JPS60124825A - Method and apparatus for flattening thin film device - Google Patents

Method and apparatus for flattening thin film device

Info

Publication number
JPS60124825A
JPS60124825A JP23149783A JP23149783A JPS60124825A JP S60124825 A JPS60124825 A JP S60124825A JP 23149783 A JP23149783 A JP 23149783A JP 23149783 A JP23149783 A JP 23149783A JP S60124825 A JPS60124825 A JP S60124825A
Authority
JP
Japan
Prior art keywords
thin film
film device
particles
planarization
flattening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23149783A
Other languages
Japanese (ja)
Other versions
JPH0562459B2 (en
Inventor
Yasuhiro Nagai
靖浩 永井
Keiichi Yanagisawa
佳一 柳沢
Tomoyuki Toshima
戸島 知之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP23149783A priority Critical patent/JPS60124825A/en
Publication of JPS60124825A publication Critical patent/JPS60124825A/en
Publication of JPH0562459B2 publication Critical patent/JPH0562459B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To save processing time by simultaneous performance of both selective filling of a recession on the surface of a thin film device and selective etching of a projection by a method wherein both ion beams projecting the thin film device and depositing particles are controlled. CONSTITUTION:A target 3 is arranged so that its surface may be inclined to the central axis O-O of an ion beam projecting source 1 as well as deposited substrate particles for flattening sputtered from the target surface (sputtered particles) may be irradiated upon the surface of a thin film device 2 in an almost perpendicular angle (0-20 deg. to normal N). The surface of the thin film device 2 before being flattened is normally formed of projections 4 and recessions 5 alternately to be repeated with the projection 4 provided with a flat surface 4 and sides 6 reaching bottoms. In order to accelerate the flattening process of the thin film device 2, the incident angle thetas of the sputtered particles must be decreased while that thetae of the etching beams must be increased. Through these procedures, both the selective deposition of the target particles in the recession and the selective etching process of the projection may be performed simultaneously.

Description

【発明の詳細な説明】 本発明は薄膜コンデンサ、薄膜抵抗体などの薄膜デバイ
ス壷ま真空蒸着法、スパッタリング法などで作製され、
物質が必ずしも全面に均一に堆積さnず゛−礒−八へ膜
の断面積がデバイス全面に均一でないため、特性が局部
的に異なる欠点がある。
[Detailed Description of the Invention] The present invention provides thin film capacitors, thin film resistors, and other thin film devices manufactured by vacuum evaporation, sputtering, etc.
Since the material is not necessarily deposited uniformly over the entire surface of the device, and the cross-sectional area of the film is not uniform over the entire surface of the device, there is a drawback that the characteristics differ locally.

薄膜デバイスにおけるこのような欠点を除くため、従来
から薄膜デバイスの平坦化が行われている。こnらの従
来方法は、四部を選択的に埋めるか凸部を選択的に削る
方法が行われている。
In order to eliminate such drawbacks in thin film devices, planarization of thin film devices has been conventionally performed. In these conventional methods, the four parts are selectively filled in or the convex parts are selectively shaved off.

四部を選択的に埋める方法として、たとえば■ 堆積す
る薄膜の成膜条件を調節し、堆積が四部へ回り込むよう
にして平坦化する方法、■ 指向性の強い堆積粒子を用
いると共に、リフトオフ法によシ凹部に選択的に粒子を
堆積させる平坦化方法、 ■ 低融点ガラスのM全薄膜の凹凸部分に堆積させたの
ち、溶融したシ、粘性の強い有機剤を凹凸部上に塗布し
、ガラスや有機剤の表面張力を利用した平坦化方法が知
ら扛ている。
Examples of methods for selectively filling the four parts include: ■ Adjusting the deposition conditions of the thin film to be deposited so that the deposition wraps around the four parts to flatten it; and ■ Using highly directional deposited particles and a lift-off method. A flattening method in which particles are selectively deposited on the concave portions of the glass. ■ After depositing the particles on the concave and convex portions of the entire M thin film of low melting point glass, molten particles and a highly viscous organic agent are applied onto the concave and convex portions, and the glass and Planarization methods that utilize the surface tension of organic agents are well known.

上記の薄膜デバイス平坦化方法のうち、■の方法は部分
的に膜の密度が低く膜質のコントロールが容易でない。
Among the above methods for flattening thin film devices, method (2) partially results in low film density, making it difficult to control the film quality.

■の方法はリフトオフ時に粒子の堆積した部分と、レジ
スト膜でマスクされている部分に段差ができと扛が幅の
狭い凹状溝を形成゛しやすく、こ7’Lf除去するには
別の原理による平坦化処理kmきなければならない。
Method (2) tends to create a step between the part where the particles are deposited and the part masked by the resist film during lift-off, and a concave groove with a narrow width is easily formed. The planarization treatment must be performed by km.

また、■の方法は表面張力を利用するため、液相の状態
をもたなければならず、材料および工程上、その処理温
度に制限がある。
Furthermore, since the method (2) utilizes surface tension, it must be in a liquid phase, and there are limits to the processing temperature due to the materials and process.

一方、凸部全選択的に削る方法として、■ レジスト塗
布によシ表面を平坦にしたのち、凸部材料とレジストに
対するエツチング比が、同じになる条件の下でエツチン
グする平坦化方法、 ■ 凹凸を有する基板に負電位音訓え、凸部形状に応じ
た電界の不均一から生じるエツチング速度の差音利用し
た平坦化方法がある。
On the other hand, methods for selectively removing all convex portions include: ■ A flattening method in which the surface is flattened by applying a resist, and then etched under conditions where the etching ratio of the convex material and the resist is the same; There is a planarization method that utilizes the difference in etching speed caused by the non-uniformity of the electric field depending on the shape of the convex portion.

しかし、■の平坦化方法は、レジスト材料とばならず、
材ネ:1が極端に制約され、かつ、平坦化処理に化較的
長時間を要する。また、■の平坦化方法も、−往薄膜を
形成した後凸部を踪去するので平坦化処理に長時間を必
要とする。
However, the planarization method (■) does not require resist material;
Material: 1 is extremely limited, and the flattening process takes a relatively long time. Furthermore, the planarization method (2) also requires a long time for the planarization process because the convex portions disappear after the thin film is formed.

さらに、上記の各平坦化方法の共通の欠点として、材料
による制限が多い。また、四部の選択的埋め込みと、凸
部の選択的除去が同時にでき々いために、処理工程数が
多くなり、処理時間も長くなる。
Furthermore, a common drawback of each of the above-mentioned planarization methods is that there are many limitations depending on the material. Furthermore, since selective embedding of the four parts and selective removal of the convex parts cannot be performed simultaneously, the number of processing steps increases and the processing time becomes longer.

本発明をま、′#膜デバイスにおける以上の事情に―み
、薄膜デバイスの平坦化における処理時間が短縮でき、
月料による制約を除去できる薄膜デバイスの平坦化方法
および装置′f:提供することを目的とする。
Based on the above-mentioned circumstances regarding film devices, the present invention can shorten the processing time for flattening thin film devices.
It is an object of the present invention to provide a method and apparatus for flattening a thin film device that can eliminate constraints caused by monthly charges.

上記目的を達成するため本発明の薄膜デバイスの平坦化
方法は、平坦化用堆積物質粒子を、薄膜デバイス表面に
棋直に近い角度で入射せしめると共に、イオンビームを
、直接薄膜デバイス表面に90°+に近い入射角で入射
せしめることKよりMUデバイスの四部への平坦化用堆
積物質粒子の選択的堆積と凸部の選択的エツチングを行
うことを特徴とするものである。
In order to achieve the above object, the method for planarizing a thin film device of the present invention makes the deposited material particles for planarization incident on the surface of the thin film device at an angle close to that of a chess player, and also directs the ion beam directly onto the surface of the thin film device at a 90° angle. This method is characterized by selectively depositing the planarizing material particles on the four parts of the MU device and selectively etching the convex parts by making the light incident at an incident angle close to +.

捷た、本発明の薄膜デバイスの平坦化装置は、Muデバ
イス上面へ画直に近い角度で平坦化用堆積物質粒子を放
射する平坦化用堆積物質粒子放射手段と、上記凄腕デバ
イス上面〜90°に近い入射角でイオンビームを照射す
るイオンビーム放射手段とからなること全特徴とするも
のである。
The thin film device planarization apparatus of the present invention includes a planarization deposited material particle emitting means for emitting deposited material particles for planarization onto the upper surface of the Mu device at an angle close to normal to the image; and an ion beam radiating means for irradiating the ion beam at an incident angle close to .

以下、本発明の一実施例について発明の内容を詳細に説
明する。
EMBODIMENT OF THE INVENTION Hereinafter, the contents of the invention will be explained in detail regarding one embodiment of the present invention.

第1図は本発明の薄りデバイスの平坦化方法を実施する
際に直接使用する装置の構成を示す図でp>F)、1け
ArガスイオンをIKVで加速するイオンビーム放射源
、2は平坦化する薄膜デバイス、3け平坦化用堆積物質
としてSin、で構成されたターゲットである。
FIG. 1 is a diagram showing the configuration of an apparatus directly used when carrying out the method for flattening a thinned device of the present invention. is a target composed of a thin film device to be planarized and a three-dimensional planarizing deposition material of Sin.

ターゲラ)3ij−tの上面を、イオンビーム放射源1
の中心軸0−0に対し傾斜させて配置し、ターゲツト面
からスパッタされた平坦化用堆積物質粒子(以下、この
粒子を「スパッタ粒子」という。)が、薄膜デバイス表
面に垂直に近い角度(法線Nに対し0〜2(f)で放射
されるように酎装置すると共に、イオンビーム放射源1
からイオンビーム(以下、「エツチングビーム」という
。)が電流密度約0.6 m1Adで入射角が水平に近
い角度(法線Nに対し90〜6ぽ)に放射され、平坦化
処理中、薄膜デバイス2を1垂直中心軸M −Mの周り
に回転し、表面全体が均一に平坦化されるようにする。
The upper surface of the ion beam radiation source 1
The flattening deposition material particles sputtered from the target surface (hereinafter referred to as "sputtered particles") are arranged at an angle close to perpendicular to the thin film device surface ( The ion beam radiation source 1 is installed so that the ion beam is radiated at an angle of 0 to 2 (f) with respect to the normal N.
An ion beam (hereinafter referred to as ``etching beam'') is emitted from the substrate at a current density of approximately 0.6 m1Ad at an angle of incidence close to the horizontal (90 to 6 degrees with respect to the normal N), and during the planarization process, the thin film is The device 2 is rotated about one vertical central axis M-M so that the entire surface is uniformly flattened.

との方法で得らnた薄膜デバイス(ただし、At薄膜)
の処理前および処理後の断面構造を示すと第2図の(a
)および(b)のごとくなる。(a)は処理前、Φ)は
処理後の要部断面図である。ただし、イオンビームの入
射角θ。−8r、照射時間は2時間のものである。(a
)および(b)から、約1.5μmの段差が0.2μm
まで平坦化された仁とを示している。
Thin film device obtained by the method (However, At thin film)
The cross-sectional structure before and after treatment is shown in Figure 2 (a).
) and (b). (a) is a cross-sectional view of the main part before treatment, and Φ) is a cross-sectional view of the main part after treatment. However, the incident angle θ of the ion beam. -8r, irradiation time is 2 hours. (a
) and (b), the step of about 1.5 μm is 0.2 μm.
It shows a flattened surface.

本実施例では凹凸部としてAtを、また堆積物Tとして
SiO* k用いた例を示したが、スパッタが可能な材
料であれば平坦化を行いうるのは明らかである。また、
平坦化時間tよ、大電流金とれるイオン源を用いること
にょ勺さらに短縮することができる。
In this embodiment, an example is shown in which At is used as the uneven portion and SiO*k is used as the deposit T, but it is clear that any material that can be sputtered can be used for planarization. Also,
The planarization time t can be further shortened by using an ion source capable of producing a large current.

いま、薄膜デバイス20表面に入射するスパッタ粒子と
エツチングビームとの関係を示すと第3図のごとくなる
。平坦化前の薄膜デバイス20表面は、通常凸部4と四
部5が交互に、一定同期で繰り返される形状を有してお
シ、凸部4は平坦な上面4と下部に達する側面6に:有
している。
FIG. 3 shows the relationship between the sputtered particles incident on the surface of the thin film device 20 and the etching beam. The surface of the thin film device 20 before planarization usually has a shape in which convex portions 4 and four portions 5 are repeated alternately and with constant synchronization, and the convex portions 4 have a flat top surface 4 and a side surface 6 reaching the bottom: have.

通常、イオンビーム源から放射されるイオンビームの指
向性は非常に高いので、ターゲット3からスパッタされ
薄膜デバイス表面に入射するスパッタ粒子の指向性も高
い。
Since the ion beam emitted from the ion beam source usually has very high directivity, the directivity of the sputtered particles sputtered from the target 3 and incident on the surface of the thin film device is also high.

したがって、′#膜デバイス2の表T111にエツチン
グビームが入射角θe1スパッタ粒子が入射角Isで到
着すると、 ■ エツチングビームの入射角θ8が大きな場合は凸部
4の高さに応じシャドウ部が生じ、エツチングさ扛ない
部分が生じ乙。
Therefore, when the etching beam arrives at the surface T111 of the film device 2 at an incident angle θe1 and sputtered particles at an incident angle Is, ■ If the etching beam incident angle θ8 is large, a shadow portion is generated depending on the height of the convex portion 4. However, some parts may not be etched.

■ また四部5にふ・いては、四部のエツチングが顕著
な場合、エツチングされた粒子が凸部の側面6に丙t(
着する。
■ Also, regarding the fourth part 5, if the etching of the fourth part is significant, the etched particles will be exposed to the side surface 6 of the convex part (
wear it.

■ 一方、薄膜デバイス表面へのスパッタ粒子の入射角
θSが大きいと、凸部4でtま■の場合と同じようにシ
ャドウ現象が生じ、四部5にスパッタ粒子が到遠せず、
平坦化1B物質が堆積しない部分が生ずる。これらの■
〜@の現象iv1エツチングビーム7、スパッタ粒子8
の入射角度および入射jlを調節することによってコン
トロールすることができる。
(2) On the other hand, when the incident angle θS of the sputtered particles on the surface of the thin film device is large, a shadow phenomenon occurs at the convex portion 4 as in the case (t), and the sputtered particles do not reach the four portions 5.
There are areas where the planarized 1B material is not deposited. These■
~ @ phenomenon iv1 Etching beam 7, sputtered particles 8
can be controlled by adjusting the angle of incidence and the incidence jl.

すなわち、助膜デバイス2の平坦化を進行ざぜるにrt
:r、 、スパッタ粒子の入射角θs’を小ざく、エツ
チングビームの入射角θ8紫大きくすればよく、このよ
うにして、四部へのターゲット粒子の選択的堆積と、凸
部の選択的エツチングを同時に進行σせることかできる
That is, while the planarization of the auxiliary film device 2 is progressing, the RT
:r, , the incident angle θs' of the sputtered particles should be made small, and the incident angle θ8 of the etching beam should be made large. In this way, the selective deposition of the target particles on the four parts and the selective etching of the convex parts can be achieved. It is possible to proceed at the same time.

−また jlLガ■化処理前のれダ膜デバイス表面の凸
部4と四部5の高低差boが、平坦化処理Ht待時間う
ことKよ6、bになったとすると、その改善速度Vけ、 となる。したがって、改善速度が零となることは、平坦
化が進行しないことを意味する。
-Also, if the height difference bo between the convex part 4 and the fourth part 5 on the surface of the layer device before the flattening process becomes 6,b compared to the waiting time for the flattening process Ht, then the improvement speed Vk , becomes. Therefore, when the improvement speed becomes zero, it means that flattening does not proceed.

本発明の薄膜デバイスの平坦化方法は、薄膜デバイス表
面の凹、凸部のシャドウ現象を利用するため、凹凸部の
周期および高低差にょシ、図に示すように、−の凸部の
頂部と隣接凸部の底部とのなす角であシ、凸部の高低差
bo、H接する凸部に至る長さをcとすると θT= jan ’(b7C) とな〕、θTが零に近づくと、孤立的な凸状表面を有す
る薄膜デバイスであることを表わす。一方、θTが大き
いと凸部のシャドウ効果が顕著となり、改善速度が大き
く、θTが小さいと改善速度は小さくなる。
The method for flattening a thin film device of the present invention utilizes the shadow phenomenon of the concave and convex portions on the surface of the thin film device. If the angle formed by the bottom of the adjacent convex part is A, the height difference between the convex parts is bo, and the length to the convex part in contact with H is c, then θT=jan'(b7C)], and when θT approaches zero, It represents a thin film device with an isolated convex surface. On the other hand, when θT is large, the shadow effect of the convex portion becomes noticeable and the speed of improvement is high, and when θT is small, the speed of improvement is slow.

第1図の装#構成で薄膜デバイスを平坦化したときの、
凸部の形状角θTとデバイス表面へのエツチングビーム
の入射角θeとの相関関係′f:第4図に示す。
When a thin film device is planarized with the device configuration shown in Figure 1,
The correlation 'f between the shape angle θT of the convex portion and the incident angle θe of the etching beam on the device surface is shown in FIG.

第4図は横軸に薄膜デバイス上面へのエツチングビーム
の入射角θe’k、縦軸に凸部の形状角θτを表わす。
In FIG. 4, the horizontal axis represents the incident angle θe'k of the etching beam on the upper surface of the thin film device, and the vertical axis represents the shape angle θτ of the convex portion.

第4図において、特性曲線atj平坦化さ扛る速度が零
となる点を示す。この曲線aから形状角θTが極めて小
さい場合でも、エツチングビームの入射角度θe8/以
上にすることにより平坦化奮進めうろことが判る。
FIG. 4 shows a point where the flattening speed of the characteristic curve atj becomes zero. From this curve a, it can be seen that even if the shape angle θT is extremely small, flattening can be achieved by increasing the incident angle of the etching beam to θe8/ or more.

第4図に示す、特性面NJas be cs dおよび
eの改善速度を示せば、下hIシの表−1のごとくなる
The improvement speed of the characteristic surfaces NJas be cs d and e shown in FIG. 4 is shown in Table 1 below.

表 −1 表−1から、形状角θTの大きいもの#丘ど改善速度が
速いととを示している。
Table 1 From Table 1, it is shown that the shape angle θT is large and the hill improvement speed is fast.

次に、本発明の薄膜デバイスの平坦化処理装置の他の実
施例を第5図および第6図に示す。
Next, other embodiments of the thin film device planarization processing apparatus of the present invention are shown in FIGS. 5 and 6.

第5図の装置は、2重イオンビーム放射源構成の装置で
あシ、平坦化用堆積物質で構成したノーゲット3¥r照
射するスパッタ用イオンビーム放射源10と、#膜デバ
イス20表面にエツチングビームを放射するエツチング
用イオンビーム放射源11とを有し、薄膜デバイス2の
上面に対するエツチングビーム7の入射角は#lは垂直
に(たとえば15’)、スパッタビーム8の入射角は水
平に近い角度(7F:)となるように、ターゲツト30
角度およびイオンビーム放射源11の向きを調整する。
The apparatus shown in FIG. 5 has a dual ion beam radiation source configuration, including an ion beam radiation source 10 for sputtering that irradiates a no-get 3r made of a deposited material for planarization, and an ion beam radiation source 10 for sputtering that irradiates the surface of a # film device 20. The etching beam 7 has an etching ion beam radiation source 11 that emits a beam, and the incident angle of the etching beam 7 with respect to the upper surface of the thin film device 2 is vertical (for example, 15'), and the incident angle of the sputtering beam 8 is close to horizontal. Target 30 so that the angle (7F:)
Adjust the angle and orientation of the ion beam radiation source 11.

また、第6図の装置は、1個のエツチング用イオンビー
ム放射源11と、平坦化用堆積物質9を抵抗加熱して蒸
発する装置12とからなっておシ、装置全体は真空排気
したハウジング(図示せず)内で、エツチングする。
The apparatus shown in FIG. 6 consists of one ion beam radiation source 11 for etching and a device 12 for resistively heating and evaporating the deposited material 9 for planarization, and the entire apparatus is housed in an evacuated housing. (not shown).

薄膜デバイス2上面に対するエツチングビーム7および
堆積粒子86の照射角度は、上述した第1図、第5図の
場合と全く同じである。
The irradiation angles of the etching beam 7 and the deposited particles 86 with respect to the upper surface of the thin film device 2 are exactly the same as in the cases of FIGS. 1 and 5 described above.

以上説明したように、本発明によれば薄膜デバイスに照
射するイオンビーム、堆積粒子を制御することによシ薄
膜デバイス上面への四部の選択的埋め込み、および凸部
に対する選択的エツチングを同時に行えるので、処理時
間の短縮を計nる。また、物理的スパッタ現象等を利用
するために材料物質に制限がなく、凹凸を有するあらゆ
る薄膜デバイスの平坦化に利用てきる。
As explained above, according to the present invention, by controlling the ion beam irradiated onto the thin film device and the deposited particles, selective embedding of the four parts on the top surface of the thin film device and selective etching of the convex parts can be simultaneously performed. , to reduce processing time. Further, since it utilizes a physical sputtering phenomenon, there is no restriction on the material, and it can be used to planarize any thin film device having irregularities.

それゆえ、薄膜ヘッド等薄膜デバイスの製作プロセスに
要する時間全短縮でき、かつ製造歩留ルを改善するこ七
ができる。
Therefore, the total time required for the manufacturing process of thin film devices such as thin film heads can be reduced, and the manufacturing yield can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の薄膜デバイスの平坦化装置の一実施例
の原理的構成図、第2図は第1図の装置、で表面を平坦
化した薄膜デバイスの断面を示し、0)は平坦化処理前
の薄膜デバイスの部分断面図、伽)は平坦化処理後の部
分断面図、第3図は薄膜デバイス上面に放射するエツチ
ングビームとスパッタ粒子の入射角の関係を示す要部鉱
大図%lR4図は薄膜デバイス面へのエツチングビーム
の入射角#eと形状角θ丁との関係を示す特性図、第5
図および第6図はいずれ4本発明の薄膜デバイス平坦化
装置の他の実施例の構成図會示す。 図 面 中、 1.10.1lijイオンビーム放射源、2はNHデバ
イス、 aFi平坦化用堆積物質ターゲット、 12は平坦化用堆積物質蒸発装置である。 特許出願人 日本電信電話公社 代 理 人 弁理士光石士部 (他1名)
FIG. 1 is a basic configuration diagram of an embodiment of the flattening device for a thin film device of the present invention, and FIG. 2 is a cross section of a thin film device whose surface has been flattened by the device shown in FIG. Figure 3 is a partial cross-sectional view of the thin film device before planarization treatment, Figure 3 is a partial cross-sectional view of the thin film device before planarization treatment, and Figure 3 is a schematic diagram of the main part showing the relationship between the etching beam radiated onto the top surface of the thin film device and the incident angle of sputtered particles. Figure %lR4 is a characteristic diagram showing the relationship between the incident angle #e of the etching beam on the thin film device surface and the shape angle θ.
6 and 6 each show a configuration diagram of another embodiment of the thin film device planarization apparatus of the present invention. In the drawing, 1.10.1lij ion beam radiation source, 2 an NH device, an aFi planarization deposit material target, and 12 a planarization deposit material evaporator. Patent applicant Nippon Telegraph and Telephone Public Corporation representative Patent attorney Shibu Mitsuishi (and one other person)

Claims (2)

【特許請求の範囲】[Claims] (1) 平坦化用堆積物質粒子を、薄膜デバイス表面に
垂直に近い角度で入射せしめると共に、イオンビームを
、直接薄膜デバイス表面に9d’に近い入射角で入射せ
しめることによシ薄膜デバイスの四部への平坦化用堆積
物質の選択的堆積と凸部の選択的エツチングを行うこと
f:特徴とする薄膜デバイスの平坦化方法。
(1) By making the deposited material particles for planarization incident on the thin film device surface at an angle close to perpendicular to the thin film device surface, and by making the ion beam directly incident on the thin film device surface at an incident angle close to 9d', the four parts of the thin film device are selectively depositing a planarizing deposition material on the surface and selectively etching the convex portions f: Features a method for planarizing a thin film device.
(2) 薄膜デバイス上面へ垂直に近い角度で平坦化用
堆積物質粒子を放射する平坦化用堆積物質粒子放射手段
と、上記薄膜デバイス上面へ90°に近い入射角でイオ
ンビームを照射するイオンビーム放射手段とからなるこ
とを特徴とする薄膜デバイスの平坦化装置。
(2) A planarizing deposit material particle emitting means for emitting deposited material particles for planarization at an angle close to perpendicular to the top surface of the thin film device, and an ion beam for irradiating the top surface of the thin film device with an ion beam at an incident angle close to 90°. A flattening device for a thin film device, comprising a radiation means.
JP23149783A 1983-12-09 1983-12-09 Method and apparatus for flattening thin film device Granted JPS60124825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23149783A JPS60124825A (en) 1983-12-09 1983-12-09 Method and apparatus for flattening thin film device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23149783A JPS60124825A (en) 1983-12-09 1983-12-09 Method and apparatus for flattening thin film device

Publications (2)

Publication Number Publication Date
JPS60124825A true JPS60124825A (en) 1985-07-03
JPH0562459B2 JPH0562459B2 (en) 1993-09-08

Family

ID=16924413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23149783A Granted JPS60124825A (en) 1983-12-09 1983-12-09 Method and apparatus for flattening thin film device

Country Status (1)

Country Link
JP (1) JPS60124825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0435801A2 (en) * 1989-12-13 1991-07-03 International Business Machines Corporation Deposition method for high aspect ratio features

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882536A (en) * 1981-11-10 1983-05-18 Fujitsu Ltd Preparation of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882536A (en) * 1981-11-10 1983-05-18 Fujitsu Ltd Preparation of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0435801A2 (en) * 1989-12-13 1991-07-03 International Business Machines Corporation Deposition method for high aspect ratio features

Also Published As

Publication number Publication date
JPH0562459B2 (en) 1993-09-08

Similar Documents

Publication Publication Date Title
US5171412A (en) Material deposition method for integrated circuit manufacturing
US5330628A (en) Collimated deposition apparatus and method
EP0202572B1 (en) Method for forming a planarized aluminium thin film
JPS63152146A (en) Method and apparatus for applying and levelling layer forming material
JP2003160855A (en) Thin-film forming apparatus
JPH05110206A (en) Method and apparatus for producing light emitting semiconductor element
US8419911B2 (en) Deposition method by physical vapor deposition and target for deposition processing by physical vapor deposition
JPS60124825A (en) Method and apparatus for flattening thin film device
JP2971586B2 (en) Thin film forming equipment
JPS59170270A (en) Apparatus for forming film
US6712943B2 (en) Methods for angle limiting deposition mask
JPH01270321A (en) Sputtering device
JPH0151814B2 (en)
JPH05166235A (en) Apparatus for producing magneto-optical recording medium
JP3979745B2 (en) Film forming apparatus and thin film forming method
JPS5916973A (en) Formation of multilayered optical film
JPH05166236A (en) Apparatus for producing magneto-optical recording medium
JPH07113172A (en) Collimator, device and method for forming thin film, and method for forming wiring of semi-conductor device
JPH0794412A (en) Thin film forming device
JPH09241842A (en) Sputtering method
JPS61222010A (en) Flattening method
JP2790654B2 (en) Method for forming titanium dioxide film on plastic lens substrate
JPS6229133A (en) Sputtering process and device thereof
JPH0559985B2 (en)
JPH02305438A (en) Vacuum deposition device