage was applied so that the voltage V applied to the photoconductive layer was 600 V, and after 0.2 gee oven, the light was turned off by 0.2 saa.
AEC was irradiated, and the voltage change V at that time was measured using a metal plate 10 at the same voltage as the photoreceptor and a surface electrometer 11. Sensitivity is determined by applying light from the light source 42 to the shutter 52 through the filter 62 at the same time as voltage application, changing the exposure amount, measuring the change in Vp, drawing an EV curve, and calculating the half-reduced exposure amount from this curve. I got it. Furthermore, by changing the filter 62, the half-reduced exposure amount at each wavelength was determined, and the spectral sensitivity was measured.

実施例1〜3の測定結果をまとめたのが第3図である。FIG. 3 summarizes the measurement results of Examples 1 to 3.

この様に各組合せによシ得られたサンダルのスペクトル
は様々でアシ、銅含有量を多くしく1O) 本発明の条件で再加熱することで長波長側に伸ばすこと
が可能である。
As described above, the spectrum of the sandals obtained with each combination varies and can be extended to the longer wavelength side by increasing the reed and copper content and reheating under the conditions of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における再加熱温度と銅含有量の範囲を
示した図、第2図は本発明の実施例によシ得られた硫化
カドミウムのスペクトル測定を行なった測定装置の全体
概略構成図、第3図は実施例のスペクトル測定結果を示
すグラフである。 1・・・感光体 2・・・透明電極 3・・・アース板 41.42・・・露光用の光源 51.52・・・シャッタ 61.62・・・フィルタ
7・・・反射鏡 9・・・高圧電源 10・・・電位検知用金属板 11・・・表面電位計(
11) 第1図
FIG. 1 is a diagram showing the range of reheating temperature and copper content in the present invention, and FIG. 2 is a schematic diagram of the overall configuration of a measuring device used to measure the spectrum of cadmium sulfide obtained according to an example of the present invention. FIG. 3 is a graph showing the spectrum measurement results of the example. 1...Photoconductor 2...Transparent electrode 3...Earth plate 41.42...Light source for exposure 51.52...Shutter 61.62...Filter 7...Reflector 9. ...High voltage power supply 10...Metal plate for potential detection 11...Surface electrometer (
11) Figure 1

Claims (1)

【特許請求の範囲】 1、硫化カドミウムに対して20wt%以上の融剤を混
ぜて融剤の融点よシも50℃以上高い温度で焼成した後
、再び加熱処理する工程を含む光導電性硫化カドミウム
の製造方法において、″再加熱処理温度をT1添加する
銅の量が硫化カドミウム1モル当、9AX10 モルと
するとき、(但しA≧4×10 モル、T≧50℃) 一平A+250< T <−千A+ 600なる不等式
を満す温度範囲で再加熱処理することを特徴とする光導
電性硫化カドミウムの製造方法。
[Scope of Claims] 1. Photoconductive sulfide comprising the step of mixing 20 wt% or more of a flux with respect to cadmium sulfide, firing at a temperature 50°C or more higher than the melting point of the flux, and then heat-treating again. In the cadmium manufacturing method, when the reheating treatment temperature is T1 and the amount of copper added is 9AX10 moles per mole of cadmium sulfide, (A≧4×10 moles, T≧50°C) Ippei A+250<T< 1. A method for producing photoconductive cadmium sulfide, comprising reheating in a temperature range that satisfies the inequality -1,000A+600.
JP23548483A 1983-12-14 1983-12-14 Preparation of photo-conductive cadmium sulfide Pending JPS60127230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23548483A JPS60127230A (en) 1983-12-14 1983-12-14 Preparation of photo-conductive cadmium sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23548483A JPS60127230A (en) 1983-12-14 1983-12-14 Preparation of photo-conductive cadmium sulfide

Publications (1)

Publication Number Publication Date
JPS60127230A true JPS60127230A (en) 1985-07-06

Family

ID=16986739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23548483A Pending JPS60127230A (en) 1983-12-14 1983-12-14 Preparation of photo-conductive cadmium sulfide

Country Status (1)

Country Link
JP (1) JPS60127230A (en)

Similar Documents

Publication Publication Date Title
US3712810A (en) Ambipolar photoreceptor and method
JPS60127230A (en) Preparation of photo-conductive cadmium sulfide
JPS59164632A (en) Manufacture of photoconductive cadmium sulfide
JPS59160149A (en) Manufacture of photoconductive cadmium sulfide
JPS59192259A (en) Manufacture of electrophotographic cadmium sulfide
US4338389A (en) CdS-Binder member for electrophotography with Fe, Co, Ni additives
US4382917A (en) Process for preparing cadmium sulfide for electrophotography and product thereof
JPS5831342A (en) Manufacture of photoconductive cadmium sulfide particles
Faria et al. Cd/S, Se: Cu-photoconductive material for electrophotography
JPS59166962A (en) Manufacture of photoconductive cadmium sulfide
JPS58126539A (en) Photoconductive cadmium sulfoselenide particle
JPS59160148A (en) Manufacture of photoconductive cadmium sulfide
JPS59164634A (en) Manufacture of photoconductive cadmium sulfide
US4440735A (en) Process for production of photoconductive cadmium sulfide
JPS59192258A (en) Manufacture of electrophotographic cadmium sulfide
JPS60127236A (en) Preparation of cadmium sulfide for electrophotography
JPS59164633A (en) Manufacture of photoconductive cadmium sulfide
JPS58217410A (en) Manufacture of photoconductive cadmium sulfoselenide
JPS5849618A (en) Preparation of photoconductive cadmium sulfide
JPS5874524A (en) Manufacture of photoconductive cadmium sulfoselenide
JPS60133455A (en) Manufacture of photoconductive cadmium sulfoselenide
JPS59232917A (en) Manufacture of cadmium sulfide for electrophotography
JPS58208137A (en) Manufacture of photoconductive cadmium sulfide
JPS58208109A (en) Manufacture of photoconductive cadmium sulfoselenide
JPS60133454A (en) Manufacture of photoconductive cadmium sulfide