JPS60124926A - Device for vapor deposition of thin film - Google Patents

Device for vapor deposition of thin film

Info

Publication number
JPS60124926A
JPS60124926A JP23557683A JP23557683A JPS60124926A JP S60124926 A JPS60124926 A JP S60124926A JP 23557683 A JP23557683 A JP 23557683A JP 23557683 A JP23557683 A JP 23557683A JP S60124926 A JPS60124926 A JP S60124926A
Authority
JP
Japan
Prior art keywords
gas
container
thin film
cluster
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23557683A
Other languages
Japanese (ja)
Inventor
Kenichiro Yamanishi
山西 健一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23557683A priority Critical patent/JPS60124926A/en
Publication of JPS60124926A publication Critical patent/JPS60124926A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/221Ion beam deposition

Abstract

PURPOSE:To simplify a structure, to reduce the electric power and to obtain the compound thin film of uniform thickness and quality in a cluster ion beam vapor deposition device by jetting out a substance of normal temperature gas from a gas container to bombard it to a substrate so as to produce cluster. CONSTITUTION:Through a bottom plate of a vacuum tank 1 having an exhaust path 2 on a bottom surface, a gas introducing pipe communicating with gas containers 32a and 32b arranged outside the tank penetrates and a gas container 30 having a nozzle 30a on its top is connected to the end of said gas introducing pipe. Also gas supply control valves 33a and 33b are arranged between the containers 32a and 32b and the container 30, and a cooling pipe 34 for controlling size of cluster generated from a container 31 is wound around a periphery of the container 31. The ionizing means 12 composed of ionizing filaments 9, thermion attracting electrodes 10 and heat shielding plates 11 are arranged above the nozzle 30a and a substrate supported by an insulating support member 21 is arranged facing each other above said ionizing means. Thus SiH4 and O2 of normal temperature are sent into the container 30 where these are mixed and clusterions 15 and 16 are jetted out toward the substrate 18.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、薄膜蒸着装置に関し、特にクラスタイオンビ
ーム蒸着法により化合物薄膜を蒸着形成する装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a thin film deposition apparatus, and more particularly to an apparatus for forming a compound thin film by vapor deposition using a cluster ion beam deposition method.

〔従来技術〕[Prior art]

従来この種の薄膜形成方法としては、真空蒸着法、スパ
ッタリング法、CVD法、イオンブレーティング法、ク
ラスタイオンビーム蒸着法などがあるが、特にイオン化
粒子または励起粒子を用いる方法は高品質薄膜の形成が
可能であり、中セもクラスタイオンビーム蒸着法は数多
くの優れた特徴を有しているため、高品質薄膜形成方法
として広い用途が角えられている。
Conventional methods for forming thin films of this type include vacuum evaporation, sputtering, CVD, ion blating, and cluster ion beam evaporation, but methods using ionized particles or excited particles are particularly effective in forming high-quality thin films. The cluster ion beam evaporation method has a number of excellent features, so it has a wide range of applications as a method for forming high-quality thin films.

このクラスタイオンビーム蒸着法による薄膜形成方法は
、真空槽内において基板に蒸着すべき物質の蒸気を噴出
して該蒸気中の多数の原子が緩く結合したクラスタ(塊
状原子集団)を生成し、該クラスタに電子のシャワーを
浴びせて該クラスタつぼ4.ボンバード用フィラメント
6及び熱シー上記熱シールド板7を支持する絶縁支持部
材、20は上記るつぼ4を支持する支持台である。
This method of forming a thin film using cluster ion beam evaporation involves ejecting vapor of a substance to be deposited onto a substrate in a vacuum chamber to generate clusters (massive atomic groups) in which many atoms in the vapor are loosely bonded. 4. Shower the cluster with electrons to form the cluster pot. An insulating support member 20 supports the bombardment filament 6 and the heat shield plate 7, and 20 is a support stand that supports the crucible 4.

化フィラメント9からの輻射熱を遮断する熱シー電極1
0との間に最大IQkVまでの電位を印加できる。なお
、24は加速電i14を支持する絶縁支持部材、22は
基板18を支持する基板ホルダ、2Iは該基板ボルダ2
2を支持する絶縁支持部材、17はクラスタ・イオン1
6と中性クラスタ15とからなるクラスタビームである
heat seam electrode 1 that blocks radiant heat from the chemical filament 9
0 and a potential of up to IQkV can be applied. Note that 24 is an insulating support member that supports the accelerating electrode i14, 22 is a substrate holder that supports the substrate 18, and 2I is the substrate boulder 2.
2, an insulating support member 17 supports cluster ion 1;
6 and a neutral cluster 15.

次に動作について説明する。Next, the operation will be explained.

まず蒸着ずべき金属5をるつぼ4内に充填し、に記真空
排気装置により真空槽1内の空気を排気して該真空槽1
内を所定の真空度にする。
First, the metal 5 to be vapor-deposited is filled into the crucible 4, and the air in the vacuum chamber 1 is evacuated using the vacuum exhaust device described in the following.
Create a specified degree of vacuum inside.

次いで、ボンバード用フィラメント6に通電して発f4
H−pシめ、該ボンバード用フィラメント6がぼ4と真
空槽Iとの圧力差により…i熱膨張してクラスタと呼ば
れる、多数の原子が緩く結合した塊状原子集団となる。
Next, the bombardment filament 6 is energized to generate f4.
Due to the pressure difference between the bombardment filament 6 and the vacuum chamber I, the bombardment filament 6 thermally expands and becomes a mass of atoms, called a cluster, in which many atoms are loosely bonded.

このクラスタ状のクラスタビーム17は、イオン化フィ
ラメント9から電子引き出し電極10によって引き出さ
れた熱電子13と衝突し、このため上記クラスタビーム
17の一部のクラスタはそのうちの1個の原子がイオン
化されてクラスタ・その中に充琳された蒸着物質5を加
熱し−その范気を得るようにしているため、熱効率が悪
く、装置の運転に非常に大きな電力が必要であるという
欠点があった。さらに、蒸着物質5として、その蒸気化
に高温度を必要とする物質、例えばタングステン(W)
、タンタル(Ta ) 、モリブデン(Mo)、チタン
(Ti ) 、炭素(C)など、及び非常に反応性の高
い物質、例えばシリコン(St)などを使用する場合に
おいては、るつぼ4に特殊な材料を用いる必要があるな
どの欠点があった。
This cluster-shaped cluster beam 17 collides with the hot electrons 13 extracted from the ionization filament 9 by the electron extraction electrode 10, and therefore, some of the clusters of the cluster beam 17 have one atom ionized. Since the vapor deposition material 5 filled in the cluster is heated to obtain its heat, there is a drawback that thermal efficiency is poor and a very large amount of electric power is required to operate the device. Further, as the vapor deposition material 5, a material that requires high temperature for vaporization, such as tungsten (W) is used.
, tantalum (Ta), molybdenum (Mo), titanium (Ti), carbon (C), etc., and when using highly reactive substances such as silicon (St), special materials are required for the crucible 4. There were disadvantages such as the need to use

〔発明の概要〕[Summary of the invention]

この発明は、上記のような従来のものの欠点を除去する
ためになされたもので、クラスタイオンビーム蒸着装置
において、常温ガスの物質をガス収容部から噴出してク
ラスタを発生させるようにすることにより、構造が簡単
で、かつ運転に必要な電力を著しく低減できるとともに
、反応性の高い物質等の薄膜をも容易に形成でき、しか
も上記ガス収容部に、それぞれ異なる蒸着物質原子を有
する複数の常温ガス物質を混合して収容しこれを該ガス
収容部から噴出してクラスタを発生させるようにするこ
とにより、膜厚、膜質の均一な高品質の化合物薄膜を容
易に形成することのできる薄膜蒸着装置を提供すること
を目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and in a cluster ion beam evaporation apparatus, a room temperature gas substance is ejected from a gas storage part to generate clusters. , the structure is simple, the power required for operation can be significantly reduced, and thin films of highly reactive substances can be easily formed. Thin film deposition that can easily form a high-quality compound thin film with uniform thickness and quality by mixing and storing gaseous substances and ejecting them from the gas storage part to generate clusters. The purpose is to provide equipment.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明の一実施例による薄膜蒸着装置を示す概
略構成図である。図において、第1図と同一符号は同−
又は相当部分を示し、32a、32bはそれぞれ異なる
蒸着物質原子を有する常温ガス物質を収納する第1.第
2のガス容器、30は真空槽1内に設けられ、その頭部
にノズル3(laを有するガス収容部であり、これは上
記第1.第2のガス容器32a、32bから供給される
各常温ガス物質を混合して収容し、咳各常温ガス物質を
そのノズル30aから噴出し、該各常温ガス物質のクラ
スタを発生するためのものである。33a、33bはそ
れぞれ上記各常温ガス物質の上記ガス収容部30への供
給量を制御するためのバルブ(ガス供給量制御手段)で
ある。また、34は上記ガス収容部30の周囲に配設さ
れた冷却管であり、1−記ガス収容部30を冷却して該
ガス収容部30から発生されるクラスタのサイズ、即ち
1′つの/ノラスクを構成する分子又は原子の1161
数をコントロールするためのものである。なお、39は
イオン化T段I2及び加速電極14を支持する絶縁支持
91財(である。
FIG. 3 is a schematic diagram showing a thin film deposition apparatus according to an embodiment of the present invention. In the figure, the same symbols as in Figure 1 are the same.
32a and 32b are the first cylinders 32a and 32b each containing a room-temperature gas substance having different vapor deposition substance atoms. A second gas container 30 is provided in the vacuum chamber 1 and is a gas storage part having a nozzle 3 (la) at its head, which is supplied from the first and second gas containers 32a and 32b. Each room temperature gas substance is mixed and contained, and each room temperature gas substance is ejected from its nozzle 30a to generate a cluster of each room temperature gas substance.33a and 33b are each of the above room temperature gas substances. is a valve (gas supply amount control means) for controlling the amount of gas supplied to the gas storage section 30. Also, 34 is a cooling pipe disposed around the gas storage section 30; The size of the cluster generated from the gas containing part 30 by cooling the gas containing part 30, i.e. 1161 molecules or atoms constituting 1'/Norask.
This is to control the numbers. Note that 39 is an insulating support 91 that supports the ionization T stage I2 and the acceleration electrode 14.

次に動作について説明する。Next, the operation will be explained.

4実施例においては、常温ガス物質として、シランガス
(SiH4)及び酸素(02)を用い、二M化シリコン
(Si02)の化合物薄膜を蒸着形成[る場合に゛つい
て説明する。
In the fourth embodiment, a case will be described in which a compound thin film of silicon diMide (Si02) is formed by vapor deposition using silane gas (SiH4) and oxygen (02) as room-temperature gas substances.

ま1′、白空槽I内を真空排気装置により10 T。1', vacuum the inside of the empty tank I to 10 T.

rr (通當10 〜10 Torr程度)の真空度に
排気する。そしてガス収容部30に、第1.第一2のガ
ス容器32a、32bがらシランガス及び酸素を供給し
、該シランガス及び酸素を所定の割合で混合した状態で
ノズル30aから噴出させると、このノズル30aから
噴出されたシランガス及び酸素IIそれぞれソラン分子
のクラスタ及び酸素原子のクラスタとなる。、−のとき
、各ガスのガス収容部30への導入量は各バルブ33a
、33bによって調整される。また冷却管34によって
上記ガス収容部30の温度をコントロールすることによ
り、上記各クラスタのサイズがコントロールされる。
Evacuate to a vacuum level of rr (approximately 10 to 10 Torr). Then, in the gas storage section 30, the first. When silane gas and oxygen are supplied from the second gas containers 32a and 32b and are ejected from the nozzle 30a in a state where the silane gas and oxygen are mixed at a predetermined ratio, the silane gas and oxygen II ejected from the nozzle 30a, respectively. It becomes a cluster of molecules and a cluster of oxygen atoms. , -, the amount of each gas introduced into the gas storage section 30 is equal to the amount of each valve 33a.
, 33b. Furthermore, by controlling the temperature of the gas storage section 30 using the cooling pipe 34, the size of each cluster is controlled.

次に、上記シラン分子のクラスタ及び酸素原子のクラス
タにイオン化フィラメント9からの電子を衝突させると
、上記シラン分子のクラスタは、該シラン(Sil14
)分子から水素(H2)が分離されてシリコン(St 
)原子のクラスタとなり、またこれと同時に、上記シリ
コン原子のクラスタの一部は、上記電子衝撃により該ク
ラスタを構成するうちの1個の原子がイオン化されてシ
リコン原子のクラスタ・イオン16aとなる。一方、上
記酸素原子のクラスタは上記電子衝撃によってイオン化
され、酸素原子のクラスタ・イオン16bとなる。
Next, when the clusters of silane molecules and the clusters of oxygen atoms are bombarded with electrons from the ionized filament 9, the clusters of silane molecules are
) Hydrogen (H2) is separated from silicon (St) molecules.
), and at the same time, one atom of the cluster of silicon atoms is ionized by the electron bombardment and becomes a cluster ion 16a of silicon atoms. On the other hand, the cluster of oxygen atoms is ionized by the electron impact and becomes a cluster ion 16b of oxygen atoms.

そしてこの各クラスタ・イオン16a、16bは、加速
電極14と電子引き出し電極10との間に形成された電
界によって適度に加速されて、また上記中性クラスタ1
5a、15bは」−記各ガス収容部30a、30bから
噴出された運動エネルギでもってそれぞれ基板18にi
E突する訳であるが、上記シリコン原子のクラスタ・イ
オン16a。
Each cluster ion 16a, 16b is moderately accelerated by the electric field formed between the accelerating electrode 14 and the electron extraction electrode 10, and the neutral cluster ions 16a, 16b are
5a and 15b are directed to the substrate 18 with the kinetic energy ejected from the respective gas storage portions 30a and 30b.
In other words, the silicon atom cluster ion 16a.

中性クラスタ15a及び酸素原子のクラスタ・イオン1
6b、中性クラスタ15bは上記基板18に衝突する1
1Jに該基板18近傍で反応して二酸化シリコン(Si
O2)となり、これにより該基板18上に二酸化シリコ
ンの化合物薄膜が蒸着形成される。なお、」1記シラン
分子のクラスタから分離生成された水素ガスは、真空槽
1外へ排気される。
Neutral cluster 15a and oxygen atom cluster ion 1
6b, the neutral cluster 15b collides with the substrate 18 1
1J in the vicinity of the substrate 18 to form silicon dioxide (Si
O2), thereby forming a silicon dioxide compound thin film on the substrate 18 by vapor deposition. Note that the hydrogen gas separated and generated from the clusters of silane molecules in item 1 is exhausted to the outside of the vacuum chamber 1.

このような本実施例装置では、常温ガスの化合物を用い
てクラスタを発生させるようにしたので、従来装置のよ
うに加熱機構が全く不要となり、装置の構造を簡単に、
かつ運転に必要な電力を著しく低減することができ、ま
た、蒸気化させるのに高温度を要する物質や、反応性の
高い物質の薄膜をも容易に形成できる。
In the device of this embodiment, clusters are generated using a room-temperature gas compound, so there is no need for a heating mechanism like in conventional devices, and the structure of the device can be simplified.
In addition, the power required for operation can be significantly reduced, and thin films of substances that require high temperatures to vaporize or of highly reactive substances can be easily formed.

さらに互いに異なる蒸着物質原子を有する常温ガス物質
を、ガス収容部30にあらかしめ所定の割合で混合した
快感で収容しこれを噴出するようにしたので、基板18
上に形成される化合物薄膜の膜厚、膜質を均一にでき、
高品質の化合物薄膜を非常に容易に形成することができ
る。
Furthermore, room-temperature gas substances having different vapor deposition substance atoms are mixed in a predetermined proportion in the gas storage part 30 and are ejected, so that the substrate 18
The thickness and quality of the compound thin film formed on the top can be made uniform,
High quality compound thin films can be formed very easily.

なお、上記実施例ではシランガスと酸素とを用いて二酸
化シリコン薄膜を形成する場合について説明したが、本
発明はこれに限るものではなく、例えばジボラン(B2
H5)と窒素(N2)あるいはアンモニア(NH3)と
を用いてボロンナイトライド(B N)を形成するなど
、適当な常温ガス物質を用いて上記実施例と同様の方法
で各種の化合物薄膜の形成が可能となる。
Although the above embodiment describes the case where a silicon dioxide thin film is formed using silane gas and oxygen, the present invention is not limited to this. For example, diborane (B2
Formation of various compound thin films in the same manner as in the above examples using an appropriate room-temperature gas substance, such as forming boron nitride (BN) using H5) and nitrogen (N2) or ammonia (NH3). becomes possible.

さらに、上記実施例ではガス容器を2つ設りた場合につ
いて説明したが、本発明はこれに限るものではなく、例
えば該ガス容器を3つ設けて、各容器に塩化アルミニウ
ム(Aβ2Cj23)、二酸化炭素(CO2)、酸素(
02)を収納し、これらを用いてアルミナ(A / 2
03 ) KMを形成することも可能である。
Further, in the above embodiment, a case was explained in which two gas containers were provided, but the present invention is not limited to this. For example, three gas containers may be provided, and each container contains aluminum chloride (Aβ2Cj23), carbon dioxide, etc. Carbon (CO2), oxygen (
02) and use these to prepare alumina (A/2)
03) It is also possible to form a KM.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、クラスクィオンビー
ム茄着装置において、常温ガスの物質をガス収容部から
噴出してクラスタを発生させるようG、ニしたので、構
造が簡単で、かつ運転に必要な電力を著しく低減できる
とともに、反応性の高い物質等の”?tB9をも容易に
形成でき、しかも上記ガス収容部にそれぞれ異なる蒸着
物質原子を有する複数の”+’fs??aガス物質を混
合して収容しごれを該ガス収容部から噴出してクラスタ
を発生させるようにしたので、膜厚、膜質ともに均一な
高品質の化合物薄膜を容易に形成することができる効果
がある。
As described above, according to the present invention, in the class quion beam seeding device, the room-temperature gas substance is ejected from the gas storage part to generate clusters, so the structure is simple and the operation is easy. Not only can the required power be significantly reduced, but also ``?tB9'' made of highly reactive substances can be easily formed, and moreover, a plurality of ``+'fs? ? The effect of making it possible to easily form a high-quality compound thin film with uniform film thickness and film quality, since the a-gas substances are mixed and contained and the waste is ejected from the gas storage part to generate clusters. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の薄膜蒸着装置の機略構成ヌ1、第2図は
その真空槽内を示す斜視図、第3図は本発明の一実施例
によるVN股蒸着装置の概略構成図である。 1・・・1゛工空槽、12・・・イオン化手段、14・
・・加速7b極(加速1段>、15a、15b・・・中
性クラスタ、I [i a 、l fi b・・クラス
タ・イオン、18・・・基板、30・・・ノスル付ガス
収容部、32a、32b・・・ガス容器、33 a、3
3 b・・・バルブ(ガス供給量制御手段))。 なお図中同一符号は同−又は相当部分を示す。 代理人 大岩増雄 第1図 第2図
FIG. 1 is a schematic diagram of a conventional thin film deposition apparatus, FIG. 2 is a perspective view showing the inside of the vacuum chamber, and FIG. 3 is a schematic diagram of a VN vapor deposition apparatus according to an embodiment of the present invention. . 1...1゛Empty tank, 12...Ionization means, 14.
... Acceleration 7b pole (1st acceleration stage>, 15a, 15b... Neutral cluster, I [ia, l fi b... Cluster ion, 18... Substrate, 30... Gas storage part with nostle , 32a, 32b... gas container, 33a, 3
3 b...Valve (gas supply amount control means)). Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Masuo Oiwa Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (11基板上に化合物薄膜を蒸着形成する薄膜蒸着装置
において、所定の真空度に保持された真空槽と、それぞ
れ上記基板見蒸着すべき物質原子を有する常温ガス物質
を収納する複数のガス容器と、上記真空槽内に設けられ
上記複数のガス容器からの各常温ガス物質を混合して収
容しこれらを噴出して上記各品温ガス物質のクラスタイ
オンを発生するノズル付ガス収容部と、それぞれ上記各
常温ガス物質の上記ガス収容部への供給量を制御する複
数のガス供給量制御手段と、上記ガス収容部からの各ク
ラスタの一部を分解かつイオン化又はイオン化して上記
各蒸着物質原子のクラスタ・イオンを化成するイオン化
手段と、該イオン化された各蒸着物質原子のクラスタ・
イオンを加速しこれをイオン化されていない中性クラス
タとともに上記基板に衝突させて化合物薄膜を蒸着させ
る加速手段とを備えたことを特徴とする薄膜蒸着装置。
(11) A thin film deposition apparatus for forming a compound thin film on a substrate by vapor deposition includes a vacuum chamber maintained at a predetermined degree of vacuum, and a plurality of gas containers each containing a room-temperature gas substance containing atoms of the substance to be vapor-deposited on the substrate. , a gas storage section with a nozzle provided in the vacuum chamber and configured to mix and store the room-temperature gas substances from the plurality of gas containers and eject them to generate cluster ions of the temperature-temperature gas substances; a plurality of gas supply amount control means for controlling the supply amount of each of the room-temperature gas substances to the gas storage section; and a plurality of gas supply amount control means for controlling the supply amount of each of the room-temperature gas substances to the gas storage section; an ionization means for forming cluster ions of the ionized cluster ions of each vapor-deposited substance;
A thin film deposition apparatus comprising an acceleration means for accelerating ions and causing them to collide with the substrate together with non-ionized neutral clusters to deposit a compound thin film.
JP23557683A 1983-12-12 1983-12-12 Device for vapor deposition of thin film Pending JPS60124926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23557683A JPS60124926A (en) 1983-12-12 1983-12-12 Device for vapor deposition of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23557683A JPS60124926A (en) 1983-12-12 1983-12-12 Device for vapor deposition of thin film

Publications (1)

Publication Number Publication Date
JPS60124926A true JPS60124926A (en) 1985-07-04

Family

ID=16988031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23557683A Pending JPS60124926A (en) 1983-12-12 1983-12-12 Device for vapor deposition of thin film

Country Status (1)

Country Link
JP (1) JPS60124926A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7992318B2 (en) * 2007-01-22 2011-08-09 Tokyo Electron Limited Heating apparatus, heating method, and computer readable storage medium
US11446714B2 (en) * 2015-03-30 2022-09-20 Tokyo Electron Limited Processing apparatus and processing method, and gas cluster generating apparatus and gas cluster generating method
US11772138B2 (en) 2015-03-30 2023-10-03 Tokyo Electron Limited Processing apparatus and processing method, and gas cluster generating apparatus and gas cluster generating method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7992318B2 (en) * 2007-01-22 2011-08-09 Tokyo Electron Limited Heating apparatus, heating method, and computer readable storage medium
US8186077B2 (en) 2007-01-22 2012-05-29 Tokyo Electron Limited Heating apparatus, heating method, and computer readable storage medium
US11446714B2 (en) * 2015-03-30 2022-09-20 Tokyo Electron Limited Processing apparatus and processing method, and gas cluster generating apparatus and gas cluster generating method
US11772138B2 (en) 2015-03-30 2023-10-03 Tokyo Electron Limited Processing apparatus and processing method, and gas cluster generating apparatus and gas cluster generating method

Similar Documents

Publication Publication Date Title
US4197175A (en) Method and apparatus for evaporating materials in a vacuum coating plant
JPS63270458A (en) Device for forming compound thin film
JPH06275545A (en) Formation of compound thin film using gas cluster ion
JPS60124926A (en) Device for vapor deposition of thin film
JPS60124925A (en) Device for vapor deposition of thin film
JP2710670B2 (en) Crucible for steam source
JPS60124924A (en) Device for vapor deposition of thin film
JP2843126B2 (en) Thin film forming equipment
JPS60124929A (en) Device for vapor deposition of thin film
JPS60124927A (en) Device for vapor deposition of thin film
JPS60125369A (en) Vapor deposition device for thin film
JPS6339668B2 (en)
JPS60124928A (en) Device for vapor deposition of thin film
JPS61227163A (en) Production of high hardness boron nitride film
JPH01290758A (en) Production of oxide thin film
JPH0735569B2 (en) Thin film forming equipment
JP4408505B2 (en) Method and apparatus for forming diamond-like carbon film
JPS60244018A (en) Cluster ion beam evaporation device
JPS60158619A (en) Thin film evaporating device
JPH0586474B2 (en)
JPS6329925A (en) Forming device for compound thin-film
JPS60124932A (en) Device for vapor deposition of thin film
JPH01139758A (en) Method and device for thin film vapor deposition
JPS61157674A (en) Manufacture of high hardness boron nitride film
JPS6270566A (en) Apparatus for vapor depositing film