JPS60125777A - Heat pipe type reciprocating heat engine - Google Patents

Heat pipe type reciprocating heat engine

Info

Publication number
JPS60125777A
JPS60125777A JP23404983A JP23404983A JPS60125777A JP S60125777 A JPS60125777 A JP S60125777A JP 23404983 A JP23404983 A JP 23404983A JP 23404983 A JP23404983 A JP 23404983A JP S60125777 A JPS60125777 A JP S60125777A
Authority
JP
Japan
Prior art keywords
piston
heat
section
heat pipe
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23404983A
Other languages
Japanese (ja)
Inventor
Tsutae Takeda
武田 傳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP23404983A priority Critical patent/JPS60125777A/en
Publication of JPS60125777A publication Critical patent/JPS60125777A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To take out axial momentum by a piston by a method wherein intermittent blow-up phenomenon generated from the collapse of a vapor pressure equibrium between an evaporating section and a condensing section due to the inflow and outflow of heat is utilized. CONSTITUTION:When heat flows into the evaporating section from a heat source, the column of vapor in liquid is expanded instantaneously and the phenomenon that the operating liquid is blown up against the piston 3 is caused. A kinetic energy, generated by the collision of the operating liquid against the internal surface of the piston, and vapor pressure energy lift up the piston 3 and the momentum is taken out of a vessel by a rod 9. The condensing section 6 begins to be exposed in accordance with the movement of the piston and the operating liquid as well as the vapor, contacted with the condensing section, are cooled whereby the vapor begins to be condensed. When the vapor pressure has become lower than an external pressure, the piston is decelarated by a downward force and begins a downward motion. At the same time, the operating liquid is recirculated into the evaporating section 5 by a reaction due to collision against the piston and the force of gravity. Then, the piston contacts with a stopper 8 in the vessel and the motion thereof is stopped.

Description

【発明の詳細な説明】 本発明はあらゆる熱源からの蒸発部への熱入力によシ、
蒸発部熱源と凝縮部冷却源との温度差が微かであっても
軸方向運動量を取り出せることを特徴とした、ヒートパ
イプ式往復運動熱機関に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes heat input to the evaporator section from any heat source.
The present invention relates to a heat pipe type reciprocating heat engine characterized by being able to extract axial momentum even if there is a slight temperature difference between the evaporating section heat source and the condensing section cooling source.

本発明の熱機関によシ、地球上、あるいは宇宙空間を問
わず、廃熱、地熱、太陽熱などから温度の高低、あるい
は規模の大小に係わらず有用な運動エネルギを得ること
が可能である。
With the heat engine of the present invention, it is possible to obtain useful kinetic energy from waste heat, geothermal heat, solar heat, etc., regardless of the temperature or the scale, whether on the earth or in outer space.

従来の往復運動熱機関の代表は、産業革命の主役となっ
た蒸気機関であるが、この場合、高エントロピーな状態
にある熱源あるいは特定の燃料を必要とし、ボイラーな
どの蒸発部、作動蒸気を正確に制御する複雑な弁機構、
仕事後の蒸気を液体。
A typical example of a conventional reciprocating heat engine is the steam engine, which played a central role in the industrial revolution. Complex valve mechanism for precise control,
Liquid steam after work.

に戻すだめの復水器、さらにこれらを接続する配管系か
ら構成されていて、今日から見れば熱機関としては、大
規模、複雑、低効率なものである。
It consisted of a condenser that returned water to the heat engine, and a piping system that connected these.From today's perspective, it is a large, complex, and low-efficiency heat engine.

一方、近代以降から現在もなお活躍を続けている内燃機
関として、ガン1ノンエンジン、ディーゼルエンジンが
上げられるが、いずれも有限な資源として存在する炭化
物系の燃料を必要としている。
On the other hand, examples of internal combustion engines that have continued to be used since the modern era include the gunnon engine and the diesel engine, but both require carbide fuel, which exists as a finite resource.

ガソリンエンジンについてみてみると、燃料と空気を最
適状態に混合する複雑な気化器、吸入・圧縮・爆発・排
気の一連の行程にわたりシリンダの運動に合わせて燃料
及び燃焼ガスを正確に制御する弁機構と、これに同調し
て機能する点火装置、エンジン全体を適正な温度に保つ
ために水、あるいは空気を用いている冷却部、さらにこ
れらを継ぎ合わせる配管系統などで構成され、全体とし
て非常に複雑な熱機関であり、かついわば地上周辺でし
か使用できないものである。さらに、内燃機関の宿命と
して、今日、排気ガスによる公害及び騒音問題、また特
定の燃料しか使えないために生じる資源の枯渇問題、エ
ンジン本体及び排気ガスからの多量の廃熱による環境熱
汚染問題を引き起こしている。以上の検証より快適さを
追求した現代社会がかかえている非常に重大な諸問題の
根底にガスタービンなども含めた内燃機関があることが
明らかである。そして、よシ普遍性のある全く新しいタ
イプの熱機関の必要性が日々高まりつつある。
A gasoline engine has a complex carburetor that mixes fuel and air in the optimal state, and a valve mechanism that precisely controls fuel and combustion gas in accordance with the movement of the cylinder throughout the series of suction, compression, explosion, and exhaust strokes. The engine as a whole is extremely complex, consisting of an ignition system that works in synchrony with this, a cooling section that uses water or air to keep the entire engine at the appropriate temperature, and a piping system that connects these parts. It is a heat engine that can only be used near the ground. Furthermore, as the fate of internal combustion engines, today we are faced with problems such as pollution and noise caused by exhaust gas, resource depletion due to the fact that only certain fuels can be used, and environmental heat pollution due to large amounts of waste heat from the engine itself and exhaust gas. is causing it. From the above examination, it is clear that internal combustion engines, including gas turbines, are at the root of the very serious problems facing modern society, which pursues comfort. Moreover, the need for a completely new type of heat engine that is highly universal is increasing day by day.

本発明は以上に述べた諸問題を全て解決し、来たる新し
い世界、及び人類の宇宙活動における原動力となろうと
するものである。
The present invention aims to solve all of the above-mentioned problems and become a driving force in the coming new world and humankind's space activities.

本発明の詳細を図面について説明すると、第1図は基本
構造の断面図である。熱伝導率のよい材料で作られた容
器(1)の下部には適当な作動液(2)が適宜量封入さ
れ、一方容器内の上部にはピストン(3)が摺動可能に
はめ合わされ、かつピストンに装着されたシール(4)
で外部との気密が保たれている。
The details of the invention will be explained with reference to the drawings. FIG. 1 is a sectional view of the basic structure. An appropriate amount of a suitable working fluid (2) is sealed in the lower part of a container (1) made of a material with good thermal conductivity, while a piston (3) is slidably fitted in the upper part of the container. And a seal attached to the piston (4)
It is kept airtight from the outside.

容器内部は真空にひかれており、作動液の飽和蒸気圧状
態となっている。容器の下部には、外周の適当な熱源か
ら容器に熱が流れ込むことによシ作動液が蒸気となる蒸
発部(5)があり、またこれの上部には外部へ熱を捨て
る凝縮部(6)がある。凝縮部は初期状態で第1図に示
すようにピストンによシ作動蒸気(7)と接触が断たれ
ている。また、ピストンは、常時外部の圧力及び重力で
内部に押されておシ、一定の蒸気空間を確保するだめの
ストッパ(8)につき当てられている。
The inside of the container is evacuated and the working fluid is at saturated vapor pressure. At the bottom of the container, there is an evaporation section (5) in which the working fluid turns into vapor by heat flowing into the container from a suitable heat source on the outer periphery, and at the top of this, there is a condensation section (6) that discards heat to the outside. ). In the initial state, the condensing section is cut off from contact with the working steam (7) by the piston, as shown in FIG. Further, the piston is always pushed inward by external pressure and gravity and is abutted against a stopper (8) to ensure a constant steam space.

熱源から蒸発部へ熱が流れ込むと、作動液がたとえば水
の場合、60℃前後の低温で局部的に沸騰し始める。い
わゆるこの核沸騰が起点となり、蒸発部と上部の凝縮部
に蒸気圧平衡の崩れが生じ、第2図に示すように液中の
蒸気柱(ツ)が瞬時に膨張し上面の作動液をピストンに
向けて吹き上げる現象を起こす。作動液がピストン内面
に衝突する運動エネルギ、及び蒸気圧エネルギにより、
ピストンは第2図のA方向へ持ち上げられ、この運動量
をロッド(9)で容器の外部へ取シ出す。なお最近のい
くつかの研究をみると、容器が一体形の熱サイフオン型
ヒートパイプの蒸発部上端が吹き上げ現象により容易に
破壊され吹き飛んでしまうことが報告されておシ、その
潜在的エネルギの大きさがうかがえる。
When heat flows from the heat source to the evaporation section, if the working fluid is water, for example, it begins to boil locally at a low temperature of around 60°C. This so-called nucleate boiling is the starting point, causing a collapse of the vapor pressure equilibrium between the evaporation section and the upper condensation section, and as shown in Figure 2, the vapor column in the liquid expands instantaneously, forcing the working fluid on the upper surface into the piston. This causes a phenomenon in which the air blows up towards the target. Due to the kinetic energy and vapor pressure energy of the hydraulic fluid colliding with the inner surface of the piston,
The piston is lifted in the direction A in FIG. 2, and this momentum is taken out of the container by the rod (9). In addition, some recent studies have reported that the upper end of the evaporator part of a thermosiphon type heat pipe with an integrated container is easily destroyed and blown away by the blow-up phenomenon, and the potential energy of the heat pipe is large. I can see it.

ピストンの移動にともない凝縮部が露出し始め、これに
接触した作動液及び蒸気は冷却され、蒸気が凝縮を開始
する。蒸気圧が外圧よシ低くなるとピストンは下側向き
の力によシ減速し、自重による力も加わってやがて下降
運動を始める。同時に作動液はピストンとの衝突による
反動、及び重力の力で蒸発部へ環流する。なお、無重力
場では、熱機関全体の回転運動による遠心力、または加
速運動による慣性力を利用して作動液を蒸発部へ環流す
ることができる。
As the piston moves, the condensing part begins to be exposed, the working fluid and steam that come into contact with it are cooled, and the steam begins to condense. When the steam pressure becomes lower than the external pressure, the piston decelerates due to the downward force, and with the addition of the force due to its own weight, it eventually begins to move downward. At the same time, the working fluid flows back to the evaporator section due to the reaction caused by the collision with the piston and the force of gravity. In addition, in a zero-gravity field, the working fluid can be circulated to the evaporator by using the centrifugal force caused by the rotational movement of the entire heat engine or the inertial force caused by the accelerated movement.

ピストンはやがて、容器内のストッパ(8)に接触して
運動を停止し、初期の状態となる。そして蒸発部への熱
の流入と、凝縮部の冷却が続く限シ以上の一連の運動が
繰シ返される。
The piston eventually comes into contact with a stopper (8) in the container and stops moving, returning to its initial state. Then, a series of movements is repeated over and over again, with heat flowing into the evaporating section and cooling of the condensing section continuing.

6 第6図は、本発明の他の適用例で、ばね(褐などの弾性
力で内部の蒸気圧に対向してピストンを復帰させるもの
である。
6 FIG. 6 shows another application example of the present invention, in which the piston is returned to its original position by the elastic force of a spring (brown) against the internal steam pressure.

第4図は本発明のさらに他の適用例で、磁石αりなどの
電磁力で、内部の蒸気圧に対向1〜てピストンを復帰さ
せるものである。また、ピストン(3)の形状をコツプ
状に変形させ、コネクティングロッド0邊等を接続する
回転支点01)が付けられている。
FIG. 4 shows still another example of application of the present invention, in which the piston is returned to its original position against the internal steam pressure by electromagnetic force such as a magnet α. Further, the shape of the piston (3) is deformed into a tip shape, and a rotation fulcrum 01) to which a connecting rod 0 side etc. is connected is attached.

第5図は本発明のさらに他の適用例で、ピストンは従動
部α3の運動力によシ蒸気圧に対向して復帰するもので
ある。この例では、従動部α)のクラ4 ンク軸(ハ)に、本発明による熱機関をコネクティング
ロッドの形で組み込んでおυ、容器(1)にはピストン
(3)の運動範囲を規制するストッパは特に必要としな
い。
FIG. 5 shows still another example of application of the present invention, in which the piston returns against the steam pressure by the motion force of the driven portion α3. In this example, the heat engine according to the present invention is incorporated in the crankshaft (c) of the driven part α) in the form of a connecting rod, and the vessel (1) is equipped with a device that restricts the range of movement of the piston (3). A stopper is not particularly required.

また動作液には、極低温領域ではヘリウムとか窒素を、
常温領域ではフレオンとか水、高温領域ではナトリウム
とか水銀など、使用する温度により種々の一物質を使い
分ければよい。
In addition, the operating fluid may contain helium or nitrogen in extremely low temperature regions.
Depending on the temperature used, various substances may be used, such as Freon or water in the room temperature range, and sodium or mercury in the high temperature range.

本発明の特長は次の通シである。The features of the present invention are as follows.

■ 容器、作動液などの材料選定により絶対零度附近か
ら、数千度にわたるあらゆる温度範囲、および領域で使
用することができる。
■ It can be used in all temperature ranges and regions, from near absolute zero to several thousand degrees, depending on the material selection of the container, hydraulic fluid, etc.

■ 蒸発部と凝縮部の温度差が少なくても運転できる。■ Can be operated even if the temperature difference between the evaporation section and the condensation section is small.

■ 上記によシ、太陽熱、地熱、海洋の熱、燃焼熱、摩
擦熱、その他廃熱など、熱源の形態を特に選ばない。資
源の枯渇問題もなく、無限のエネルギを引き出せること
になる。
■ In addition to the above, the form of heat source is not particularly selected, including solar heat, geothermal heat, ocean heat, combustion heat, friction heat, and other waste heat. There is no problem of resource depletion, and unlimited energy can be extracted.

■ 全てのエネルギは終局的に熱エネルギとなるが、こ
の最終的な段階のエネルギの再利用が可能となる。
■ All energy ultimately becomes thermal energy, but this final stage of energy can be reused.

ない、静かでクリーンな熱機関である。It is a quiet and clean heat engine.

■ 小さな容積で大量の熱を伝達する作用をさせながら
、同時に有用な運動エネルギを取り出す働きもする。
■ It works to transfer a large amount of heat in a small volume, while at the same time extracting useful kinetic energy.

■ 非常に簡単な構造のため、コンパクト、低価格、高
信頼性の熱機関であり、メンテナンスも容易である。
■ Due to its extremely simple structure, it is a compact, low-cost, and highly reliable heat engine that is easy to maintain.

■ 高度に発達した今日のピストンエン・ジンを機構的
にそのまま°置きかえることができる。
■ It can be mechanically replaced with today's highly developed piston engines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本的な断面図 第2図は第1図に示す本発明の作動原理の説明図 第6図は本発明の他の適用例 第4図は本発明のさらに他の適用例 第5図は本発明のさらに他の適用例 (1)は容器 (2)は作動液 (3)はピストン(5
)は蒸発部 (6)は凝縮部 (8)はストツノク(9
)ばばね l特許出願人 武 1) 傳 第 1 国 箋2国 第 3 日 14 口
FIG. 1 is a basic sectional view of the present invention. FIG. 2 is an explanatory diagram of the operating principle of the present invention shown in FIG. 1. FIG. 6 is another application example of the present invention. APPLICATION EXAMPLE FIG. 5 shows still another application example of the present invention (1) is a container (2) is a hydraulic fluid (3) is a piston (5
) is the evaporation section (6) is the condensation section (8) is the stotsunok (9
) Spring patent applicant Takeshi 1) Den 1st country 2nd country 3rd day 14th

Claims (1)

【特許請求の範囲】 1 主として、密閉容器内に作動液を入れ真空状態とし
た熱サイフオン型ヒートパイプにおいて、熱の出入りに
よる蒸発部と凝縮部の蒸気圧平衡の崩れから生ずる間欠
吹き上げ現象により、作動液及び作動蒸気が凝縮部へ向
って急激に移動するエネルギーを、前記密閉容器にはめ
合わされたピストンで軸方向運動量として取り出すもの
で、作動液、及び作動蒸気はこのあとピストンの移動で
内部に露出し′た凝縮部で冷却され、内部の蒸気圧力の
低下をきたし、これに対向する外部圧力および重力に相
当する力によりピストンは元の位置に押し戻され、同時
に作動液は重力に相当する力で蒸発部に環流し、さらに
前記の動作を繰り返すことを特徴とするヒートパイプ式
往復運動熱機関。 2 蒸気圧力に対向する弾性力によりピストンが復帰す
る、特許請求の範囲第1項記載のヒートパイプ式往復運
動熱機関。 6 蒸気圧力に対向する電磁力によりピストンが復帰す
る、特許請求の範囲第1項記載のヒートパイプ式往復運
動熱機関。 4 蒸気圧力に対向する従動部の慣性運動力によシピス
トンが復帰する、特許請求の範囲第1項記載のヒートパ
イプ式往復運動熱機関。
[Scope of Claims] 1 Mainly, in a thermosiphon type heat pipe in which a working fluid is placed in a closed container and kept in a vacuum state, an intermittent blow-up phenomenon occurs due to the collapse of the vapor pressure equilibrium between the evaporating section and the condensing section due to the inflow and outflow of heat. The energy of the sudden movement of the working fluid and working steam toward the condensing section is extracted as axial momentum by the piston fitted in the sealed container, and the working fluid and working steam are then transferred inside by the movement of the piston. The exposed condensing part cools, causing a drop in the internal steam pressure, and the opposing external pressure and a force equivalent to gravity push the piston back to its original position, while at the same time the hydraulic fluid is exposed to a force equivalent to gravity. A heat pipe type reciprocating heat engine characterized in that the heat is refluxed to an evaporation section and the above operation is repeated. 2. The heat pipe type reciprocating heat engine according to claim 1, wherein the piston returns to its original position due to an elastic force opposing steam pressure. 6. The heat pipe type reciprocating heat engine according to claim 1, wherein the piston returns to its original position by electromagnetic force opposing steam pressure. 4. The heat pipe type reciprocating heat engine according to claim 1, wherein the piston returns to its original state due to the inertial force of the driven portion opposing the steam pressure.
JP23404983A 1983-12-11 1983-12-11 Heat pipe type reciprocating heat engine Pending JPS60125777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23404983A JPS60125777A (en) 1983-12-11 1983-12-11 Heat pipe type reciprocating heat engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23404983A JPS60125777A (en) 1983-12-11 1983-12-11 Heat pipe type reciprocating heat engine

Publications (1)

Publication Number Publication Date
JPS60125777A true JPS60125777A (en) 1985-07-05

Family

ID=16964766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23404983A Pending JPS60125777A (en) 1983-12-11 1983-12-11 Heat pipe type reciprocating heat engine

Country Status (1)

Country Link
JP (1) JPS60125777A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103321863A (en) * 2013-06-28 2013-09-25 李先强 Temperature differential type air-source power generator
CN104265501A (en) * 2014-09-12 2015-01-07 徐承飞 Liquid heating machine and power output device
CN104296568A (en) * 2014-09-22 2015-01-21 东南大学 Forced convection heat pipe
CN105041592A (en) * 2015-08-31 2015-11-11 曹胜军 Heat engine with low temperature difference
CN106052437A (en) * 2016-06-25 2016-10-26 赖柱彭 Piston type single-tube refrigerant heat dissipation exhaust gas spray tower
CN106091777A (en) * 2016-06-25 2016-11-09 赖柱彭 A kind of steam heat radiation spray column
WO2019225844A1 (en) * 2018-05-21 2019-11-28 Oh Stephen Sang Geun Phase-change mechanically deformable cooling device
KR20190132902A (en) * 2018-09-12 2019-11-29 스티븐 상근 오 Cooling device with mechanical deformation using phase change

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134345A (en) * 1974-09-17 1976-03-24 Shizuoka Seiki Co Ltd NETSURY OKIKAN
JPS5857014A (en) * 1981-09-29 1983-04-05 小林 康徳 Engine which directly utilizes phase change

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134345A (en) * 1974-09-17 1976-03-24 Shizuoka Seiki Co Ltd NETSURY OKIKAN
JPS5857014A (en) * 1981-09-29 1983-04-05 小林 康徳 Engine which directly utilizes phase change

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103321863A (en) * 2013-06-28 2013-09-25 李先强 Temperature differential type air-source power generator
CN104265501A (en) * 2014-09-12 2015-01-07 徐承飞 Liquid heating machine and power output device
CN104265501B (en) * 2014-09-12 2016-03-02 徐承飞 A kind of liquid heat engine and power take-off
CN104296568A (en) * 2014-09-22 2015-01-21 东南大学 Forced convection heat pipe
CN104296568B (en) * 2014-09-22 2016-01-20 东南大学 A kind of forced convertion heat pipe
CN105041592A (en) * 2015-08-31 2015-11-11 曹胜军 Heat engine with low temperature difference
CN106052437A (en) * 2016-06-25 2016-10-26 赖柱彭 Piston type single-tube refrigerant heat dissipation exhaust gas spray tower
CN106091777A (en) * 2016-06-25 2016-11-09 赖柱彭 A kind of steam heat radiation spray column
WO2019225844A1 (en) * 2018-05-21 2019-11-28 Oh Stephen Sang Geun Phase-change mechanically deformable cooling device
KR20190132902A (en) * 2018-09-12 2019-11-29 스티븐 상근 오 Cooling device with mechanical deformation using phase change

Similar Documents

Publication Publication Date Title
Rajput Engineering thermodynamics: A computer approach (si units version)
JP6502859B2 (en) Improved Organic Rankine Cycle Reduced Pressure Heat Engine
JP4586632B2 (en) Jet steam engine
EP0972922A3 (en) Modified bottoming cycle for cooling inlet air to a gas turbine combined cycle plant
JPS60125777A (en) Heat pipe type reciprocating heat engine
Ewing The steam-engine and other heat-engines
Tabor et al. Establishing criteria for fluids for small vapor turbines
US6360549B1 (en) Method and apparatus for extracting water from air
US8658918B1 (en) Power generation using a heat transfer device and closed loop working fluid
US6453684B1 (en) Method and apparatus for extracting water from air
WO2009059562A1 (en) A pneumatic-thermal expansion type cycling method and the apparatus thereof
JP2001020706A (en) Heat pipe type thermal engine
US3670495A (en) Closed cycle vapor engine
US20090249779A1 (en) Efficient vapor (steam) engine/pump in a closed system used at low temperatures as a better stirling heat engine/refrigerator
US20180230963A1 (en) Device Which Applies Work To Outside With Environmental Thermal Energy
Gupta et al. Review of working of Stirling engines
JPS5938404B2 (en) External combustion heat cycle engine that directly utilizes phase change
US3503304A (en) Power source
JP3832496B1 (en) Jet steam engine
KR101623418B1 (en) stirling engine
US4180982A (en) Instant return-stroke differential temperature engine
CN106761986B (en) A kind of device and its application method of the conversion of gas at normal temperature energy
JP4992917B2 (en) External combustion engine
JP2009270548A (en) Temperature difference power generator
WO2006126241A1 (en) Stirling engine and method for generating pressure difference of stirling engine