JPS60124817A - Vapor-phase epitaxial growth method - Google Patents

Vapor-phase epitaxial growth method

Info

Publication number
JPS60124817A
JPS60124817A JP23311883A JP23311883A JPS60124817A JP S60124817 A JPS60124817 A JP S60124817A JP 23311883 A JP23311883 A JP 23311883A JP 23311883 A JP23311883 A JP 23311883A JP S60124817 A JPS60124817 A JP S60124817A
Authority
JP
Japan
Prior art keywords
molybdenum
gas
substrate
single crystal
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23311883A
Other languages
Japanese (ja)
Other versions
JPH0554254B2 (en
Inventor
Takaaki Kimura
記村 隆章
Hideki Yamawaki
秀樹 山脇
Shigeo Kodama
児玉 茂夫
Yoshihiro Arimoto
由弘 有本
Masaru Ihara
賢 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23311883A priority Critical patent/JPS60124817A/en
Publication of JPS60124817A publication Critical patent/JPS60124817A/en
Publication of JPH0554254B2 publication Critical patent/JPH0554254B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To improve the crystallizability of a silicon grown layer as well as to accomplish the uniform flatness and increase in mobility of electron on the surface thereof in an excellent reproducibility by a method wherein molybdenum is adhered to the surface of a single crystal substrate of magnesia spinnel or sapphire. CONSTITUTION:The magnesia spinnel single crystal substrate 23 whereon a cleaning process has been performed, is arranged on a carbon pedestal 22. The molybdenum located in a source boat 26 is heated up by a resistor 27, a molybdenum oxide is formed by introducing the mixed gas of O2 and N2 from a gas introducing hole 29a, and it is sent to the substrate 23 by gas and adhered there. The H2 gas to be introduced from gas introducing holes 29b and 29c is sent to the substrate 23 as a carrier, and a silicon epitaxial growing method is performed. Molybdenum is used by dissolving the molybdenum compound such as an oxide, a chloride or a nitrate, or a molybdenum alloy using the suitable inorganic or organic medium such as water, an acid, alcohol and the like.

Description

【発明の詳細な説明】 Cal 発明の技術分野 本発明はシリコン気相エピタキシャル成長方法にかかり
、%にマグネシア・スビネJし又はサファイア単結晶面
上へのシリコンのエピタキシャル成長を均−嘉こデボし
て行なわしめ、電気的特性を向上させるための被成長面
の表面処理に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a silicon vapor phase epitaxial growth method, in which the epitaxial growth of silicon on a magnesia-subine J or sapphire single crystal surface is carried out by uniform debossing. The present invention relates to surface treatment of a growth surface for improving electrical characteristics.

(b) 技術の背景 絶縁性基板上にトランジスタ等の半導体素子を直接形成
するならば下記の様な効果を得ることができる。
(b) Background of the Technology If semiconductor elements such as transistors are directly formed on an insulating substrate, the following effects can be obtained.

(イ)各素子相互間の電気的分離が容易をこかつ確実に
達成されて、動作の信頼度が向上する。
(a) Electrical isolation between each element is easily and reliably achieved, improving reliability of operation.

仲)素子相1間の干渉が少なく素子間隔を短縮して高缶
度化がpl能である。
Middle) There is less interference between the element phases 1, and the element spacing can be shortened to achieve high performance.

(ハ)基板との間の容量は存在せず配線寄生容量は無視
できる程度となるので、過渡的な電力が大幅に減少して
、動作速度1周波数%性が向上する。
(c) Since there is no capacitance with the substrate and the wiring parasitic capacitance is negligible, transient power is significantly reduced and the operating speed per frequency % is improved.

この構造を実机するためにシリコン単結晶層を絶縁性基
板上にエピタキシャル成長させることは、サファイア(
α−A、L20s)結晶の(l l 02J、(1はり
或いは(0001,)面を用いる5(JS (Sili
con on8apphirり構造がよ(知られており
、またサファイアと並んでマグイ、シア・スピネル(M
g1J−Aj、Os)結晶を基板とすることが行なわれ
ている。
In order to realize this structure, epitaxial growth of a silicon single crystal layer on an insulating substrate was achieved using sapphire (
5(JS (Sili
conon8apphiri structure (known), and along with sapphire, Magui, shea spinel (M
g1J-Aj, Os) crystal is used as a substrate.

才だ半導体果棟回路装置の粟棟度同上を目的としていわ
ゆる3次元構造が試みられている。3次元構造を夫現す
るためfこは例えはシリコン単結晶基板上lこ絶縁ノー
と°シリコン単結晶層とを交互に積層形成することが必
喪であって、シリコン単結晶層を単結晶基板に格子整合
して成長することが可能となるエピタキシャル成長絶縁
腺(EGI : hjpita−xially Gro
wn In5ulator )を前i己マグネシア・ス
ピネルによって設けることが試みられている。この場合
遥こおいてはシリコン単結晶層はマグネシア・スピネル
結晶上1こエピタキシャル成長される。
A so-called three-dimensional structure has been attempted with the aim of improving the reliability of semiconductor circuit devices. In order to realize a three-dimensional structure, it is necessary to alternately laminate insulating layers and silicon single crystal layers on a silicon single crystal substrate, for example. Epitaxially grown insulation (EGI), which enables growth in a lattice-matched manner to the substrate.
Attempts have previously been made to provide wn inlurators with magnesia spinel. In this case, a single silicon crystal layer is epitaxially grown on a magnesia spinel crystal.

(C1従来技術と問題点 シリコン早結晶とマグネシア・スピネル単MAとはとも
に立方晶糸には輌(るが、例えばバルク単結晶の格子定
数がシリコンは0.5431nmマグネシア・スピネル
は0.8083nmであるなど両者間の差が大きく、マ
グネシア・スピネル結晶上に成長昇 させたシリコン単結晶層lこは従来転位1粒昇等の欠陥
が多く含まれ℃おり、成幾面がなめらかでなく、またキ
ャリアの移動度がバルク結晶より低いなどその電気的特
性が劣っている。これらの欠陥はシリコン単結晶層の厚
さが薄いほど甚だしく、厚さを増すとともにキャリアの
移動贋などが向上する。
(C1 Prior art and problems) Silicon fast crystals and magnesia spinel single MA both have cubic crystal threads, but for example, the lattice constant of the bulk single crystal is 0.5431 nm for silicon and 0.8083 nm for magnesia spinel. There is a large difference between the two, such as the fact that silicon single crystal layers grown on magnesia spinel crystals conventionally contain many defects such as single dislocations, the growth plane is not smooth, and Its electrical properties are inferior, such as carrier mobility being lower than that of a bulk crystal.These defects become more severe as the silicon single crystal layer becomes thinner, and as the thickness increases, carrier mobility and other problems improve.

この様な条件における結晶成長のメカニズムの解明に従
来多くの努力が1ねられて、成長初期には3次元のミク
ロ沢晶が島状に形成されてこれを核として結晶が成長す
ること、また形成される核の密度はマグネシア・スピネ
ル等の結晶表面Iこおける反応lこ支配されかつ成長温
度lこ強く依存するが、核の密度が高いほど成長した結
晶の結晶性が良いなど、シリコン単結晶層の結晶の結晶
性及び電気的%性はその成長初期の状態に大きく左右さ
れること、更にマグ不シアースビ不ル等との界面に近い
ほど不安定界面の影智が大きく欠陥密度が大きいことな
どが知られている。
Many efforts have been made to elucidate the mechanism of crystal growth under such conditions, and it has been discovered that in the early stages of growth, three-dimensional microscopic crystals are formed in the form of islands, and crystals grow using these as nuclei. The density of the formed nuclei is dominated by the reaction on the surface of the crystal such as magnesia and spinel, and strongly depends on the growth temperature. The crystallinity and electrical properties of the crystal in the crystal layer are greatly influenced by the initial growth state, and furthermore, the closer the layer is to the interface with the magnetic material, the greater the influence of the unstable interface, and the greater the defect density. It is known that.

以上説明した如き状況から、マグネシア・スピネル又は
サファイア単結晶上に気相エピタキシャル成長方法によ
って成長されるシリコン単結晶層の欠陥を減少させてそ
の特性を向上するためlこは、例えば成長温度、成長速
度等の通常考えられる成長条件の最適化を進めるのみで
なく、成長の初期基 状態を改善するために成長期板となるマグネシア・スピ
ネル又はサファイアの表面状態に注目することが必要で
あると判断される。
In order to reduce the defects and improve the properties of the silicon single crystal layer grown on magnesia spinel or sapphire single crystal by the vapor phase epitaxial growth method, for example, the growth temperature, growth rate, etc. In addition to optimizing the growth conditions that are normally considered, it was judged necessary to pay attention to the surface condition of magnesia spinel or sapphire, which serves as the growth plate, in order to improve the initial growth condition. Ru.

fd+ 発明の目的 本発明はマグネシア・スピネル又はサファイア単結晶上
にシリコン率結晶を気相成長させるに際して、成長され
るシリコン単結晶層の結晶性及び電気的特性等を改善す
る効果を■する前記基板結晶の表面処理方法を提供する
ことを目的とする。
fd+ Object of the Invention The present invention provides a substrate that improves the crystallinity, electrical properties, etc. of the grown silicon single crystal layer when a silicon fraction crystal is grown in a vapor phase on a magnesia spinel or sapphire single crystal. The purpose of the present invention is to provide a method for surface treatment of crystals.

te+ 発明の構成 本発明の前記目的は、マグネシア・スピネル又はザファ
イア単結晶基体の表面lこモリブデンを含む物質を接触
させて該モリブデンを付着せしめ、しかる後に該単珀晶
基体の表面上1こシリコン単結晶を気相成長させること
により達成される。
te+ Structure of the Invention The object of the present invention is to contact the surface of a magnesia spinel or zaphire single crystal substrate with a substance containing molybdenum to deposit the molybdenum, and then deposit silicon on the surface of the single crystal substrate. This is achieved by growing a single crystal in a vapor phase.

この本籟明の%徴とするシリコン単結晶成長を行なう基
体結晶面へのモリブデンの付着は、該基板結晶に対して
従来実施されている表面のエツチング或いは脱脂、洗浄
等の清浄化処理後に行なう。
The adhesion of molybdenum to the crystal surface of the substrate on which silicon single crystal growth is performed, which is a characteristic of this method, is carried out after the cleaning treatment such as etching, degreasing, and cleaning of the surface that is conventionally performed on the substrate crystal. .

前記モリブデンを含む物質としてモリブデン化合物の、
容量を用いることができる。この溶液としてはモリブデ
ン、例えば酸化物、塩化物或いは硝酸塩などのモリブデ
ン化合物、もしくはモリブデン合金などを、例えば水、
隙、アルコールなど通合する無機又は有機溶媒に溶解し
て用いることができる。
A molybdenum compound as the molybdenum-containing substance,
Capacity can be used. The solution includes molybdenum, a molybdenum compound such as an oxide, chloride or nitrate, or a molybdenum alloy, for example, water,
It can be used after being dissolved in a compatible inorganic or organic solvent such as alcohol.

本発明に%」こ適する溶液として、モリブデン酸の過酸
化水素水溶液がある。その濃度としては31〔チ〕過酸
化水素水溶液1 〔t)に対してモリブデン酸を1xt
o−’[:g)以上txto”l:g)以下含む範囲で
有効であるが、lX1o ’(g/l)以上でl〔g/
l〕以下の濃度範囲が特に好ましい。
A solution suitable for the present invention is a solution of molybdic acid in hydrogen peroxide. The concentration is 1 x t of molybdic acid for 1 [t] of 31 [thi] hydrogen peroxide aqueous solution.
It is valid in the range from o-'[:g) to txto''l:g), but it is valid in the range from lX1o'(g/l) to l[g/l
The following concentration ranges are particularly preferred.

また前記モリブデンを含むFTPIJ實として、モリブ
デン及び/又はモリブデン化合物と、水素と、窒素又は
不活性ガスとを含む気体を用いることができる。
Further, as the molybdenum-containing FTPIJ, a gas containing molybdenum and/or a molybdenum compound, hydrogen, and nitrogen or an inert gas can be used.

更に本発明によってマグネシア・スピネル又はサファイ
ア単結晶の表面にモリブテンを付着することlこより、
シリコン単結晶の気相エピタキシャ層成長の原材料ガス
として従来のブテン(珀I(4)に代えて四塩化ケイ素
(SIct、)11用いることが可能となる。
Furthermore, according to the present invention, molybdenum is attached to the surface of magnesia spinel or sapphire single crystal.
It becomes possible to use silicon tetrachloride (SIct) 11 instead of the conventional butene (Sict) 11 as a raw material gas for vapor phase epitaxial layer growth of silicon single crystal.

(f) 発明の実施例 前述の如くマグネンア・スピネル又はサファイア単結晶
基体面上lこモリブデンな付着することによって、該基
体面上のシリコンのエピタキシャル成長が大きく改善さ
れるが、これは付着されたモリブデン原子が、マグネシ
ア・スピネル及びサファイアの結晶性を損うことなく、
その表面近傍に存在する酸′JA原子と作用して、この
隙累原子の基板結晶からの離脱を抑止する効果と、基板
結晶の表面近傍に拡散したモリブデン原子によりて結晶
格子の乱れ及び基板結晶とシリコン結晶との間のミスマ
ツチを緩和する効果と1こよって、シリコン結晶成長の
初期段階において結晶核が多数効果的に形成され、シリ
コンエピタキシャル成長の均−性及び安定性が向上する
ととlこよると判断される。
(f) Embodiments of the Invention As described above, by depositing molybdenum on the surface of a magnear spinel or sapphire single crystal substrate, the epitaxial growth of silicon on the substrate surface is greatly improved. Atoms do not impair the crystallinity of magnesia spinel and sapphire,
It acts with the acid 'JA atoms existing near the surface to inhibit the separation of these gap atoms from the substrate crystal, and the molybdenum atoms diffused near the surface of the substrate crystal cause disorder in the crystal lattice and the substrate crystal. The effect of mitigating the mismatch between the silicon crystal and the silicon crystal is that many crystal nuclei are effectively formed in the initial stage of silicon crystal growth, improving the uniformity and stability of silicon epitaxial growth. It is judged that.

以下本発明を実施例により図面を蕗照して具体的lこ説
明する。
Hereinafter, the present invention will be specifically explained using examples and with reference to the drawings.

(1)第1の実施例 モリブデンを王水lこ溶解して蚕温5こおける飽和溶液
を作りこれを蒸留水で希釈する。希釈倍率は103乃至
108倍とするが通常は10’乃至106倍程度が好談
しい。
(1) First Example Molybdenum is dissolved in aqua regia to prepare a saturated solution at a temperature of 5 degrees Celsius, which is diluted with distilled water. The dilution ratio is 103 to 108 times, but usually 10' to 106 times is preferred.

この希釈fIgに従来技術Eこよって清浄化処理を行な
ったマグネシア・スピネル単結晶基板を浸漬し、スピン
ドライヤー等で乾燥する。
A magnesia spinel single crystal substrate that has been cleaned according to the conventional technique E is immersed in this diluted fIg, and dried using a spin dryer or the like.

この本発明によるモリブデン付着処理を行った基板と、
比較試料として本発明による丸埋を行なわない基板とに
、従来技術により高周波加熱型気相成長装置を用い、1
91H,の熱分解法lこよってシリコン単結晶の気相成
長を夾施する。
A substrate subjected to molybdenum adhesion treatment according to the present invention,
As a comparative sample, a high-frequency heating type vapor phase growth apparatus was used according to the conventional technology on a substrate that did not undergo round burying according to the present invention.
91H, vapor phase growth of a silicon single crystal is carried out.

第1図は高周波加熱型気相成長装置の例を示す模式断面
図である。石英反応’11内lこ設けられたカーボンペ
デスタル2上にマグネジ′γ・スビネJし単結晶基板3
を配置し、コイル4Iこ高周波電力を通じて基板3の温
度を1.100 (’IC)程度4こ加熱する。容器5
よりSiH,を水1f−CHz)をキャリアとして反応
管1内に導入すれば、8iH,が分解して基板3上にシ
リコン紹晶が成長する。
FIG. 1 is a schematic cross-sectional view showing an example of a high-frequency heating type vapor phase growth apparatus. Magnetic screw 'γ・Subine J is placed on the carbon pedestal 2 provided in the quartz reaction '11, and the single crystal substrate 3 is attached.
is placed, and the temperature of the substrate 3 is heated to about 1.100 ('IC) through high frequency power through the coil 4I. Container 5
When SiH is introduced into the reaction tube 1 using water (1f-CHZ) as a carrier, 8iH is decomposed and silicon penucrystals grow on the substrate 3.

本実施例ζこおいて、シリコンの成長温度i、i o 
In this example ζ, the silicon growth temperature i, i o
.

〔℃〕、成員速度1.5 [μm/min]、成長層の
厚さ約7〔μm〕の場合に、比較試材の成長層表面の凹
凸が約±250〔μm〕、砒素(AsJ ドープ濃度約
2×1015〔cIL−9において電子移動度μm中9
00〔−/V@S)であるのに対して、前記モリブデン
付着飽理を行なった成長層の表面は比較試料に比較して
光沢があり、その凹凸は約±50〔nm〕、電子移動度
μmキ1. l OO(aJ/V・S〕と明らかに向上
している。
[°C], a growth rate of 1.5 [μm/min], and a growth layer thickness of about 7 [μm], the unevenness on the surface of the growth layer of the comparative sample is about ±250 [μm], and the arsenic (AsJ doped) Concentration approximately 2×1015 [electron mobility in cIL-9 μm 9
00 [-/V@S), the surface of the grown layer subjected to the saturation of molybdenum deposition is glossier than that of the comparative sample, and its unevenness is about ±50 [nm], which is less likely to cause electron transfer. degree μm 1. 1 OO (aJ/V・S), which is clearly improved.

(II) 第2の実施例 モリブデンを王水に浴解し、脱水、乾燥していわゆるモ
リブデンブルーと呼ばれる實色粉末を得る。31(%)
過酸化水素水溶液を蒸留水で2倍に希釈した溶液に前記
モリブデン化合智V溶解する。
(II) Second Example Molybdenum is dissolved in aqua regia, dehydrated and dried to obtain a true color powder called molybdenum blue. 31 (%)
The molybdenum compound oxide was dissolved in a solution prepared by diluting an aqueous hydrogen peroxide solution twice with distilled water.

このモリブデン化合物の濃度をlx 1o−’ Cg/
z)乃至I X 10’ (g/l)として、これらの
清液に従来技術lこよる清浄化処理を行なったマグネシ
ア・スピネル単結晶基板を1分間程度浸漬して、スピン
ドライヤー等で乾燥する。
The concentration of this molybdenum compound is lx 1o-' Cg/
z) to I x 10' (g/l), a magnesia spinel single crystal substrate that has been subjected to a cleaning treatment using a conventional technique is immersed in these liquids for about 1 minute, and then dried using a spin dryer or the like. .

この基板上に本実施例においては四塩化ケイ素(8iC
1,)を原材料ガスとしてシリコン単結晶の成長を行な
う。成長装置としては前記実施例における8iH,を原
材料ガスとする場合と同一の装置を用いることができる
。ただし、常温において51H4は気体であるのに対し
て、8iC7,は液体であるためにキャリアガス、例え
ばH,ガスを5IC44内でバブリングさせて両ガスを
混合する。
In this example, silicon tetrachloride (8iC) was deposited on this substrate.
1,) is used as a raw material gas to grow a silicon single crystal. As the growth apparatus, the same apparatus as in the case of using 8iH as the raw material gas in the above embodiment can be used. However, while 51H4 is a gas at room temperature, 8iC7 is a liquid, so a carrier gas such as H gas is bubbled within the 5IC 44 to mix both gases.

本実施例において、例えば前記の濃度の溶液に浸漬した
基板iこついて、基板温度980 (’C)、5iC4
の温度30〔℃〕、キャリアであるH、ガスの流量20
 [t/min :l、81CA4の流量10 (cc
 /mi n)としtことき、シリコン単結晶の成長速
匿は約55〔佃Vmin)であって、成長層の厚さl〔
μm〕で電子移動夏μΩ中400[cd/V−8]の単
結晶を得ている0従来マグネシア・スピネル及びサファ
イア単結晶上にシリコンをエピタキシャル成長する場合
に、その原材料ガスとしてS I ct、を用いること
は、通常行なわれている成長温度900乃至1,100
c′C)、成長速度0.05乃至2〔μm/m1n)の
成長条件では不可能であって、皮膜が形成されても多結
Jk&態になるのが通常であった。
In this example, for example, when a substrate i is immersed in a solution with the above concentration, the substrate temperature is 980 ('C), and 5iC4
temperature 30 [℃], carrier H, gas flow rate 20
[t/min: l, flow rate of 81CA4 10 (cc
/min) and t, the growth rate of silicon single crystal is approximately 55 [Tsukuda Vmin), and the thickness of the growth layer l[
μm] to obtain a single crystal with an electron transfer summer μΩ of 400 [cd/V-8] 0 Conventionally, when silicon is epitaxially grown on magnesia spinel and sapphire single crystals, S I ct is used as the raw material gas. The commonly used growth temperature is 900 to 1,100.
c'C), which is impossible under the growth conditions of a growth rate of 0.05 to 2 [μm/m1n], and even if a film is formed, it is usually in a multi-crystalline Jk& state.

このために従来原材料ガスとして水素化物であるシラン
(8’H4Jが多(用いられている。しかしながら、S
in、は空気中で自然発火するなど取扱いに特に注意を
必要とし、また成長に際して不純Ct、より高価格であ
るなどの問題点がある。
For this purpose, silane (8'H4J), which is a hydride, has traditionally been used as a raw material gas.
In, requires special care in handling as it spontaneously combusts in the air, and also has problems such as impurity Ct during growth and higher price.

本発明により被成長面にモリブデンを付着すること1こ
よって、前記実施例の如く、S]Ct4を原材料として
マグネシア−スピネル又はサファイア結晶上−こシリコ
ン単結晶をエビタキシャJl/成長することが可能とな
り、前記の如き5t)14を原材料とする場合における
問題点が解決されることとなったO (1;0 第3の実施例 金属モリブデン〔純度99.99(チ〕以上〕を31〔
チ〕過酸化水素(Hz O宜)水清液に飽オロ浴解し、
この浴液を加熱脱水してゲル状とし、更に脱水、乾燥し
て黄色のモリブデン酸粉末を作る。
By attaching molybdenum to the growth surface according to the present invention, it becomes possible to grow silicon single crystals on magnesia spinel or sapphire crystals using S]Ct4 as a raw material, as in the above embodiments. , 5t) 14 as described above was solved. Third Example Metallic molybdenum [purity 99.99 (chi) or higher] was converted into 31 [
[H] Hydrogen peroxide (Hz Oy) dissolved in a saturated solution of water,
This bath solution is heated and dehydrated to form a gel, which is further dehydrated and dried to produce yellow molybdic acid powder.

このモリブデン酸粉末431[チ]HtOt水溶液に溶
解する。この溶液の濃度としては、31Cチ〕Hz O
x 水s液i (t)に対してモリブデン酸粉末を10
−’(g)から10”[g:]まで9段階準備している
This molybdic acid powder 431 is dissolved in an aqueous solution of [thi]HtOt. The concentration of this solution is 31C]Hz O
10 molybdic acid powder to x water s liquid i (t)
Nine levels are prepared from -' (g) to 10'' [g:].

従来技術によって清浄化処理を行なったマグネンア・ス
ピネル単結晶基板を前記!液に1分間程度浸漬し、スピ
ンドライヤーで乾燥する。
Above is a Magnena spinel single crystal substrate that has been cleaned using conventional technology! Immerse it in the liquid for about 1 minute and dry it with a spin dryer.

〕に 充いて前記第1の実施例と同様の方法によって、81)
1.を原材料ガスとしてシリコンのエピタキシャル成長
を実施する。ただし本実施例においては下記の成長条件
を適用している。すなわち、予備加熱温度1,100 
C℃) 、成長温度950(’C)、H寞’R* 2 
0 (17m1n) 、81H,流it 4 5 (c
c/m in)、Asドープ濃度2×1O15〔cII
L−3〕で成長速度は約0、s (μm/m1n) テ
hル。
] by the same method as in the first embodiment, 81)
1. Epitaxial growth of silicon is carried out using as a raw material gas. However, in this example, the following growth conditions are applied. That is, the preheating temperature is 1,100
C℃), growth temperature 950('C), H寞'R*2
0 (17m1n), 81H, flow it 4 5 (c
c/min), As doping concentration 2×1O15 [cII
L-3], the growth rate is approximately 0, s (μm/m1n) tel.

また比較試料としく、本発明−こよるモリブデン付着処
理を行なわない基板lこついても同一条件でシリコンの
エピタキシャル成長な実施する。
As a comparative sample, silicon was epitaxially grown under the same conditions on a substrate which was not subjected to the molybdenum adhesion treatment according to the present invention.

前記比較例と不実施例とのシリコン成長層表面の凹凸状
態をターリ−ステップを用いて測定した例を第2図(,
1及び(b)に示す。ただし実施ガミ(ついては前記溶
液の濃度がI X 10−” Cg/l〕の場合を例示
し、まtこ何れもシリコン成長J−の厚さが約0.9〔
μm〕の成長開始後の経過時間が短い状態を示している
Figure 2 shows an example of measuring the unevenness of the surface of the silicon growth layer of the comparative example and non-example using a tarry step.
1 and (b). However, the case where the concentration of the above-mentioned solution is I x 10" Cg/l is shown as an example, and in both cases, the thickness of the silicon growth J- is about 0.9".
[μm]] shows a state in which the elapsed time after the start of growth is short.

第2図(a)は比較試料、(b)は本実施例1こついて
シリコン成長層表面の凹凸状態を示すが、差の大きい比
較試料については中間の形状が描写されていない。この
Uより溶菌と最低との差が比較試料が約60(nm、l
であるのに対して、本実施例に詔いては約24(nm)
に改善されていることが知られるO Iだ第3図は本実施例及び前1a比戟例について1シリ
コン成長層の厚さを約8〔μm〕としたときの電子移動
度μnの例を示す図である。図において横軸は前記モリ
ブデン酸溶液の濃度を示し、また図中の破線は本発明に
よるモリブデン付着を行なわない比較試料の例を示す。
FIG. 2(a) shows a comparative sample, and FIG. 2(b) shows the unevenness of the surface of the silicon growth layer obtained in Example 1, but the intermediate shape of the comparative sample with a large difference is not depicted. From this U, the difference between bacteriolysis and the lowest value is approximately 60 (nm, l) for the comparison sample.
On the other hand, in this example, it is about 24 (nm)
Figure 3 shows an example of the electron mobility μn when the thickness of one silicon growth layer is approximately 8 μm for this example and the comparative example 1a. FIG. In the figure, the horizontal axis indicates the concentration of the molybdic acid solution, and the broken line in the figure indicates an example of a comparative sample without molybdenum deposition according to the present invention.

第3図より、少なくとも繭記酔液濃度10−6乃至xo
2(g/l)の範囲において本発明による基板面へのモ
リブデン導入の効果が認められ、%に濃度10−4乃至
lOo〔g/l〕の範囲において、電子移動度finキ
1,200 CaA/V’ 8)が得られて、比較例の
約880 (cIIl/V◆S〕よりm著に改善されて
いることが知らnる〇 また不実施例の工程を独立して例えは20回繰返えして
もシリコンエピタキシャル成長層の状態。
From Figure 3, the concentration of the intoxicant at least 10-6 to xo
The effect of introducing molybdenum into the substrate surface according to the present invention is recognized in the range of 2 (g/l), and the electron mobility fin is 1,200% in the concentration range of 10-4 to 100 [g/l]. /V' 8) was obtained, which is significantly improved from the comparative example of approximately 880 (cIIl/V Even if repeated, the state of the silicon epitaxial growth layer remains.

特性に変動が認められず、?1!現性よくシリコン成長
が行なわれることが確かめられた。
No change observed in characteristics? 1! It was confirmed that silicon growth was performed well.

更に前記第1の実施例に使用したモリブデンの王水浴液
などについては、溶液を貯蔵した場合にこれに経時変化
が認められるが、この点lこついても本実施例の溶液は
優1’した安定性を有している・−(1ψ 第4の実施
例 第4図に示す如く、反応管11内に金属モリブデン12
及びマグネシア・スピネル単結晶基板13を配置し、加
熱抵抗体14によって、モリブデン12を温度800〔
℃〕程度着こ加熱し、基板h400乃至500〔℃〕程
度に加熱する。ガス導入口15からfig(0*)又は
二酸化炭素(COi)などの酸化作用をもつガスを水素
(H!〕ガスをキャリアーガスとして反応管ll内に導
入する。この0!又はCO,などlこよって金属モリブ
デン12が酸化されてモリブデン酸化物が昇華しキャリ
アーガスによって輸送され1マグネシアOスピネル単結
晶基板13上に付着する。
Furthermore, with regard to the molybdenum aqua regia solution used in the first example, changes over time are observed when the solution is stored, but even with this in mind, the solution of this example was excellent. -(1ψ Fourth Embodiment As shown in FIG. 4, metal molybdenum 12
A magnesia spinel single crystal substrate 13 is arranged, and molybdenum 12 is heated to a temperature of 800 [
The substrate is heated to about 400 to 500 degrees Celsius. A gas having an oxidizing effect such as fig (0*) or carbon dioxide (COi) is introduced into the reaction tube 11 from the gas inlet 15 using hydrogen (H!) gas as a carrier gas.This 0! or CO, etc. As a result, the metal molybdenum 12 is oxidized and molybdenum oxide is sublimated, transported by the carrier gas, and deposited on the 1-magnesia O spinel single crystal substrate 13.

この様にモリブデン付着処理を行った基板に前記第1の
実施例と同一の条件で厚さ約8乃至1゜〔μm〕にシリ
コン単結晶の気相成員を実施した結果、成長層の表面は
光沢があり、その凹凸は約±60〔nm〕、電子移動度
Anキ1,100 [:i/V、8)と第1の実施例と
同程度の向上が認められた。
As a result of vapor phase deposition of silicon single crystal to a thickness of approximately 8 to 1 μm under the same conditions as in the first example, the surface of the grown layer was It was shiny, the unevenness was about ±60 [nm], and the electron mobility was 1,100 [:i/V, 8), which was an improvement comparable to that of the first example.

(Vl 第5の実施例 第5図に示す如き装置を用いて、本発明によるモリブデ
ン付着とシリコン単結晶成長とを同一の装置で連続して
実施することができる。
(Vl Fifth Embodiment Using an apparatus as shown in FIG. 5, molybdenum deposition according to the present invention and silicon single crystal growth can be performed continuously in the same apparatus.

図において、21は石英反応管、22はカーボンペデス
タル、23はマグネシア・スピネル単結晶基板、24は
高周波コイル、25はソースチェンバ、26はソースポ
ート、27は加熱抵抗体、28はバブリング容器、29
a 、29b及びg9cはガス導入口、30はガス排出
口であり、ソースポート26に金属モリブデン、バブリ
ング容器28−こ8iez、が収容される。
In the figure, 21 is a quartz reaction tube, 22 is a carbon pedestal, 23 is a magnesia spinel single crystal substrate, 24 is a high frequency coil, 25 is a source chamber, 26 is a source port, 27 is a heating resistor, 28 is a bubbling container, 29
a, 29b and g9c are gas inlets, 30 is a gas outlet, and a source port 26 houses a metal molybdenum bubbling container 28.

基板23は清浄化処理が完了した状態でカーボンベデス
タル22上に配置され、まずモリブデン付着処理が実施
される。すなわち抵抗体27によってソースポート26
内のモリブデンを温度800乃至900(’C)程度に
加熱してガス導入口29aから例えばO3とN、との混
合ガスを導入し、モリブデン酸化物を生成する。この生
成されたモリブデン酸化物は前記ガス及びガス導入口2
9bから導入さイアるH2ガスによって基板23に輸送
されこれに付着する。この処理を例んは30秒間程度実
施する。
After the cleaning process has been completed, the substrate 23 is placed on the carbon vedestal 22, and first a molybdenum adhesion process is performed. That is, the source port 26 is connected by the resistor 27.
The molybdenum inside is heated to a temperature of about 800 to 900 ('C), and a mixed gas of, for example, O3 and N is introduced from the gas inlet 29a to generate molybdenum oxide. This generated molybdenum oxide is transferred to the gas and gas inlet 2.
The H2 gas introduced from 9b transports it to the substrate 23 and attaches thereto. This process is carried out for about 30 seconds, for example.

次いで基板23の温度を900乃至1150(’C)程
度とし、バブリング容器28にH8ガスを通じて8IC
24ガスを29b及び2900両ガス導入口から導入さ
れるH、ガスをキャリアとして基板23に送ることによ
って前記第4の実施例と同様にシリコンのエピタキシャ
ル成長が行なわれる。
Next, the temperature of the substrate 23 is set to about 900 to 1150 ('C), and H8 gas is passed into the bubbling container 28 to inject 8 ICs.
Epitaxial growth of silicon is performed in the same manner as in the fourth embodiment by sending 24 gas to the substrate 23 using H gas introduced from both gas inlets 29b and 2900 as a carrier.

本実施例の如く本発明によるモリブデンの付着と、これ
ζこ続くシリコンのエピタキシャル成長とを同一の装置
によって実施する方法は、作業性が同上されるのみなら
ず、意図しない不純物の混入、その他の汚染を防止する
効果を有する。
The method of carrying out the deposition of molybdenum according to the present invention and the subsequent epitaxial growth of silicon using the same equipment as in this embodiment not only improves workability but also prevents unintentional impurity mixing and other contamination. It has the effect of preventing

先に説明した第3の実施例においては、金属モリブデン
をH!OR水ff#g、4こ溶解して生成したモリブデ
ン酸を用いているが、通常市販されている酸化モリブデ
ン、モリブデン酸及びその塩すなわちM00□M0U、
・IH,U、M、0.・2 Hz O、(NH4)2・
、QMoo、等を前記方法の如く溶解して用いても同様
の効果を得ることができる。
In the third embodiment described above, the metal molybdenum is H! Molybdic acid produced by dissolving OR water ff#g, 4 is used, but commercially available molybdenum oxide, molybdic acid and its salts, that is, M00□M0U,
・IH, U, M, 0.・2 Hz O, (NH4)2・
, QMoo, etc. can be dissolved and used as in the above method to obtain the same effect.

更にモリブデンの塩化物、塩など他のモリブデン化合物
或いは前記第1の実施例の如く金属モリブデン、或いは
モリブデン合金等を各種の酸、アンモニア水、アルコー
ル或いは水等の適合する溶媒に溶解した溶液を用いても
本発明の効果を得ることができる。
Further, using a solution in which other molybdenum compounds such as molybdenum chlorides and salts, or metal molybdenum or molybdenum alloys as in the first embodiment are dissolved in compatible solvents such as various acids, aqueous ammonia, alcohol, or water. However, the effects of the present invention can be obtained.

同様に前記第4及び第5の実施例1こおいて、金限 属モリブデンを装置内で酸化する製造方法を用いるが、
酸化物塩化物など種々のモリブデン化合物を原材料とし
て、これを気化させる方法によっても同様の効果を得る
ことができる。なお金属モリブデンの酸化は高温lこお
いて酸化性をもつガス、えば酸化窒素、水蒸気等を用い
て行なうことも可能であり、又キャリアーガスとして、
■、ガスの他に窒業(N2)ガス又はヘリウム(Hす、
アルゴン(kr)等の不活性ガスを用いることができる
Similarly, in the fourth and fifth embodiments 1, a manufacturing method is used in which metal-limited molybdenum is oxidized in the apparatus, but
Similar effects can also be obtained by using various molybdenum compounds such as oxide chlorides as raw materials and vaporizing them. The oxidation of metal molybdenum can also be carried out at high temperatures using an oxidizing gas such as nitrogen oxide or water vapor, or as a carrier gas.
■In addition to gas, nitrous (N2) gas or helium (H),
An inert gas such as argon (kr) can be used.

また以上の説明は何れもマグネシア・スピネル単結晶上
lこシリコン単結晶をエピタキシャル成長せしめている
が、基板をサファイアとする場合においてもマグ不シア
ーヌビネルの場合と同様に良好なシリコン単結晶を再現
性よく成長することが可能となる。
Furthermore, in the above explanations, silicon single crystals are epitaxially grown on magnesia spinel single crystals, but even when the substrate is sapphire, good silicon single crystals can be grown with good reproducibility in the same manner as in the case of magnesia spinel single crystals. It becomes possible to grow.

(gl 発明の詳細 な説明した如く、マグネシア榔スピネル単結晶又すファ
イア部結晶面上へのシリコン単結晶のエピタキシャル成
長に除して、本発明Iこよって被成長面4こモリブデン
を付着することによって、シリコン成長層の結晶性が顕
著lこ改善され、例えば表面の均−平担化、電子移動度
の増大などが再現性良く達成される。
(gl As described in detail of the invention, in addition to the epitaxial growth of a silicon single crystal on a magnesia spinel single crystal or a fire part crystal surface, the present invention I allows molybdenum to be deposited on the growth surface 4. The crystallinity of the silicon growth layer is significantly improved, and, for example, the surface leveling and electron mobility are increased with good reproducibility.

この結果優れた特性を有する半導体集積回路を形成する
ことが可能となり、80■構造成いは3次元構造の半導
体装置の推進に大きい効果を与える。
As a result, it becomes possible to form a semiconductor integrated circuit having excellent characteristics, which has a great effect on the promotion of semiconductor devices having an 80 square structure or a three-dimensional structure.

才だ本発明によってマグネシア・スピネル単結晶又はザ
ファイア年粘晶面上へのシリコン気相成長の原材料ガス
として四塩化ケイ累を用いることが可能となり、従来の
シランな原材料ガスとする場合ζこ比較して作業性及び
経済性が同上する効果が得られる。
This invention makes it possible to use silica tetrachloride as a raw material gas for silicon vapor phase growth on magnesia spinel single crystals or zapphire viscous crystal surfaces, compared to conventional silane raw material gas. As a result, the same effects as mentioned above can be obtained in terms of workability and economy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は気相成長装置の例な示す模式断面図、第2図(
a)及び(bJは成長層表面の凹凸の例を示し、(d)
は従来例、(b)は本発明の実施例を示す図、第3図は
モリブデン酸@液濃度と電子移動度との相関の例を示す
図、第4図はモリブデンを含むガスを用いるモリブデン
付着装置の模式断面崗、第5図はガスを用いるモリブデ
ン付着とシリコン気相成員とを連続して実施することが
可能な装置の模式断面図である。 図にわいや、1は反Yム管、3は基板、4はコイル、5
は原材料カス重器、11は反応管、12はモリブデン、
13は基板、14は抵抗体、21は反応管、23は基板
、24はコイル、26はソースポート、27は抵抗体、
28はバブリング容器を示す。 第1 督 第2g 勿 孕8m 粁 h〃ρ ′$ 3g 9] 、E4/ブ゛デ4;tl rl/z〕
Figure 1 is a schematic sectional view showing an example of a vapor phase growth apparatus, and Figure 2 (
a) and (bJ show examples of unevenness on the surface of the growth layer; (d)
(b) is a diagram showing a conventional example, (b) is a diagram showing an example of the present invention, FIG. 3 is a diagram showing an example of the correlation between molybdic acid @ liquid concentration and electron mobility, and FIG. FIG. 5 is a schematic cross-sectional view of an apparatus capable of successively performing molybdenum deposition using a gas and silicon vapor phase deposition. As shown in the figure, 1 is the anti-Yum tube, 3 is the board, 4 is the coil, and 5
11 is a reaction tube, 12 is molybdenum,
13 is a substrate, 14 is a resistor, 21 is a reaction tube, 23 is a substrate, 24 is a coil, 26 is a source port, 27 is a resistor,
28 indicates a bubbling container. 1st command 2nd g unconcealed 8m 粁h〃ρ ′$ 3g 9], E4/Bude 4; tl rl/z]

Claims (1)

【特許請求の範囲】 (11マグネシア・スピネル又はサファイアの単績珀晶
基体の界面にモリブデンを含む物5iLを接触させて該
モリブデンを付着せしめ、しかる後に該単結晶基体の表
面上にシリコン単結晶を気相成長させることを特徴とす
る気相エピタキシャル成長方法。 (2)原材料ガスとして四塩化硅累を含むガスを用い、
前記シリコン単結晶の気相成長を行なうことを特徴とす
る特許請求の範囲第1項記載の気相エピタキシャル成長
方法。 (3)前記モリブデンを含む物質がモリブデン化合物の
溶液であることを特徴とする特許請求の範囲第1項又は
第2項記載の気相エピタキシャル成長方法。 (4)前記モリブデン化合物の溶液がモリブデン位の過
酸化水素水溶液であることを特徴とする特許請求の範囲
第3項記載の気相エピタキシャル成飛方法。 (5)前1己モリフ“デンを當む響質が、モリフ゛デン
及び/又はモリブデン化合物と、水素と、不活性ガスと
な含む気体であることを特徴とする特許請求の範囲第1
項又は第2項記載の気相エピタキシャル成長方法。
[Claims] (11 5 iL of a substance containing molybdenum is brought into contact with the interface of a monocrystalline crystal substrate of magnesia spinel or sapphire to adhere the molybdenum, and then a silicon single crystal is deposited on the surface of the single crystal substrate. A vapor phase epitaxial growth method characterized by vapor phase growth. (2) Using a gas containing silicon tetrachloride as a raw material gas,
2. The vapor phase epitaxial growth method according to claim 1, wherein said silicon single crystal is grown in vapor phase. (3) The vapor phase epitaxial growth method according to claim 1 or 2, wherein the substance containing molybdenum is a solution of a molybdenum compound. (4) The vapor phase epitaxial growth method according to claim 3, wherein the solution of the molybdenum compound is an aqueous solution of hydrogen peroxide at the molybdenum position. (5) Claim 1, characterized in that the acoustic substance containing molybdenum is a gas containing molybdenum and/or a molybdenum compound, hydrogen, and an inert gas.
The vapor phase epitaxial growth method according to item 1 or 2.
JP23311883A 1983-12-09 1983-12-09 Vapor-phase epitaxial growth method Granted JPS60124817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23311883A JPS60124817A (en) 1983-12-09 1983-12-09 Vapor-phase epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23311883A JPS60124817A (en) 1983-12-09 1983-12-09 Vapor-phase epitaxial growth method

Publications (2)

Publication Number Publication Date
JPS60124817A true JPS60124817A (en) 1985-07-03
JPH0554254B2 JPH0554254B2 (en) 1993-08-12

Family

ID=16950043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23311883A Granted JPS60124817A (en) 1983-12-09 1983-12-09 Vapor-phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JPS60124817A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009182354A (en) * 2009-05-19 2009-08-13 Takashi Katoda Semiconductor optical device manufactured on substrate, and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145317A (en) * 1981-03-04 1982-09-08 Toshiba Corp Manufacture of semiconductor device
JPS57178315A (en) * 1981-04-27 1982-11-02 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145317A (en) * 1981-03-04 1982-09-08 Toshiba Corp Manufacture of semiconductor device
JPS57178315A (en) * 1981-04-27 1982-11-02 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009182354A (en) * 2009-05-19 2009-08-13 Takashi Katoda Semiconductor optical device manufactured on substrate, and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0554254B2 (en) 1993-08-12

Similar Documents

Publication Publication Date Title
US4435447A (en) Method for forming an insulating film on a semiconductor substrate surface
JPS60202952A (en) Manufacture of semiconductor device
CN111663181A (en) Preparation method and application of gallium oxide film
JP2002234799A (en) Method of producing silicon carbide film and method of producing silicon carbide multilayer film structure
JPH04174517A (en) Manufacture of diamond semiconductor
JPS60124817A (en) Vapor-phase epitaxial growth method
JPH04300292A (en) Film forming method for multicomponent oxide film superconducting film
KR20230132455A (en) Method for manufacturing epitaxial wafers
JP3194547B2 (en) Method for manufacturing polycrystalline silicon layer
JPS6012775B2 (en) Method for forming a single crystal semiconductor layer on a foreign substrate
JPS60255699A (en) Member for producing semiconductor si single crystal and production thereof
JPH04237134A (en) Manufacture of epitaxial wafer
JPH021124A (en) Manufacture of dielectric film
JPH0427116A (en) Method of forming semiconductor heterojunction
JPS5931985B2 (en) Vapor phase growth method of magnespinel
JPH02139929A (en) Manufacture of insulating thin film
JPS59163819A (en) Silicon epitaxial growth
JPH01260833A (en) Vapor growth method of insulating film
JPH05152236A (en) Manufacture of semiconductor device
JPS5840818A (en) Introduction of impurity
JPS61198628A (en) Selective growth method for tungsten film
KR100295059B1 (en) Method for growing epitaxial layer on semiconductor substrate
JPS6390152A (en) Manufacture of substrate for semiconductor device
JPS6152971B2 (en)
JPS6037121A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees