JPH01260833A - Vapor growth method of insulating film - Google Patents

Vapor growth method of insulating film

Info

Publication number
JPH01260833A
JPH01260833A JP8880688A JP8880688A JPH01260833A JP H01260833 A JPH01260833 A JP H01260833A JP 8880688 A JP8880688 A JP 8880688A JP 8880688 A JP8880688 A JP 8880688A JP H01260833 A JPH01260833 A JP H01260833A
Authority
JP
Japan
Prior art keywords
insulating film
reaction
oxynitride
gas
reaction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8880688A
Other languages
Japanese (ja)
Inventor
Masaaki Sasaka
佐坂 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Fujitsu Electronics Ltd
Fujitsu Ltd
Original Assignee
Kyushu Fujitsu Electronics Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Fujitsu Electronics Ltd, Fujitsu Ltd filed Critical Kyushu Fujitsu Electronics Ltd
Priority to JP8880688A priority Critical patent/JPH01260833A/en
Publication of JPH01260833A publication Critical patent/JPH01260833A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain, for example, small and high capacitance capacitors formed in a semiconductor device with large scale integration, by forming an insulating film consisting of oxynitride by a chemical vapor growth by use of a reaction gas of a mixture of organic oxysilane and ammonia. CONSTITUTION:In a reaction pipe 12 which is heated by a heater at a prescribed temperature, silicon substrates 1 are placed on the substrate holder 13. A reaction gas supply tube 15 connected to one end of the reaction pipe is connected to the supply source of NH3 30 and a bubbling device 21. The bubbling device supplies a gas mixture 26 of organic oxysilane, for example, tetraethoxysilane 22 and N2 24 to the reaction gas supply tube. In the above device, a reaction gas 14 consisting of a gas mixture of NH3 and the gas mixture 26 is fed to the heated reaction pipe 12 and allows an oxynitride film to grow on the surface of the substrate. In such a case, the ratio of partial pressure of silicon to that of oxygen in the reaction pipe is always kept constant and its film grows under a stable condition. Thus, a capacitor comprising oxynitride as an insulating film is superior in reliability and makes it possible to mass-produce capacitors on the basis of designs of miniaturization and high capacitance and contributes to the realization of large scale integration of a semiconductor device.

Description

【発明の詳細な説明】 〔概要〕 オキシナイトライド絶縁膜を化学気相成長させる新規方
法に関し、 特に、キャパシタの小型、高容量化による半導体装置の
高集積化を目的とし、 オキシナイトライドにてなる絶縁膜を、有機オキシシラ
ンとアンモニアとの混合反応ガスを使用し、化学気相成
長により成長させることを特徴とし構成する。
[Detailed Description of the Invention] [Summary] This invention relates to a new method for chemical vapor deposition of an oxynitride insulating film, particularly for the purpose of increasing the integration of semiconductor devices by making capacitors smaller and increasing their capacitance. The insulating film is grown by chemical vapor deposition using a mixed reaction gas of organic oxysilane and ammonia.

〔産業上の利用分野〕[Industrial application field]

本発明は絶縁膜の気相成長方法、特に、半導体装置のキ
ャパシタ絶縁膜をオキシナイトライド(Sixty N
Z)にて形成する新規方法に関する。
The present invention relates to a method for vapor phase growth of an insulating film, and in particular, to a method for growing a capacitor insulating film of a semiconductor device using oxynitride (SixtyN).
Z).

近年の半導体装置は、高集積化、構成の微細化に伴って
、小面積で高容量のキャパシタを構成するため、その絶
縁膜に一層の薄膜化が要求されるようになった。これら
のため、リーク電流が小さく絶縁性に優れ、誘電率の大
きい絶縁膜を再現性良く成長する必要がある。
2. Description of the Related Art In recent years, semiconductor devices have become highly integrated and have finer structures, and in order to form capacitors with small areas and high capacitance, the insulating films thereof are required to be thinner. For these reasons, it is necessary to grow an insulating film with low leakage current, excellent insulation properties, and high dielectric constant with good reproducibility.

〔従来の技術〕[Conventional technology]

第2図はMOSメモリ装置の一部分を拡大した断面図で
ある。
FIG. 2 is an enlarged cross-sectional view of a portion of the MOS memory device.

第2図において、1はシリコンの単結晶基板、2は熱酸
化によるSi OH膜、3はゲート電極、4は化学気相
成長させたSi OH膜であり、キャパシタ絶縁膜5は
、ポリシリコン膜6と7の間に形成される。
In FIG. 2, 1 is a silicon single crystal substrate, 2 is a thermally oxidized SiOH film, 3 is a gate electrode, 4 is a chemical vapor grown SiOH film, and the capacitor insulating film 5 is a polysilicon film. Formed between 6 and 7.

従来、半導体装置のキャパシタ絶縁膜5は、シランとア
ンモニアとの混合ガスを反応ガスとし、化学気相成長に
よって成長しており、 3SiH4+4NHs→5isNa +12Hzの反応
を利用し、ポリシリコン膜6の上に成長させた絶縁膜(
窒化シリコン膜: Si、N、膜)5は、厚さが数百人
程度であった。ところが、半導体装置の高集積化および
素子の微細化に伴って、キャパシタの面積が小さくなる
と、その絶縁膜5は薄くなり、リーク電流が比較的大き
いことで知られる5isNa膜は、絶縁性に問題が生じ
る。
Conventionally, the capacitor insulating film 5 of a semiconductor device has been grown by chemical vapor deposition using a mixed gas of silane and ammonia as a reaction gas. The grown insulating film (
The silicon nitride film (Si, N, film) 5 was about several hundred thick. However, as the area of the capacitor becomes smaller due to higher integration of semiconductor devices and miniaturization of elements, the insulating film 5 becomes thinner, and the 5isNa film, which is known for its relatively large leakage current, has problems with insulation. occurs.

そこで、5isN4膜と比較して誘電率がほぼ同等であ
り、リーク電流の小さいオキシナイトライドを、キャパ
シタの絶縁膜5に利用するようになったが、オキシナイ
トライドにてなる従来の絶縁膜5は、シラン(SiH4
)とアンモニア(Nl(、)と酸化窒素(NZ O)の
混合ガスを反応ガスに使用し、化学気相成長法によって
成長させていた。
Therefore, oxynitride, which has almost the same dielectric constant as the 5isN4 film and has a small leakage current, has been used for the insulating film 5 of the capacitor, but the conventional insulating film 5 made of oxynitride is silane (SiH4
), ammonia (Nl), and nitrogen oxide (NZ O) as the reaction gas, and was grown by chemical vapor deposition.

第3図は従来のキャパシタ絶縁膜を成長させる化学気相
成長装置(CVD装置)の概略を示す側面図である。
FIG. 3 is a side view schematically showing a conventional chemical vapor deposition apparatus (CVD apparatus) for growing a capacitor insulating film.

第3図において、ヒータ11によって所定温度に加熱さ
れる反応管12は、基板ホルダ13に搭載された多数の
シリコン基板(ウェーハ)lを収容し、一端に反応ガス
14の供給管15を接続し、他端の排気管16が排気装
置に接続される。
In FIG. 3, a reaction tube 12 heated to a predetermined temperature by a heater 11 accommodates a large number of silicon substrates (wafers) l mounted on a substrate holder 13, and has one end connected to a supply tube 15 for a reaction gas 14. , the exhaust pipe 16 at the other end is connected to an exhaust device.

基板1に成長させる絶縁膜がSi、N4であるとき、S
iH,とNH,を混合した反応ガス14は、バルブ18
を開き供給管15より反応管12に供給される。他方、
成長させる絶縁膜がオキシナイトライドであるときは、
反応ガス14にSLH,とNH3およびN、Oの混合ガ
スを使用することになる。
When the insulating film grown on the substrate 1 is Si, N4, S
The reaction gas 14, which is a mixture of iH and NH, is supplied to the valve 18.
is opened and supplied to the reaction tube 12 from the supply tube 15. On the other hand,
When the insulating film to be grown is oxynitride,
A mixed gas of SLH, NH3, N, and O is used as the reaction gas 14.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来方法によって成長されるオキシナイトライドの絶縁
膜は、その成長に要する酸素原子が微量であるため、S
iH,およびNH3に混合するN、Oの量をコントロー
ルすることが困難であり、誘電率の再現性が悪いという
問題点があった。
Oxynitride insulating films grown by conventional methods require only a small amount of oxygen atoms for growth, so S
It is difficult to control the amounts of N and O mixed into iH and NH3, and there is a problem in that the reproducibility of the dielectric constant is poor.

本発明は前記問題点を除去し、再現性よくオキシナイト
ライドの絶縁膜を成長せしめることによって、例えば半
導体装置に形成されるキャパシタの小型、高容量化を実
現し、集積化の高い半導体装置を提供することを目的と
する。
The present invention eliminates the above-mentioned problems and grows an oxynitride insulating film with good reproducibility, thereby realizing the miniaturization and high capacity of capacitors formed in semiconductor devices, for example, and realizing highly integrated semiconductor devices. The purpose is to provide.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は第1図によれば、オキシナイトライドにてなる
絶縁膜を、テトラエトキシシラン等の有機オキシシラン
22とアンモニア30との混合反応ガス14を使用し、
化学気相成長により成長させることを特徴とする絶縁膜
の気相成長方法である。
According to FIG. 1, the present invention uses an insulating film made of oxynitride using a mixed reaction gas 14 of an organic oxysilane 22 such as tetraethoxysilane and ammonia 30,
This is a method of vapor phase growth of an insulating film characterized by growth by chemical vapor deposition.

〔作用〕[Effect]

上記手段によれば、有機オキシシランとアンモニアとの
混合ガスを反応ガスとして使用することより、化学気相
成長装置の反応管内におけるシリコン分圧と酸素分圧と
の比は、シリコンおよび酸素が有機オキシシランの分解
によって供給されるため常時一定となり、安定条件の下
でオキシナイトライドが成長することになる。従って、
該オキシナイトライドを絶縁膜としたキャパシタは、ロ
フト間で組成比等の膜質のばらつきが少なくて再現性に
優れ、小型、高容量化設計になるキャパシタの量産が高
品質に可能となり、半導体装置の高集積化に寄与する。
According to the above means, since a mixed gas of organic oxysilane and ammonia is used as a reaction gas, the ratio of the silicon partial pressure to the oxygen partial pressure in the reaction tube of the chemical vapor deposition apparatus is such that silicon and oxygen are Since it is supplied by the decomposition of , it remains constant at all times, and oxynitride grows under stable conditions. Therefore,
Capacitors using this oxynitride as an insulating film have excellent reproducibility with little variation in film quality such as composition ratio between lofts, making it possible to mass-produce high-quality capacitors with compact and high-capacity designs, and improve semiconductor devices. Contributes to high integration.

〔実施例〕〔Example〕

以下に、図面を用いて本発明によるキャパシタ絶縁膜の
形成方法を説明する。
A method for forming a capacitor insulating film according to the present invention will be described below with reference to the drawings.

第1図は本発明方法の一実施例に係わる化学気相成長装
置の概略を示す側面図である。前出図と共通部分に同一
符号を使用した第1図において、ヒータ11によって所
定温度に加熱される反応管12は、基板ホルダ13に搭
載された多数のシリコン基板1を収容し、一端に接続し
た反応ガス供給管15はNH330の供給源およびバブ
リング装置21に接続し、他端の排気管16が排気装置
に接続される。
FIG. 1 is a side view schematically showing a chemical vapor deposition apparatus according to an embodiment of the method of the present invention. In FIG. 1, in which the same reference numerals are used for parts common to the previous figure, a reaction tube 12 heated to a predetermined temperature by a heater 11 accommodates a large number of silicon substrates 1 mounted on a substrate holder 13, and is connected to one end. The reactant gas supply pipe 15 is connected to a supply source of NH330 and a bubbling device 21, and the exhaust pipe 16 at the other end is connected to an exhaust device.

バブリング装置21は、有機オキシシラン例えばテトラ
エトキシシラン(St(OCzHs) *) 22を収
容する石英容器23と、5t(OCJs) <22にキ
ャリアガス例えば窒素ガス(Nz)24をバブリングさ
せるパブリング管25と、Si (OCzHs) 42
2を一定温度に維持するするため石英容器23を収容す
る恒温槽31を具え、5i(CJs)422とN224
の混合ガス26は、石英管27を介して反応ガス供給管
15に接続される。
The bubbling device 21 includes a quartz container 23 containing an organic oxysilane such as tetraethoxysilane (St(OCzHs)*) 22, and a bubbling tube 25 for bubbling a carrier gas such as nitrogen gas (Nz) 24 into the 5t(OCJs)<22. , Si (OCzHs) 42
5i (CJs) 422 and N224.
The mixed gas 26 is connected to the reaction gas supply pipe 15 via a quartz tube 27.

このような装置において、パルプ28と29を開きNH
z30と混合ガス26とを適当に混合させた反応ガス1
4を、0.5〜1.5 Torrに減圧し750〜80
0℃に加熱した反応管12に供給すると、X−3i(O
Cz Hs)t + Z−NHs−+5ixOy Nz
 +4x−Cz Ha +(4−y) Hz O+ (
y−2x +3/2・z ) Htの反応によって、S
 1xoy Nz(オキシナイトライド)の膜が基板表
面に成長する。
In such a device, pulps 28 and 29 are opened and NH
Reaction gas 1 made by appropriately mixing z30 and mixed gas 26
4 to 0.5 to 1.5 Torr and 750 to 80
When supplied to the reaction tube 12 heated to 0°C, X-3i(O
Cz Hs)t + Z-NHs-+5ixOy Nz
+4x-Cz Ha +(4-y) Hz O+ (
y-2x +3/2・z) By the reaction of Ht, S
A film of 1xoy Nz (oxynitride) is grown on the substrate surface.

なお、前記実施例では有機オキシシランとして珪酸エチ
ルを使用したが、本発明方法は他の有機オキシシラン、
例えば テトラメトキシシラン 5t(OCHi)tエチルトリ
エトキシシラン (Cz Hs)St(OCz Hs)xアミルトリエト
キシシラン Cs  HzSi(OCz  Hsh ビニールトリエトキシシラン CHz=CHS i(OCt Hs)+フェノールトリ
エトキシシラン C6H5S i(OCt Ha)ツ ジメチルダイオキシシラン (CH3) z S i(OCz H5) !ジフェニ
ルダイオキシシラン (C6Hs)z 5i(OCz Hs)zが使用できる
と共に、有機オキシシランのバブリング用のキャリアガ
スとして前記反応に関わらず安定なもの、例えばアルゴ
ンガスやヘリウムガス等を使用可能であり、有機オキシ
シランの蒸気はバブリングなしに可能であることを付記
する。
Note that in the above examples, ethyl silicate was used as the organic oxysilane, but the method of the present invention can be performed using other organic oxysilanes,
For example, tetramethoxysilane 5t (OCHi) t ethyltriethoxysilane (Cz Hs) St (OCz Hs) i(OCt Ha) dimethyl dioxysilane (CH3) z S i (OCz H5) !Diphenyl dioxysilane (C6Hs) z 5i (OCz Hs) z can be used and can also be used in the above reaction as a carrier gas for bubbling of organic oxysilane. Regardless, it is possible to use a stable gas such as argon gas or helium gas, and it should be noted that organic oxysilane vapor can be used without bubbling.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明方法によれば、有機オキシシ
ランとアンモニアとの混合ガスを反応ガスとした化学気
相成長によって成長させたオキシナイトライドは、反応
管内におけるシリコン分圧と酸素分圧との比が常時一定
となり、安定条件の下で成長することになる。従って、
該オキシナイトライドを絶縁膜としたキャパシタは、ロ
ット間における組成比等の膜質のばらつきが少なくて再
現性に優れ、小型、高容量化設計になるキャパシタを量
産可能とし、半導体装置の高集積化等に寄与した効果が
ある。
As explained above, according to the method of the present invention, oxynitride grown by chemical vapor deposition using a mixed gas of organic oxysilane and ammonia as a reaction gas is produced by the reaction between the silicon partial pressure and the oxygen partial pressure in the reaction tube. The ratio remains constant and growth occurs under stable conditions. Therefore,
Capacitors using this oxynitride as an insulating film have excellent reproducibility with little variation in film quality such as composition ratio between lots, making it possible to mass produce capacitors designed to be smaller and have higher capacitance, and contributing to higher integration of semiconductor devices. There is an effect that contributes to etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例に係わる化学気相成長装
置の概略側面図、 第2図はMOSメモリ装置の一部分、 第3図は従来の化学気相成長装置の概略側面図、である
。 図中において、 1 は基キ反、 5はキャパシタ1色縁膜、 6.7はポリシリコン膜、 12は反応管、 14は混合反応ガス、 22は有機オキシシラン、 30はアンモニアガス、 を示す。 へイO5〆(巳1)A畳11 の−台すりうゝ第zm イ追釆6リイ巴り町へ本目h\長1し置の不良し田各側
面D]第3図
FIG. 1 is a schematic side view of a chemical vapor deposition apparatus according to an embodiment of the method of the present invention, FIG. 2 is a part of a MOS memory device, and FIG. 3 is a schematic side view of a conventional chemical vapor deposition apparatus. be. In the figure, 1 is a base film, 5 is a capacitor single color film, 6.7 is a polysilicon film, 12 is a reaction tube, 14 is a mixed reaction gas, 22 is an organic oxysilane, and 30 is an ammonia gas. Hei O5 〆 (Snake 1) A tatami 11 -Ochi -Ruri Uto ZM Ichi 6 Rey Tomo -cho, the main H\

Claims (1)

【特許請求の範囲】[Claims]  オキシナイトライドにてなる絶縁膜(5)を、有機オ
キシシラン(22)とアンモニア(30)との混合反応
ガス(14)を使用し、化学気相成長により成長させる
ことを特徴とする絶縁膜の気相成長方法。
An insulating film (5) made of oxynitride is grown by chemical vapor deposition using a mixed reaction gas (14) of organic oxysilane (22) and ammonia (30). Vapor phase growth method.
JP8880688A 1988-04-11 1988-04-11 Vapor growth method of insulating film Pending JPH01260833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8880688A JPH01260833A (en) 1988-04-11 1988-04-11 Vapor growth method of insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8880688A JPH01260833A (en) 1988-04-11 1988-04-11 Vapor growth method of insulating film

Publications (1)

Publication Number Publication Date
JPH01260833A true JPH01260833A (en) 1989-10-18

Family

ID=13953127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8880688A Pending JPH01260833A (en) 1988-04-11 1988-04-11 Vapor growth method of insulating film

Country Status (1)

Country Link
JP (1) JPH01260833A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162428A (en) * 1990-10-24 1992-06-05 Nec Corp Manufacture of semiconductor device
US5362686A (en) * 1990-06-05 1994-11-08 Mitsubishi Denki Kabushiki Kaisha Manufacturing method for protective silicon oxynitride film
EP1470264A1 (en) * 2001-12-28 2004-10-27 Applied Materials, Inc. Methods for silicon oxide and oxynitride deposition using single wafer low pressure cvd

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362686A (en) * 1990-06-05 1994-11-08 Mitsubishi Denki Kabushiki Kaisha Manufacturing method for protective silicon oxynitride film
JPH04162428A (en) * 1990-10-24 1992-06-05 Nec Corp Manufacture of semiconductor device
EP1470264A1 (en) * 2001-12-28 2004-10-27 Applied Materials, Inc. Methods for silicon oxide and oxynitride deposition using single wafer low pressure cvd
EP1470264A4 (en) * 2001-12-28 2007-05-16 Applied Materials Inc Methods for silicon oxide and oxynitride deposition using single wafer low pressure cvd

Similar Documents

Publication Publication Date Title
TWI274790B (en) Methods for producing silicon nitride films and silicon oxynitride films by thermal chemical vapor deposition
EP0010910B1 (en) Method for forming an insulating film layer on a semiconductor substrate surface
George et al. Atomic layer controlled deposition of SiO2 and Al2O3 using ABAB… binary reaction sequence chemistry
US5032545A (en) Process for preventing a native oxide from forming on the surface of a semiconductor material and integrated circuit capacitors produced thereby
US5484749A (en) Manufacturing method of semiconductor device
US5290736A (en) Method of forming interlayer-insulating film using ozone and organic silanes at a pressure above atmospheric
EP0605205B1 (en) Method for chemical vapor deposition and apparatus therefor
US4708884A (en) Low temperature deposition of silicon oxides for device fabrication
IE914500A1 (en) Process for producing a smooth, polycrystalline silicon¹layer doped with arsenic for highly integrated circuits
JP2005534179A (en) Low temperature dielectric deposition using aminosilane and ozone.
US5324539A (en) Method for forming CVD thin glass films
EP0212691A1 (en) Low temperature chemical vapor deposition of silicon dioxide films
JP2001332550A (en) Semiconductor device and its manufacturing method
JPH01260833A (en) Vapor growth method of insulating film
JP2004288979A (en) Method for forming insulating film
JP3836553B2 (en) Method for manufacturing silicon insulating film
KR100200888B1 (en) Method of forming an inter-layer insulating film
US3843398A (en) Catalytic process for depositing nitride films
WO2009134080A2 (en) Method for depositing polysilicon thin film with ultra-fine crystal grains
SE427399B (en) COATING COMPOSITION PREFERRED INTENDED FOR SEMICONDUCTORS AS WELL AS PREPARING THE COMPOSITION
KR20050018641A (en) Low temperature dielectric deposition using aminosilane and ozone
KR100341059B1 (en) A Method for Forming Poly-Crystalline Silicon Thin Film
JP2890698B2 (en) Method of forming silicon nitride film
KR101046757B1 (en) Capacitor of semiconductor device and manufacturing method thereof
JPH06342786A (en) Forming method of insulating film and vacuum cvd device