JPH01290758A - Production of oxide thin film - Google Patents

Production of oxide thin film

Info

Publication number
JPH01290758A
JPH01290758A JP11876288A JP11876288A JPH01290758A JP H01290758 A JPH01290758 A JP H01290758A JP 11876288 A JP11876288 A JP 11876288A JP 11876288 A JP11876288 A JP 11876288A JP H01290758 A JPH01290758 A JP H01290758A
Authority
JP
Japan
Prior art keywords
thin film
substrate
ozone
oxide thin
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11876288A
Other languages
Japanese (ja)
Inventor
Kenichiro Yamanishi
山西 健一郎
Yasuyuki Kawagoe
川越 康行
Masaaki Tanaka
正明 田中
Katsuhiro Imada
勝大 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11876288A priority Critical patent/JPH01290758A/en
Priority to DE19883844630 priority patent/DE3844630C2/de
Priority to DE19883839903 priority patent/DE3839903A1/en
Publication of JPH01290758A publication Critical patent/JPH01290758A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To form a high-quality oxide thin film with high velocity by performing vapor deposition in such a state that the vicinity of a base plate has been held in the ozone atmosphere in case of vapor-depositing and forming the oxide thin film on the base plate by a cluster ion beam method. CONSTITUTION:The inside of a vacuum tank 1 is evacuated exhausted and each vapor deposition material 3 contained in the crucibles 2 is heated, evaporated and ejected through the nozzles 2a and made to the clusters 6 by adiabatic expansion. One part of the clusters 6 is ionized by the ionization filaments 7 and accelerated with the acceleration electrodes 9 and reached to the base plates 8 together with the unionized neutral clusters 6. At this time, ozone generated from an ozone generating mechanism 14 is directly ejected on the base plates 8 via an introduction mechanism 11 and the vicinities of the base plates 8 are made to the high-concn. ozone atmosphere and also the base plates 8 are heated at about 150-900 deg.C with a heating mechanism 12. Thereby ozone is easily decomposed into oxygen molecule and oxygen atom on the base plates 8 resulting in easy react with the vapor deposition material 3, and a high-quality oxide thin film is formed with high velocity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、酸化物薄膜を製造する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing an oxide thin film.

〔従来の技術〕[Conventional technology]

第4図は特公昭56−18537号公報に示された従来
の酸化物薄膜の製造方法に係る薄膜形成装置を示す断面
図であり、クラスタ・イオンビーム法により、圧電薄膜
等に利用される酸化亜鉛薄膜を形成する方法が考えられ
ている。クラスタ・イオンビーム法とは薄膜を作るべく
生成した蒸着物質のクラスタを途中でイオン化し、基板
に向って加速することによって、基板に薄膜を形成する
ものである。第5図はこのクラスタ・イオンビーム法を
実現する装置を一部断面で示す分解斜視図である。図に
おいて、(1)は真空槽、(2)は蒸着材料で、例えば
蒸発材料(ここでは亜鉛)(3)を充填し加熱するため
のるつぼ、(2りはるつぼ(2)に設けられたノズル、
(4)はるつぼ(2)を加熱するための加熱用フィラメ
ント、(5)はオゾンを真空槽(1)内に導入するため
の導入管、(6)はノズル(2a)より噴出した蒸発材
料(3)の蒸気が断熱膨張を起こすことにより形成され
た塊状原子集団(クラスタ) 、 (7+はクフスタ(
6)をイオン化するための電子を放出するイオン化フィ
フメント、(8)は薄膜を形成するための基板、(9)
はクラスタ・イオンを加速するための加速電極、0国は
クラスタ・イオンビーム(工CB)源である。
FIG. 4 is a sectional view showing a thin film forming apparatus according to the conventional method for manufacturing oxide thin films disclosed in Japanese Patent Publication No. 56-18537. A method of forming a zinc thin film has been considered. The cluster ion beam method is a method of forming a thin film on a substrate by ionizing clusters of vapor deposited material midway through and accelerating them toward the substrate. FIG. 5 is an exploded perspective view, partially in section, of an apparatus for realizing this cluster ion beam method. In the figure, (1) is a vacuum chamber, (2) is a evaporation material, for example, a crucible for filling and heating the evaporation material (zinc here) (3), (2 is a crucible provided in crucible (2)). nozzle,
(4) A heating filament for heating the crucible (2), (5) an introduction pipe for introducing ozone into the vacuum chamber (1), and (6) an evaporation material ejected from the nozzle (2a). A lumpy atomic group (cluster) formed by the adiabatic expansion of the vapor in (3),
(6) is an ionizing fiftment that emits electrons to ionize, (8) is a substrate for forming a thin film, (9) is
is an accelerating electrode for accelerating cluster ions, and country 0 is a cluster ion beam (CB) source.

久に動作について説明する。真空又は適当なガス雰囲気
の真空槽(1+内に設置されたるつぼ(2)内に蒸発物
質(3)である亜鉛を入れ、るつぼF21を加熱用フィ
ラメント(4)からの輻射熱又は電子によって加熱する
。加熱さnた蒸発物質(3)である亜鉛は蒸気化し、る
つぼ(2)内で高圧の蒸気となる。この高圧の亜鉛の蒸
気をるつぼ(2)に設けられたノズル(2a)から真空
+’1ffII内に噴射する。この時、この亜鉛の蒸気
は断熱膨張によって塊状原子集団(クラスタ)(6)と
なる。また真空槽(1)内の雰囲気中には導入管(5)
によってオゾンが供給される。オゾンはその性質上活性
な物質であるので、真空槽(1)内に注入されると、酸
素分子と酸素原子に分解する。これには特別な装置も必
要とせず、高温の真空槽(1)内においては容易に起こ
り得る。単なる酸素分子とは異なり、酸素原子は亜鉛と
衝突した場合のみ容易に反応して酸化亜鉛となる。こう
し、 亜鉛のクラスタ(6)にイオン化フイヲメント(7)か
ら電子を放射することによってクラスタ(6)をイオン
化する。このイオン化したクラスタ(6)は基板(8)
と加速! ffl (91との間の電圧によって加速さ
れて、中性のクラスタ(6)と共に基板(8)に射突し
、基板(8)上に酸化物薄膜が蒸着形成される。
I will explain the operation shortly. Zinc, which is an evaporative substance (3), is placed in a crucible (2) placed in a vacuum chamber (1+) in a vacuum or a suitable gas atmosphere, and the crucible F21 is heated by radiant heat or electrons from a heating filament (4). Zinc, which is the heated evaporated substance (3), is vaporized and becomes high-pressure vapor in the crucible (2).This high-pressure zinc vapor is evacuated from a nozzle (2a) provided in the crucible (2). +'1ffII.At this time, this zinc vapor becomes a lumpy atomic group (cluster) (6) due to adiabatic expansion.In addition, an inlet pipe (5) is inserted into the atmosphere in the vacuum chamber (1).
Ozone is supplied by Since ozone is an active substance by its nature, when it is injected into the vacuum chamber (1), it decomposes into oxygen molecules and oxygen atoms. This does not require any special equipment and can easily occur in the high temperature vacuum chamber (1). Unlike simple oxygen molecules, oxygen atoms readily react to form zinc oxide only when they collide with zinc. The zinc cluster (6) is then ionized by emitting electrons from the ionizing filament (7) to the zinc cluster (6). This ionized cluster (6) is the substrate (8)
And accelerate! It is accelerated by the voltage between ffl (91) and hits the substrate (8) together with the neutral cluster (6), and a thin oxide film is deposited on the substrate (8).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の酸化物薄膜の製造方法は上記の通りであり、真空
槽(1)内に導入したオゾンは、導入部が高温雰囲気で
あるため、短時間で酸素分子と酸素分子に分解する。と
ころが反応活性である酸素原子はその寿命が短いため到
底基板(8)までは到達できず、蒸発物質(3)が基板
へ向かう途中の空間で蒸発物質(3)と衝突したものの
みが酸化反応を起こす。
The conventional method for manufacturing an oxide thin film is as described above, and the ozone introduced into the vacuum chamber (1) is decomposed into oxygen molecules and oxygen molecules in a short time because the introduction part is a high temperature atmosphere. However, since the reactive active oxygen atoms have a short lifespan, they cannot reach the substrate (8), and only those that collide with the evaporated substance (3) in the space on the way to the substrate undergo an oxidation reaction. wake up

この空間での衝突磁率は非常に小さく、基板(8)上で
高効率に醸化反応を起こすことができないという問題点
があった。また導入されたオゾン及び分解によって生成
した酸素原子がICB源a9等の高温部分で反応を起こ
し、生成した不純物酸化物が膜中に混入するという問題
点があった。
The magnetic collision rate in this space is very small, and there is a problem in that the fermentation reaction cannot occur on the substrate (8) with high efficiency. Further, there is a problem in that introduced ozone and oxygen atoms generated by decomposition cause a reaction in high temperature parts such as the ICB source a9, and the generated impurity oxides mix into the film.

この発明は上記のような問題点を解消するためになされ
たもので、蒸着物質が基板上で効率良くオゾン又はその
分解生成物である酸素原子と反応を起こすことにより酸
化物薄膜が形成できると共に、不純物酸化物が膜中に混
入することを防止できる薄膜形成方法を得ることを目的
とする。
This invention was made to solve the above-mentioned problems, and it is possible to form an oxide thin film by efficiently causing a vapor deposition substance to react with ozone or its decomposition product, oxygen atoms, on a substrate. An object of the present invention is to obtain a thin film forming method that can prevent impurity oxides from being mixed into the film.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る酸化物薄膜の製造方法は、基板へオゾン
を直接噴射して基板近傍をオゾン雰囲気に味った状態で
蒸着を行なうものである。
The method for producing an oxide thin film according to the present invention involves directly injecting ozone onto a substrate to perform vapor deposition while creating an ozone atmosphere near the substrate.

また、基板へオゾンを直接噴射して基板近傍をオゾン雰
囲気に保つと共に、基板を加熱した状態で蒸着を行なう
ようにしたものである。
Further, ozone is directly injected onto the substrate to maintain an ozone atmosphere near the substrate, and vapor deposition is performed while the substrate is heated.

〔作用〕[Effect]

この発明における酸化物薄膜の製造方法は、基板へオゾ
ンを直接噴射することにより、基板の近傍のみが高濃度
のオゾン雰囲気となるため、オゾンが基板上で蒸着物質
と反応を起こすことができる。また基板を加熱して高温
に医つことにより、オゾンが基板上で分解し酸素原子が
生成するため5基板上で蒸着物質と高効率・高速酸化反
応を起こすことが可能となる。
In the method for producing an oxide thin film according to the present invention, ozone is directly injected onto the substrate, thereby creating a highly concentrated ozone atmosphere only in the vicinity of the substrate, so that ozone can react with the vapor deposited substance on the substrate. Furthermore, by heating the substrate to a high temperature, ozone decomposes on the substrate and oxygen atoms are generated, making it possible to cause a highly efficient and fast oxidation reaction with the vapor deposited substance on the substrate.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例による酸化物薄膜の製造方法を
実現する装置を示す構成図であり、例えば多元のクラス
タ・イオンビーム装置をY−Ba−Cu−0系高温超電
導薄膜形成に適用した場合について説明する。図におい
て、(1)はポンプ(1a)により排気される真空槽、
(2)は蒸着材料(3)であるイツトリウム(1)・バ
リウム(Ba) 、銅(Cu)を充填し加熱するための
るつぼ、(2a)はるつぼ(2)に設けられたノズル、
(4)はるつぼ(2)を加熱するための加熱用フィラメ
ント、(6)はノズル(2a)より噴出した蒸着材料(
3)の蒸気が断熱膨張を起こすことにより形成された塊
状原子集団(クラスタ) 、(71はクラスタ(6)を
イオン化するためのに子を放出するイオン化フイフメン
ト、(8)は薄膜を形成するための基板、(9)はクラ
スタ・イオンを加速するための加速電極、0■は各蒸着
材料(3)の基板(8)上への蒸着速度をモニターする
ための蒸着速度モニターであり、表示系(図示せず)に
接続されている。α旧よすシンを基板(8)上へ直接噴
射するためのオゾン導入機構、圓は基板(8)を高温に
加熱するための基板加熱機構で、例えばフィラメント、
03はICB源、041は高気圧放電を用いたオゾン発
生機構である3この実施例では、蒸着材料(3)を3種
類用いるため、 ICB源03も3個設けられている。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a configuration diagram showing an apparatus for realizing a method for manufacturing an oxide thin film according to an embodiment of the present invention. Let me explain the case. In the figure, (1) is a vacuum chamber that is evacuated by a pump (1a);
(2) is a crucible for filling and heating the vapor deposition materials (3), yttrium (1), barium (Ba), and copper (Cu); (2a) a nozzle provided in the crucible (2);
(4) A heating filament for heating the crucible (2), (6) a heating filament for heating the crucible (2), and (6) a vapor deposition material (
3) A lumpy atomic group (cluster) formed by adiabatic expansion of the vapor, (71 is an ionizing fibre, which releases atoms to ionize the cluster (6), and (8) is an ionizing fibre, which forms a thin film. (9) is an acceleration electrode for accelerating cluster ions, 0 is a deposition rate monitor for monitoring the deposition rate of each deposition material (3) on the substrate (8), and a display system (not shown) is an ozone introduction mechanism for directly injecting α old Yosushin onto the substrate (8), and a substrate heating mechanism for heating the substrate (8) to a high temperature. For example, filament,
03 is an ICB source, and 041 is an ozone generation mechanism using high-pressure discharge.3 In this embodiment, since three types of vapor deposition materials (3) are used, three ICB sources 03 are also provided.

以下、上記装置を用いた場合の動作について説明する。The operation when using the above device will be explained below.

到達真空圧力I X 10−5Torr以下に深たれた
真空槽(1)内に設置され、高融点金属又はグツファイ
ト等で製作された3つのるつぼ(2)内にそれぞれ蒸着
物質(3)である金属イツトリウム(7)・パリ’7 
ム(Ba)、銅(Cu)を入れ、るつぼ(2)を100
0℃〜2500℃程度に加熱された加熱用フィラメント
(4)からの輻射熱又は放射電子のエネルギーによって
900℃〜2000℃程度に加熱する。加熱された蒸着
物質(31であるイツトリウム、バリウム、銅は蒸気化
し、るつぼに)内で0.1〜10Torr程度の圧力の
蒸気となる。この圧力の蒸気はるつぼ(2)に設けられ
たノズル(2a)力ろ基板(8)の方向に向かって真壁
槽(1)内に噴射される。この時、各蒸着材料(3)の
蒸気は断熱膨張によって塊状原子集団(クツスフ)(6
)°となる。こうしてできた各蒸着材料のクラスタ(6
)にイオン化フィラメント(7)から放出される電子を
衝撃することによってクラスタ(6)の一部をイオン化
する。このイオン化したそれぞれのクラスタ(6)は加
速電極(9)によって10kv  以下のエネルギーで
加速されて、イオン化されていない中性のクラスタ(6
)と共に基板(8)上に到達する。基板(8)上に到達
し蒸着する各蒸着材料(3]の蒸着速度は、各元素毎に
設けられた蒸着速度モニター0■により計測される。こ
の時、オゾン発生機構041より発生したオゾンをオゾ
ン導入機構011により基板(8)上に直接噴射し、基
板(8)の近傍は高f1!に度のオゾン雲囲気とする。
The metal, which is the vapor deposited substance (3), is placed in a vacuum chamber (1) that is deep to the ultimate vacuum pressure I x 10-5 Torr or less, and is placed in three crucibles (2) made of high melting point metal or gutsphite, etc. Yztrium (7)・Paris'7
Put the crucible (Ba) and copper (Cu) into the crucible (2).
It is heated to about 900°C to 2000°C by the energy of radiant heat or radiated electrons from the heating filament (4) heated to about 0°C to 2500°C. The heated vapor deposition materials (yttrium, barium, and copper 31 are vaporized and turned into vapor at a pressure of about 0.1 to 10 Torr in the crucible). Steam at this pressure is injected into the Makabe tank (1) through a nozzle (2a) provided in the crucible (2) toward the filter substrate (8). At this time, the vapor of each vapor deposition material (3) undergoes adiabatic expansion to form a lumpy atomic group (kutusuf) (6
)°. The clusters (6
) by bombarding the cluster (6) with electrons emitted from the ionizing filament (7). Each of the ionized clusters (6) is accelerated by an accelerating electrode (9) with an energy of 10 kV or less, resulting in a non-ionized neutral cluster (6).
) and reaches the substrate (8). The evaporation rate of each evaporation material (3) that reaches and evaporates onto the substrate (8) is measured by the evaporation rate monitor 0■ provided for each element.At this time, the ozone generated by the ozone generation mechanism 041 is Ozone is injected directly onto the substrate (8) by the ozone introduction mechanism 011, and the vicinity of the substrate (8) is surrounded by an ozone cloud of high f1! degree.

更に基板(8)は基板加熱機構(2)により150℃〜
900℃程度の高温に採つ。オゾンはこの温度範囲では
基板(8)上で酸素分子と酸素原子に容易に分解する。
Furthermore, the substrate (8) is heated to 150°C or more by the substrate heating mechanism (2).
Cultivate at a high temperature of about 900℃. Ozone easily decomposes into oxygen molecules and oxygen atoms on the substrate (8) in this temperature range.

酸素原子は酸素分子と比較した場合は言うまでもなく、
オゾンと比べても反応活性であり、蒸着材料(3)であ
るイツトリウム、バリウム、銅と容易に反応を起こし、
基板(8)上にペロプスカイト構造を有するY B a
 z Cu 307 Xの高温超電導薄膜が形成される
。オゾンを導入した場合の基板(81周辺の圧力は高く
保たれるが真空槽(1)内のるつぼ(2)周辺は3X1
04Torr以下の低い圧力に保たれている。
Needless to say, when comparing the oxygen atom with the oxygen molecule,
It is more reactive than ozone and easily reacts with yttrium, barium, and copper, which are vapor deposition materials (3).
Y B a having a perovskite structure on the substrate (8)
A high temperature superconducting thin film of z Cu 307 X is formed. When ozone is introduced, the pressure around the substrate (81) is kept high, but the pressure around the crucible (2) in the vacuum chamber (1) is 3X1.
The pressure is maintained at a low pressure of 0.04 Torr or less.

実際にこの実施例による酸化物薄膜の製造方法を用いて
形成されたY−Ba−Cu−0系の高温超電導膜の電気
抵抗及び電気抵抗が超電導状態に遷移する温度の測定結
果、並びに比較例として実施例に係る装置を用いてオゾ
ンの代わりに酸素を導入した場合の測定結果、及び従来
の方法によって製造した薄膜の測定結果を下表に示す。
Measurement results of the electrical resistance of a Y-Ba-Cu-0-based high-temperature superconducting film actually formed using the oxide thin film manufacturing method according to this example and the temperature at which the electrical resistance transitions to a superconducting state, and a comparative example The table below shows the measurement results when oxygen was introduced instead of ozone using the apparatus according to the example, and the measurement results for the thin film produced by the conventional method.

上表に示した通り、この発明の実施例によれば蒸着物3
f[(31が基板へ向かう途中の空間ではY2O3゜B
aO、CuO4の各元素単独の酸化物を生成することは
少なく、基板+21上で酸化反応が高効率の高速で起こ
るため特性のすぐまた高温超電導薄膜が得ら口る。また
上記実験において、形成された薄膜中の不純物分析をオ
ージェ電子分光法で行なったところ、従来の方法でオゾ
ンを導入して形成した膜中からのみ加熱用フィラメント
(4)及びイオン化用フィラメント(7)の構成材料で
あるタングステンの酸化物が検出された。
As shown in the table above, according to the embodiment of the present invention, deposit 3
f[(In the space where 31 is on the way to the substrate, Y2O3°B
Since oxides of individual elements such as aO and CuO4 are rarely produced, and the oxidation reaction occurs quickly and efficiently on the substrate +21, a high-temperature superconducting thin film with excellent characteristics can be obtained. In addition, in the above experiment, impurities in the formed thin film were analyzed using Auger electron spectroscopy, and it was found that only the heating filament (4) and ionization filament (7) were found in the film formed by introducing ozone using the conventional method. ) was detected.

以上のように、この実施例によれば、基板(8)近傍を
高濃度オゾン雰囲気とし、更に基板(8)を加熱した状
態で蒸着することにより、基板(8)上で高効率・高速
で酸化反応が起こり、高品質な酸化物薄膜を高速で形成
できる効果がある。また、基板(8)の近傍でオゾンや
酸素原子となるので、従来のようにICB源α3内で反
応を起こすのを防止できる。
As described above, according to this embodiment, by creating a highly concentrated ozone atmosphere near the substrate (8) and performing vapor deposition while the substrate (8) is heated, high efficiency and high speed can be achieved on the substrate (8). An oxidation reaction occurs, which has the effect of forming a high-quality oxide thin film at high speed. Further, since ozone and oxygen atoms are formed near the substrate (8), it is possible to prevent a reaction from occurring within the ICB source α3 as in the conventional case.

加えて、真空槽(1)内に設置された蒸気発生源等の高
温部分の真空圧力は、低く保つことができるため、これ
らの高温部分が酸素、オゾンと反応することにより生成
する不純物酸化物の発生を押さえることができ、高純間
な酸化物薄膜を形成できる効果がある。更に、真空槽(
1)内の蒸着物質(3)が基板(8)上へ到達する空間
の真空圧力を低く保つことができるため、基板(8)へ
到達する以前に蒸着物質(3)が酸化反応を起こすこと
はほとんどなく、多元素酸化物薄膜形成時に各元素の酸
化物が膜中に混入しないため、特性のすぐれた多元素酸
化物薄膜が得られる効果がある。
In addition, since the vacuum pressure in high-temperature parts such as the steam generation source installed in the vacuum chamber (1) can be kept low, impurity oxides generated when these high-temperature parts react with oxygen and ozone can be reduced. This has the effect of suppressing the generation of oxides and forming a highly pure oxide thin film. Furthermore, a vacuum chamber (
Since the vacuum pressure in the space where the vapor deposition material (3) in 1) reaches the substrate (8) can be kept low, the vapor deposition material (3) does not undergo an oxidation reaction before reaching the substrate (8). There is almost no oxidation of the multi-element oxide, and since the oxides of each element are not mixed into the film during the formation of the multi-element oxide thin film, it is possible to obtain a multi-element oxide thin film with excellent properties.

なお、上記実施例では、基板加熱機′8tO■を用い、
基板(8)の温度を高温に保った場合を示したが、基板
(8)を加熱機構@により加熱しない場合でも、酸・素
原子に比べると活性度が低いが、酸素分子に比べると反
応活性なオゾンが各蒸着物質(3)と基板(8)上で直
接反応を起こすため上記実施例とほぼ同等な高品質な酸
化物薄膜を形成できる。また、加熱機構07Jはフィラ
メントに限らず、ヲンブなどを用いてもよい。また上記
実施例ではオゾン発生機構Q41として高気圧放電方式
を用いた場合を示したが、他の方式によるオゾン発生掘
構04)を用いてもよい。
In the above embodiment, a substrate heater '8tO■ was used.
Although the case where the temperature of the substrate (8) is kept at a high temperature is shown, even when the substrate (8) is not heated by the heating mechanism @, the activity is lower than that of oxygen and hydrogen atoms, but the reaction is lower than that of oxygen molecules. Since active ozone directly reacts with each vapor deposition substance (3) on the substrate (8), a high quality oxide thin film almost equivalent to that of the above embodiment can be formed. Further, the heating mechanism 07J is not limited to a filament, but may also be a weave or the like. Further, in the above embodiment, a case is shown in which a high-pressure discharge method is used as the ozone generation mechanism Q41, but an ozone generation mechanism 04) using another method may be used.

また、上記実施例ではオゾン5入機構aDとして、基板
(8)方向に向いた1本の細管を用いた場合を示したが
、第2図に基板(8)近傍を拡大して示したように、基
板(8)を取り囲むリング状の管に複数のノズル(ll
a)を設けたものを用いてもよい。また上記実施例では
、真空槽+11内にICB源日を設置する場合を示した
が、第3図に示したように真空槽(1)下部にICB源
(13を設置するための小室ttSを設け、ポンプ(1
a)とポンプ(13a)との差動排気によりICB源(
至)周辺をより高真空に保つことで、ICB源03の構
成部品と導入ガスとの反応をより小さく押さえることが
できる。
In addition, in the above embodiment, a single thin tube facing toward the substrate (8) was used as the ozone 5 input mechanism aD, but the vicinity of the substrate (8) is shown enlarged in FIG. A plurality of nozzles (ll) are installed in a ring-shaped tube surrounding the substrate (8).
A device with a) may also be used. Furthermore, in the above embodiment, a case was shown in which the ICB source was installed in the vacuum chamber +11, but as shown in FIG. Install the pump (1
a) and the pump (13a), the ICB source (
To) By keeping the surrounding area at a higher vacuum, the reaction between the components of the ICB source 03 and the introduced gas can be suppressed to a smaller extent.

更に、上記実施例では、ICB装置にオゾン導入機構0
υを設けたものを示したが、真空蒸着装置やイオンビー
ムスパッタ装置等能の薄膜形成装置に設けてもよく、上
記実施例と同様の効果を奏する。
Furthermore, in the above embodiment, the ICB device is equipped with an ozone introduction mechanism 0.
Although the device in which υ is provided is shown, it may be provided in a thin film forming apparatus having the capability of a vacuum evaporation device, an ion beam sputtering device, etc., and the same effects as in the above embodiments can be obtained.

また、上記実施例では、多元素酸化物であるY−Ba 
−Cu−0系高温超電導薄膜形成へ適用した場合の列を
示したが、他の多元素酸化物及び単元素酸化物形成へも
適用でき、上記実施例と同様の効果を奏する。
Furthermore, in the above embodiment, Y-Ba which is a multi-element oxide
Although the example shown is applied to the formation of a -Cu-0-based high-temperature superconducting thin film, it can also be applied to the formation of other multi-element oxides and single-element oxides, and the same effects as in the above embodiments can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、オゾンを基板に直接
噴射することにより、基板近傍をオゾン雰囲気に作った
状態で蒸着を行うので、基板上で高効率・高速で酸化反
応を起こすことができ、不純物酸化物の発生を比較的防
止でき、高品質な酸化物薄膜を高速で形成できる酸化物
薄膜の製造方法が得られる効果がある。
As described above, according to the present invention, since ozone is directly injected onto the substrate, vapor deposition is performed in an ozone atmosphere created near the substrate, so that an oxidation reaction can occur on the substrate with high efficiency and high speed. This has the effect of providing a method for producing an oxide thin film that can relatively prevent the generation of impurity oxides and form a high-quality oxide thin film at high speed.

また、オゾンを基板に直接噴射することにより、基板近
傍をオゾン雰囲気に保つと共に、基板を加熱した状態で
蒸着を行なうことにより、上記効果をよりいっそう高め
ることができる。
Further, by injecting ozone directly onto the substrate to maintain an ozone atmosphere near the substrate and performing vapor deposition while the substrate is heated, the above effects can be further enhanced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による酸化物薄1漢の製造
方法に係る薄膜形成装置を示す構成図、第2図はこの発
明の他の実施例を示す基板近傍の拡犬栴成図、第3図は
この発明の他の実施例による製造方法に係る薄膜形成装
置を示す構成図、第4図は従来の酸化物薄膜の製造方法
に係る薄膜形成装置を示す断面図、第5図は従来の酸化
物薄膜形成装置を一部断面で示す分解斜視図である。 (1)は真空槽、(3)は蒸着材料、(8)は基板、0
旧よオゾン・導入81構、(I2は基板加熱機構である
。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a block diagram showing a thin film forming apparatus according to a method for producing a thin oxide film according to an embodiment of the present invention, and FIG. 2 is an enlarged diagram of the vicinity of a substrate showing another embodiment of the present invention. , FIG. 3 is a block diagram showing a thin film forming apparatus according to a manufacturing method according to another embodiment of the present invention, FIG. 4 is a sectional view showing a thin film forming apparatus according to a conventional method for manufacturing an oxide thin film, and FIG. FIG. 1 is an exploded perspective view partially showing a conventional oxide thin film forming apparatus in cross section. (1) is a vacuum chamber, (3) is a vapor deposition material, (8) is a substrate, 0
Old ozone introduction system 81 (I2 is the substrate heating mechanism. In the figures, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)真空中又はガス雰囲気中で蒸着材料を酸化させて
、基板に酸化物薄膜を蒸着形成する酸化物薄膜の製造方
法において、オゾンを上記基板に直接噴射することによ
り、上記基板近傍をオゾン雰囲気に保つた状態で蒸着を
行なうことを特徴とする酸化物薄膜の製造方法。
(1) In a method for producing an oxide thin film in which a vapor deposition material is oxidized in a vacuum or a gas atmosphere to form an oxide thin film on a substrate, the vicinity of the substrate is A method for producing an oxide thin film, characterized in that vapor deposition is performed in an atmosphere.
(2)真空中又はガス雰囲気中で蒸着材料を酸化させて
、基板に酸化物薄膜を蒸着形成する酸化物薄膜の製造方
法において、オゾンを上記基板に直接噴射することによ
り、上記基板近傍をオゾン雰囲気に保つと共に、上記基
板を加熱した状態で蒸着を行なうことを特徴とする酸化
物薄膜の製造方法。
(2) In a method for producing an oxide thin film in which a vapor deposition material is oxidized in a vacuum or a gas atmosphere to form an oxide thin film on a substrate, the vicinity of the substrate is A method for producing an oxide thin film, characterized in that vapor deposition is performed while maintaining the substrate in an atmosphere and heating the substrate.
JP11876288A 1987-11-25 1988-05-16 Production of oxide thin film Pending JPH01290758A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11876288A JPH01290758A (en) 1988-05-16 1988-05-16 Production of oxide thin film
DE19883844630 DE3844630C2 (en) 1987-11-25 1988-11-25
DE19883839903 DE3839903A1 (en) 1987-11-25 1988-11-25 Process and device for the vapour deposition of thin layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11876288A JPH01290758A (en) 1988-05-16 1988-05-16 Production of oxide thin film

Publications (1)

Publication Number Publication Date
JPH01290758A true JPH01290758A (en) 1989-11-22

Family

ID=14744433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11876288A Pending JPH01290758A (en) 1987-11-25 1988-05-16 Production of oxide thin film

Country Status (1)

Country Link
JP (1) JPH01290758A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101020A (en) * 1992-09-21 1994-04-12 Mitsubishi Electric Corp Forming method of thin film
US5693578A (en) * 1993-09-17 1997-12-02 Fujitsu, Ltd. Method of forming thin silicon oxide film with high dielectric breakdown and hot carrier resistance
US8013300B2 (en) 2008-06-20 2011-09-06 Carl Zeiss Nts, Llc Sample decontamination

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101020A (en) * 1992-09-21 1994-04-12 Mitsubishi Electric Corp Forming method of thin film
US5693578A (en) * 1993-09-17 1997-12-02 Fujitsu, Ltd. Method of forming thin silicon oxide film with high dielectric breakdown and hot carrier resistance
US8013300B2 (en) 2008-06-20 2011-09-06 Carl Zeiss Nts, Llc Sample decontamination

Similar Documents

Publication Publication Date Title
US4197175A (en) Method and apparatus for evaporating materials in a vacuum coating plant
JP3386175B2 (en) Method of forming compound thin film with gas cluster ion assist
JPH01290758A (en) Production of oxide thin film
JP2843125B2 (en) Thin film forming equipment
JPH1112731A (en) Formation of high purity thin film
JPH0238561A (en) Thin film-forming equipment
JP3169278B2 (en) Thin film forming method and thin film forming apparatus
JP2726139B2 (en) Oxygen atom generator
JP2843126B2 (en) Thin film forming equipment
JP3174313B2 (en) Thin film forming equipment
JP2971541B2 (en) Thin film forming equipment
JPS59217332A (en) Manufacture of silicon dioxide film
JPH0368764A (en) Plasma treating device for forming thin film
JPH01163917A (en) Compound membrane formation method
JPH04119997A (en) Production of superconducting thin film
JPH01176072A (en) Ion plating device
JPH01139758A (en) Method and device for thin film vapor deposition
JPH01117208A (en) Formation method of oxide superconductor film
JPH0510423B2 (en)
JPH0211752A (en) Formation of thin oxide film
JPH03153866A (en) Thin film forming device
JPH0586474B2 (en)
JPH03134164A (en) Thin film forming device and formation of superconducting thin film by using this device
JPH1150963A (en) Getter pump and organic metal molecular beam epitaxial device
JPH02175861A (en) Formation of alkaline earth metal ion source and alkaline earth metal ion