JPH0562459B2 - - Google Patents

Info

Publication number
JPH0562459B2
JPH0562459B2 JP58231497A JP23149783A JPH0562459B2 JP H0562459 B2 JPH0562459 B2 JP H0562459B2 JP 58231497 A JP58231497 A JP 58231497A JP 23149783 A JP23149783 A JP 23149783A JP H0562459 B2 JPH0562459 B2 JP H0562459B2
Authority
JP
Japan
Prior art keywords
thin film
film device
planarization
etching
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58231497A
Other languages
Japanese (ja)
Other versions
JPS60124825A (en
Inventor
Yasuhiro Nagai
Keiichi Yanagisawa
Tomoyuki Toshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP23149783A priority Critical patent/JPS60124825A/en
Publication of JPS60124825A publication Critical patent/JPS60124825A/en
Publication of JPH0562459B2 publication Critical patent/JPH0562459B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は薄膜コンデンサ、薄膜抵抗体などの薄
膜デバイスの平坦化方法に関する。 薄膜デバイスは真空蒸着法、スパツタリング法
などで作製され、物質が必ずしも全面に均一に堆
積されず、薄膜の断面積がデバイス全面に均一で
ないため、特性が局部的に異なる欠点がある。 薄膜デバイスにおけるこのような欠点を除くた
め、従来から薄膜デバイスの平坦化が行われてい
る。これらの従来方法は、凹部を選択的に埋める
か凸部を選択的に削る方法が行われている。 凹部を選択的に埋める方法として、たとえば 堆積する薄膜の成膜条件を調節し、堆積が凹
部へ回り込むようにして平坦化する方法、 指向性の強い堆積粒子を用いると共に、リフ
トオフ法により凹部に選択的に粒子を堆積させ
る平坦化方法、 低融点ガラスの膜を薄膜の凹凸部分に堆積さ
せたのち、溶融したり、粘性の強い有機剤を凹
凸部上に塗布し、ガラスや有機剤の表面張力を
利用した平坦化方法が知られている。 上記の薄膜デバイス平坦化方法のうち、の方
法は部分的に膜の密度が低く膜質のコントロール
が容易でない。の方法はリフトオフ時に粒子の
堆積した部分と、レジスト膜でマスクされている
部分に段差ができこれが幅の狭い凹状溝を形載し
やすく、これを除去するには別の原理による平坦
化処理を施さなければならない。また、の方法
は表面張力を利用するため、液相の状態をもたな
ければならず、材料および工程上、その処理温度
に制限がある。 一方、凸部を選択的に削る方法として、 レジスト塗布により表面を平坦にしたのち、
凸部材料とレジストに対するエツチング比が、
同じになる条件の下でエツチングする平坦化方
法、 凹凸を有する基板に負電位を加え、凸部形状
に応じた電界の不均一から生じるエツチング速
度の差を利用した平坦化方法がある。 しかし、の平坦化方法は、レジスト材料と薄
膜材料とが同じエツチング速度をもたなければな
らず、材料が極端に制約され、かつ、平坦化処理
に比較的長時間を要する。また、の平坦化方法
も、一旦薄膜を形成した後凸部を除去するので平
坦化処理に長時間を必要とする。 さらに。上記の各平坦化方法の共通の欠点とし
て、材料による制限が多い。また、凹部の選択的
埋め込みと、凸部の選択的除去が同時にできない
ために、処理工程数が多くなり、処理時間も長く
なる。 本発明は、薄膜デバイスにおける以上の事情に
鑑み、薄膜デバイスの平坦化における処理時間が
短縮でき、材料による制約を除去できる薄膜デバ
イスの平坦化方法を提供することを目的とする。 上記目的を達成するため本発明の薄膜デバイス
の平坦化方法は、平坦化用堆積物質粒子を、薄膜
デバイス表面に垂直に近い角度で入射せしめると
共に、イオンビームを、直接薄膜デバイス表面に
90°に近い入射角で入射せしめることにより薄膜
デバイスの凹部への平坦化用堆積物質粒子の選択
的堆積と凸部の選択的エツチングを同時に行うこ
とを特徴とするものである。 以下、本発明の一実施例について発明の内容を
詳細に説明する。 第1図は本発明の薄膜デバイスの平坦化方法を
実施する際に直接使用する装置の構成を示す図で
あり、1はArガスイオンを1KVで加速するイオ
ンビーム放射源、2は平坦化する薄膜デバイス、
3は平坦化用堆積物質としてSiO2で構成された
ターゲツトである。 ターゲツト3はその上面を、イオンビーム放射
源1の中心軸O−Oに対し傾斜させて配置し、タ
ーゲツト面からスパツタされた平坦化用堆積物質
粒子(以下、この粒子を「スパツタ粒子」とい
う。)が、薄膜デバイス2上面に垂直に近い角度
(法線Nに対し0〜20°)で放射されるように配置
すると共に、イオンビーム放射源1からイオンビ
ーム(以下、「エツチングビーム」という。)が電
流密度約0.6mA/cm2で入射角が水平に近い角度
(法線Nに対し90〜60°)に放射され、平坦化処理
中、薄膜デバイス2は垂直中心軸M−Mの周りに
回転し、表面全体が均一に平坦化されるようにす
る。 この方法で得られた薄膜デバイス(ただし、
Al薄膜)の処理前および処理後の断面構造を示
すと第2図の栄aおよびbのごとくなる。aは処
理前、bは処理後の要部断面図である。ただし、
イオンビームの入射角θe=85°、照射時間は2時
間のものである。aおよびbから、約1.5μmの段
差が0.2μmまで平坦化されたことを示している。 本実施例では凹凸部としてAlを、また堆積物
質としてSiO2を用いた例を示したが、スパツタ
が可能な材料であれば平坦化を行いうるのは明ら
かである。また、平坦化時間は、大電流をとれる
イオン源を用いることによりさらに短縮すること
ができる。 いま、薄膜デバイス2の表面に入射するスパツ
タ粒子とエツチングビームとの関係を示すと第3
図のごとくなる。平坦化前の薄膜デバイス2の表
面は、通常凸部4と凹部5が交互に、一定周期で
繰り返される形状を有しており、凸部4は平坦な
上面4と下部に達する側面6を有している。 通常、イオンビーム源から放射されるイオンビ
ームの指向性は非常に高いので、ターゲツト3か
らスパツタされ薄膜デバイス表面に入射するスパ
ツタ粒子の指向性も高い。 したがつて、薄膜デバイス2の表面にエツチン
グビームが入射角θe、スパツタ粒子が入射角θs
到達すると、 エツチングビームの入射角θeが大きな場合は
凸部4の高さに応じシヤドウ部が生じ、エツチ
ングされない部分が生じる。 また凹部5においては、凹部のエツチングが
顕著な場合、エツチングされた粒子が凸部の側
面6に再付着する。 一方、薄膜デバイス表面へのスパツタ粒子の
入射角θsが大きいと、凸部4ではの場合と同
じようにシヤドウ現象が生じ、凹部5にスパツ
タ粒子が到達せず、平坦化用物質が堆積しない
部分が生ずる。これらの〜の現象は、エツ
チングビーム7、スパツタ粒子8の入射角度お
よび入射量を調節することによつてコントロー
ルすることができる。 すなわち、薄膜デバイス2の平坦化を進行させ
るには、スパツタ粒子の入射角θsを小さく、エツ
チングビームの入射角θeを大きくすればよく、こ
のようにして、凹部へのターゲツト粒子の選択的
堆積と、凸部の選択的エツチングを同時に進行さ
せることができる。 また、平坦化処理前の薄膜デバイス表面の凸部
4と凹部5の高低差b0が、平坦化処理をt時間行
うことにより、bになつたとすると、その改善速
度Vは、 V=b0−b/t となる。したがつて、改善速度が零となること
は、平坦化が進行しないことを意味する。 本発明の薄膜デバイスの平坦化方法は、薄膜デ
バイス表面の凹、凸部のシヤドウ現象を利用する
ため、凹凸部の周期および高低差により、改善速
度が異なる。 そこで、改善速度を決定する形状角θTについて
検討する。形状角θTは第3図に示すように、一の
凸部の頂部と隣接凸部の底部とのなす角であり、
凸部の高低差b0、隣接する凸部に至る長さをcと
すると θT=tan-1(b0/c) となり、θTが零に近づくと、孤立的な凸状表面を
有する薄膜デバイスであることを表わす。一方、
θTが大きい凸部のシヤドウ効果が顕著となり、改
善速度が大きく、θTが小さいと改善速度は小さく
なる。 第1図の装置構成で薄膜デバイスを平坦化した
ときの、凸部の形状角θTとデバイス表面へのエツ
チングビームの入射角θeとの相関関係を第4図に
示す。 第4図は横軸に薄膜デバイス上面へのエツチン
グビームの入射角θeを、縦軸に凸部の形状角θT
表わす。 第4図において、特性曲線aは平坦化される速
度が零となる点を示す。この曲線aから形状角θT
が極めて小さい場合でも、エツチングビームの入
射角θe84°以上にすることにより平坦化を進めう
ることが判る。 第4図に示す、特性曲線a,b,c,dおよび
eの改善速度を示せば、下記の表−1のごとくな
る。
The present invention relates to a method for planarizing thin film devices such as thin film capacitors and thin film resistors. Thin film devices are manufactured by vacuum evaporation, sputtering, etc., and the material is not necessarily deposited uniformly over the entire surface, and the cross-sectional area of the thin film is not uniform over the entire device, resulting in locally varying characteristics. In order to eliminate such drawbacks in thin film devices, planarization of thin film devices has been conventionally performed. These conventional methods involve selectively filling recesses or selectively cutting convex portions. Methods for selectively filling the recesses include, for example, adjusting the deposition conditions of the thin film to be deposited so that the deposit wraps around the recesses and flattening them, and using highly directional deposited particles and selectively filling the recesses using a lift-off method. A flattening method in which particles are deposited automatically. After a film of low-melting glass is deposited on the uneven parts of the thin film, a melted or highly viscous organic agent is applied onto the uneven parts, and the surface tension of the glass and organic agent is A flattening method using . Among the above-mentioned thin film device planarization methods, the method (2) partially results in low film density, making it difficult to control the film quality. In this method, during lift-off, a step is created between the part where the particles are deposited and the part masked by the resist film, which tends to create a narrow concave groove, and to remove this, a flattening process based on a different principle is required. must be administered. Furthermore, since the method uses surface tension, it must be in a liquid phase, and there are limits to the processing temperature due to the materials and process. On the other hand, as a method of selectively scraping the convex parts, after making the surface flat by applying resist,
The etching ratio for the convex material and resist is
There is a planarization method in which etching is performed under the same conditions, and a planarization method in which a negative potential is applied to a substrate with unevenness, and the difference in etching rate resulting from the non-uniformity of the electric field depending on the shape of the protrusions is utilized. However, in this planarization method, the resist material and the thin film material must have the same etching rate, which imposes extreme material constraints and requires a relatively long time for the planarization process. Furthermore, the planarization method requires a long time for the planarization process since the convex portions are removed after the thin film is formed. moreover. A common drawback of each of the above-mentioned planarization methods is that they are often limited by the material. Furthermore, since selective filling of recesses and selective removal of convex portions cannot be performed at the same time, the number of processing steps increases and the processing time becomes longer. In view of the above-mentioned circumstances regarding thin film devices, it is an object of the present invention to provide a method for planarizing thin film devices that can shorten the processing time for planarizing thin film devices and eliminate restrictions due to materials. In order to achieve the above object, the method for planarizing a thin film device of the present invention makes the deposited material particles for planarization incident at an angle close to perpendicular to the surface of the thin film device, and also directs the ion beam directly onto the surface of the thin film device.
The present invention is characterized in that the planarization deposit material particles are selectively deposited on the concave portions of the thin film device and selectively etched on the convex portions at the same time by making the particles incident at an incident angle close to 90°. EMBODIMENT OF THE INVENTION Hereinafter, the contents of the invention will be explained in detail regarding one embodiment of the present invention. FIG. 1 is a diagram showing the configuration of an apparatus directly used when carrying out the method for planarizing thin film devices of the present invention, in which 1 is an ion beam radiation source that accelerates Ar gas ions at 1 KV, and 2 is a planarizing device. thin film device,
3 is a target composed of SiO 2 as a depositing material for planarization. The target 3 is arranged with its upper surface inclined with respect to the central axis O-O of the ion beam radiation source 1, and particles of deposited material for flattening are sputtered from the target surface (hereinafter, these particles are referred to as "sputter particles"). ) is arranged so that it is emitted at an angle close to perpendicular to the upper surface of the thin film device 2 (0 to 20 degrees with respect to the normal N), and an ion beam (hereinafter referred to as "etching beam") is emitted from the ion beam radiation source 1. ) is radiated at a current density of about 0.6 mA/cm 2 with an incident angle close to horizontal (90 to 60° with respect to the normal N), and during the planarization process, the thin film device 2 is radiated around the vertical central axis M-M. Rotate until the entire surface is evenly flattened. Thin film devices obtained by this method (however,
The cross-sectional structure of the Al thin film before and after treatment is shown in Figure 2, Sakae a and b. A is a sectional view of a main part before processing, and b is a sectional view of a main part after processing. however,
The incident angle θ e of the ion beam was 85°, and the irradiation time was 2 hours. From a and b, it is shown that the level difference of approximately 1.5 μm was flattened to 0.2 μm. In this embodiment, an example was shown in which Al was used as the uneven portion and SiO 2 was used as the deposited material, but it is clear that any material that can be sputtered can be used for planarization. Moreover, the planarization time can be further shortened by using an ion source that can take a large current. Now, the relationship between the sputter particles incident on the surface of the thin film device 2 and the etching beam is shown in the third example.
It will look like the figure. The surface of the thin film device 2 before planarization usually has a shape in which convex portions 4 and concave portions 5 are alternately repeated at a constant period, and the convex portions 4 have a flat top surface 4 and side surfaces 6 that reach the bottom. are doing. Since the ion beam emitted from the ion beam source usually has very high directivity, the sputtered particles sputtered from the target 3 and incident on the surface of the thin film device also have high directivity. Therefore, when the etching beam reaches the surface of the thin film device 2 at an incident angle θ e and the sputter particles arrive at an incident angle θ s , if the etching beam incident angle θ e is large, a shadow portion will be formed depending on the height of the convex portion 4 . This results in some areas not being etched. Further, in the concave portion 5, if the etching of the concave portion is significant, the etched particles re-adhere to the side surface 6 of the convex portion. On the other hand, if the incident angle θ s of the sputtered particles on the surface of the thin film device is large, a shadow phenomenon occurs in the same way as in the convex portion 4, and the sputtered particles do not reach the concave portion 5, and the flattening substance is not deposited. A part arises. These phenomena can be controlled by adjusting the incident angle and amount of the etching beam 7 and the sputter particles 8. That is, in order to flatten the thin film device 2, it is sufficient to reduce the incident angle θ s of the sputtered particles and increase the incident angle θ e of the etching beam. Deposition and selective etching of the protrusions can proceed simultaneously. Furthermore, if the height difference b 0 between the convex portion 4 and the concave portion 5 on the surface of the thin film device before the planarization process becomes b by performing the planarization process for t hours, the improvement speed V is as follows: V=b 0 -b/t. Therefore, when the improvement speed becomes zero, it means that flattening does not proceed. Since the method for flattening a thin film device of the present invention utilizes the shadow phenomenon of the concave and convex portions on the surface of the thin film device, the improvement speed differs depending on the period and height difference of the concave and convex portions. Therefore, we will consider the shape angle θ T that determines the speed of improvement. As shown in Figure 3, the shape angle θ T is the angle formed by the top of one convex part and the bottom of the adjacent convex part,
If the height difference between the convex parts is b 0 and the length to the adjacent convex part is c, then θ T = tan -1 (b 0 /c), and when θ T approaches zero, the surface has an isolated convex surface. Indicates that it is a thin film device. on the other hand,
The shadow effect of the convex portion where θ T is large becomes significant and the improvement speed is high, and when θ T is small, the improvement speed becomes slow. FIG. 4 shows the correlation between the shape angle θ T of the convex portion and the incident angle θ e of the etching beam on the device surface when the thin film device is planarized using the apparatus configuration shown in FIG. In FIG. 4, the horizontal axis represents the incident angle θ e of the etching beam on the upper surface of the thin film device, and the vertical axis represents the shape angle θ T of the convex portion. In FIG. 4, characteristic curve a indicates a point where the flattening speed becomes zero. From this curve a, the shape angle θ T
It can be seen that even when the angle of incidence of the etching beam is extremely small, flattening can be achieved by setting the incident angle θ e of the etching beam to 84° or more. The improvement speeds of the characteristic curves a, b, c, d and e shown in FIG. 4 are shown in Table 1 below.

【表】 表−1から、形状角θTの大きいものほど改善速
度が速いことを示している。 次に、本発明の薄膜デバイスの平坦化方法を実
施する際に使用する装置の他の構造例を示す。 第5図の装置は、2重イオンビーム放射源構成
の装置であり、平坦化用堆積物質で構成したター
ゲツト3を照射するスパツタ用イオンビーム放射
源10と、薄膜デバイス2の表面にエツチングビ
ームを放射するエツチング用イオンビーム放射源
11とを有し、薄膜デバイス2の上面に対するエ
ツチングビーム7の入射角はほぼ垂直に(たとえ
ば15°)、スパツタビーム8の入射角は水平に近い
角度(75°)となるように、ターゲツト3の角度
およびイオンビーム放射源11の向きを調整す
る。 また、第6図の装置は、1個のエツチング用イ
オンビーム放射源11と、平坦化堆積物質9を抵
抗加熱して蒸発する装置12とからなつており、
装置全体は真空排気したハウジング(図示せず)
内で、エツチングする。 薄膜デバイス2上面に対するエツチングビーム
7および堆積粒子8′の照射角度は、上述した第
1図、第5図の場合と全く同じである。 以上説明したように、本発明によれば薄膜デバ
イスに照射するイオンビーム、堆積粒子を制御す
ることにより薄膜デバイス上面への凹部の選択的
埋め込み、および凸部に対する選択的エツチング
を同時に行えるので、処理時間の短縮を計れる。
また、物理的スパツタ現象等を利用するために材
料物質に制限がなく、凹凸を有するあらゆる薄膜
デバイスの平坦化に利用できる。それゆえ、薄膜
ヘツド等薄膜デバイスの製作プロセスに要する時
間を短縮でき、かつ製造歩留りを改善することが
できる。
[Table] Table 1 shows that the larger the shape angle θ T , the faster the improvement speed. Next, another structural example of the apparatus used when carrying out the method for planarizing a thin film device of the present invention will be shown. The apparatus shown in FIG. 5 has a dual ion beam radiation source configuration, including an ion beam radiation source 10 for sputtering that irradiates a target 3 made of a deposited material for planarization, and an etching beam that irradiates the surface of a thin film device 2. The etching beam 7 has an etching ion beam radiation source 11 that emits an ion beam, and the incident angle of the etching beam 7 with respect to the upper surface of the thin film device 2 is almost vertical (for example, 15°), and the incident angle of the sputtering beam 8 is an almost horizontal angle (75°). The angle of the target 3 and the direction of the ion beam radiation source 11 are adjusted so that Further, the apparatus shown in FIG. 6 consists of one ion beam radiation source 11 for etching, and a device 12 for resistively heating and evaporating the planarized deposited material 9.
The entire device is housed in an evacuated housing (not shown)
Etching inside. The irradiation angles of the etching beam 7 and the deposited particles 8' with respect to the upper surface of the thin film device 2 are exactly the same as in the cases of FIGS. 1 and 5 described above. As explained above, according to the present invention, by controlling the ion beam irradiated onto the thin film device and the deposited particles, it is possible to simultaneously selectively embed recesses on the top surface of the thin film device and selectively etch the protrusions. You can measure time savings.
Further, since the physical sputtering phenomenon is utilized, there is no restriction on the material, and it can be used to flatten any thin film device having irregularities. Therefore, the time required for the manufacturing process of thin film devices such as thin film heads can be shortened and the manufacturing yield can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の薄膜デバイスの平坦化方法を
実施する際に使用する装置の原理的構成図、第2
図は第1図の装置で表面を平坦化した薄膜デバイ
スの断面を示し、aは平坦化処理前の薄膜デバイ
スの部分断面図、bは平坦化処理後の部分断面
図、第3図は薄膜デバイス上面に放射するエツチ
ングビームとスパツタ粒子の入射角の関係を示す
要部拡大図、第4図は薄膜デバイス面へのエツチ
ングビームの入射角θeと形状角θTとの関係を示す
特性図、第5図および第6図はいずれも本発明の
薄膜デバイスの平坦化方法を実施する際に使用す
る装置の他の構成図を示す。 図面中、1,10,11はイオンビーム放射
源、2は薄膜デバイス、3は平坦化用堆積物質タ
ーゲツト、12は平坦化用堆積物質蒸発装置であ
る。
FIG. 1 is a diagram showing the basic configuration of the apparatus used to implement the thin film device planarization method of the present invention, and FIG.
The figure shows a cross-section of a thin film device whose surface has been flattened using the apparatus shown in Figure 1, where a is a partial cross-sectional view of the thin film device before flattening treatment, b is a partial cross-sectional view of the thin film device after flattening treatment, and Figure 3 is a partial cross-sectional view of the thin film device before flattening treatment. An enlarged view of the main part showing the relationship between the etching beam emitted onto the top surface of the device and the incident angle of the sputter particles. Figure 4 is a characteristic diagram showing the relationship between the etching beam incident angle θ e and the shape angle θ T on the thin film device surface. , FIG. 5, and FIG. 6 all show other configuration diagrams of the apparatus used when carrying out the method for flattening a thin film device of the present invention. In the drawing, 1, 10, and 11 are ion beam radiation sources, 2 is a thin film device, 3 is a deposited material target for planarization, and 12 is a deposited material evaporator for planarization.

Claims (1)

【特許請求の範囲】[Claims] 1 平坦化用堆積物質粒子を、薄膜デバイス表面
に垂直に近い角度で入射せしめると共に、イオン
ビームを、直接薄膜デバイス表面に90°に近い入
射角で入射せしめることにより薄膜デバイスの凹
部への平坦化用堆積物質の選択的堆積と凸部の選
択的エツチングを同時に行うことを特徴とする薄
膜デバイスの平坦化方法。
1 Flattening the concave portion of the thin film device by making the deposited material particles for planarization incident on the thin film device surface at an angle close to perpendicular to the thin film device surface, and by making the ion beam directly incident on the thin film device surface at an incident angle close to 90°. 1. A method for planarizing a thin film device, characterized by selectively depositing a deposition material and selectively etching a convex portion at the same time.
JP23149783A 1983-12-09 1983-12-09 Method and apparatus for flattening thin film device Granted JPS60124825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23149783A JPS60124825A (en) 1983-12-09 1983-12-09 Method and apparatus for flattening thin film device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23149783A JPS60124825A (en) 1983-12-09 1983-12-09 Method and apparatus for flattening thin film device

Publications (2)

Publication Number Publication Date
JPS60124825A JPS60124825A (en) 1985-07-03
JPH0562459B2 true JPH0562459B2 (en) 1993-09-08

Family

ID=16924413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23149783A Granted JPS60124825A (en) 1983-12-09 1983-12-09 Method and apparatus for flattening thin film device

Country Status (1)

Country Link
JP (1) JPS60124825A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0435801A3 (en) * 1989-12-13 1992-11-19 International Business Machines Corporation Deposition method for high aspect ratio features

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882536A (en) * 1981-11-10 1983-05-18 Fujitsu Ltd Preparation of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882536A (en) * 1981-11-10 1983-05-18 Fujitsu Ltd Preparation of semiconductor device

Also Published As

Publication number Publication date
JPS60124825A (en) 1985-07-03

Similar Documents

Publication Publication Date Title
US5171412A (en) Material deposition method for integrated circuit manufacturing
US5330628A (en) Collimated deposition apparatus and method
DE3650612T2 (en) Process for the planarization of a thin Al layer
US20160230268A1 (en) Film deposition assisted by angular selective etch on a surface
JPH031378B2 (en)
EP0585445A1 (en) Sputtering apparatus with a magnet array having a geometry for a specified target erosion profile
JP2004107688A (en) Bias sputtering film deposition method and bias sputtering film deposition system
JPH0562459B2 (en)
JPS5956732A (en) Method of imparting step variation to positive slope on vac-uum deposited layer
WO2004042110A1 (en) Method of forming film on substrate
JPH055895B2 (en)
JPS59170270A (en) Apparatus for forming film
JP3639453B2 (en) Compound semiconductor thin film manufacturing apparatus and compound semiconductor thin film manufacturing method using the same
JP3979745B2 (en) Film forming apparatus and thin film forming method
JPH0151814B2 (en)
JPH07113172A (en) Collimator, device and method for forming thin film, and method for forming wiring of semi-conductor device
JP2810191B2 (en) Method for planarizing beryllium thin film
JPS5916973A (en) Formation of multilayered optical film
JPH05166235A (en) Apparatus for producing magneto-optical recording medium
JPS6320302B2 (en)
JPS6277477A (en) Thin film forming device
JPH01319673A (en) Laser beam sputtering method
JP2002146525A (en) Sputter deposition system
JPH0213483Y2 (en)
RU2083025C1 (en) Method for producing supporting layer of silicon-on-insulator semiconductor structure