JPH04162428A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04162428A
JPH04162428A JP28612990A JP28612990A JPH04162428A JP H04162428 A JPH04162428 A JP H04162428A JP 28612990 A JP28612990 A JP 28612990A JP 28612990 A JP28612990 A JP 28612990A JP H04162428 A JPH04162428 A JP H04162428A
Authority
JP
Japan
Prior art keywords
film
thickness
wiring
wirings
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28612990A
Other languages
Japanese (ja)
Inventor
Yasuhide Den
田 康秀
Akira Isobe
晶 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28612990A priority Critical patent/JPH04162428A/en
Publication of JPH04162428A publication Critical patent/JPH04162428A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the thinning of the film thickness of the sidewall sections of wirings even when the space of the wirings is fined, and to obviate the deterioration of moisture resistance by forming an SiON film using organic silane as a raw material as an insulating film and employing the SiON film as a passivation film. CONSTITUTION:An element is formed to a silicon substrate 1, and aluminum wirings 3 in width of 1.0mum and at intervals of 0.8-1.4mum are shaped through a PSG film 2. The silicon substrate 1 is set onto the substrate base 15 of a plasma CVD device, the power of 13.6MHz and 500W is applied to an electrode plate 13 and the power of 200kHz and 500W to the substrate base 15, tetramethoxysilane(TMOS) of 60SCCM, nitrous oxide (N2O) of 1.0SLM and ammonia (NH3) of 2.0SLM are flowed into a reaction chamber 8 from a gas supply port 14 as raw material gases, and an SiON film 4 in thickness of approximately 1.0mum is formed onto the aluminum wirings 3 at a substrate temperature of 300 deg.C under the gas pressure of 2.0Torr.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特にパッシベー
ション膜また層間絶縁膜の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of forming a passivation film or an interlayer insulating film.

〔従来の技術〕[Conventional technology]

従来、半導体装置のパッシベーション膜としては、リン
ガラス膜(PSG膜)上にプラズマCVD法1    
                         
    +++により成長したシリコン窒化膜(プラズ
マSiN膜)の2層構造の膜が用いられてきた。しかし
、この構造のパッシベーション膜では、高温熱処理によ
りA℃配線にボイドが発生し、微細な配線を有する近年
のLSIには適さないことがわかってきた。そこで、こ
の構造の膜の代りにプラズマCVD法により成膜したシ
リコンオキシナイトライド膜(SiOx膜)を単層で用
いる方法が実施されている。5iON膜の成長方法は、
S iH4,N20゜NH3を原料ガスとして用い、平
行平板電極間でか少ないため、下層のAj2配線にボイ
Fが発生することもない。
Conventionally, as a passivation film for semiconductor devices, plasma CVD method 1 was applied on a phosphorus glass film (PSG film).

A two-layer structure film of silicon nitride film (plasma SiN film) grown by +++ has been used. However, in the passivation film having this structure, voids are generated in the A.degree. C. wiring due to high-temperature heat treatment, and it has been found that the passivation film is not suitable for recent LSIs having fine wiring. Therefore, instead of a film having this structure, a method has been implemented in which a single layer of silicon oxynitride film (SiOx film) formed by plasma CVD is used. The growth method of 5iON film is as follows.
Since SiH4,N20°NH3 is used as the raw material gas and the amount is only small between the parallel plate electrodes, no void F is generated in the Aj2 wiring in the lower layer.

また、配線の微細化に伴ない平坦性が要求される層間絶
縁膜の形成方法としては、プラズマCVD法により形成
したシリコン酸化膜(プラズマS i O2膜)上にシ
リコン化合物のアルコール溶液を塗布し、焼成すること
により形成した絶縁膜(SOG膜)の」−に、再びプラ
ズマ酸化膜を成長する方法が一般的に用いられている。
In addition, as a method for forming an interlayer insulating film that requires flatness as wiring becomes finer, an alcohol solution of a silicon compound is applied onto a silicon oxide film (plasma SiO2 film) formed by plasma CVD. Generally, a method is used in which a plasma oxide film is grown again on an insulating film (SOG film) formed by baking.

また、よりカバレジの良いプラズマCVD膜としてテト
ラエトキシシラン(TE01)を原料としたシリコン酸
化膜(T E OS  S 102膜)を上下のプラズ
マ酸化膜として用いる方法も行われている。
Furthermore, as a plasma CVD film with better coverage, a method is also used in which silicon oxide films (TEOS S 102 films) made from tetraethoxysilane (TE01) are used as the upper and lower plasma oxide films.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上述した従来の絶縁膜の成膜方法のうち、81
ON膜をパッシベション膜として用いる場合は、下層の
′配線がより微細化し、配線間隔が狭くなってくるにつ
れ、配線側壁部の5iON膜の厚さが薄くなり、耐湿性
が劣化してしまうという問題点がある。
However, among the conventional insulating film forming methods mentioned above, 81
When using an ON film as a passivation film, there is a problem that as the underlying wiring becomes finer and the spacing between the wiring becomes narrower, the thickness of the 5iON film on the side wall of the wiring becomes thinner and the moisture resistance deteriorates. There is a point.

またSOG膜上にプラズマ酸化膜(SiO2)を形成す
る層間絶縁膜の形成方法では、SOG膜が吸湿性を持つ
ため、上層配線金属としてAβをスパッタ法により成膜
する際、下層配線との接続孔の側面に露出したSOG膜
から、アウトガス(水分)が発生して下層配線表面を酸
化し、接続孔部における配線の導通不良を引き起こしや
すいという問題点がある。開孔部のSOG膜が露出しな
いようにあらかじめエッチバックを行ったとしても、界
面を通してガスが放出され同様の不良が起きるため、塗
布−焼成後のSOG膜が大気中の水分を吸わない様に真
空中あるいは乾燥窒素中で保持する必要がある。
In addition, in the interlayer insulating film formation method in which a plasma oxide film (SiO2) is formed on the SOG film, since the SOG film has hygroscopic properties, when Aβ is formed as the upper layer wiring metal by sputtering, it is difficult to connect to the lower layer wiring. There is a problem in that outgas (moisture) is generated from the SOG film exposed on the side surface of the hole, oxidizes the surface of the lower wiring, and tends to cause poor conduction of the wiring in the connection hole. Even if etchback is performed in advance to prevent the SOG film from being exposed in the openings, gas is released through the interface and similar defects occur. Must be kept under vacuum or dry nitrogen.

別の対策としては、上層のプラズマ5i02膜を比較的
多孔質の膜質とし、これを成膜した後熱処理を行い、S
OG膜中の水分を上層のプラズマ5102膜を通して逃
がしてやる方法がある。しかしプラズマTEO8S i
 02膜ではそのような多孔質な膜質を得ようとすると
、膜中に5i−OH結合を含む膜となってしまう。この
ような膜は、それ自身吸湿性を持つため、従来と同様の
導通不良や配線の腐食、さらにはTE01−3i○2膜
自身のクラックの発生などを引き起こしやすいという欠
点がある。
Another countermeasure is to make the upper plasma 5i02 film relatively porous, and then heat-treat it after it is formed.
There is a method in which the moisture in the OG film is allowed to escape through the upper plasma 5102 film. However, plasma TEO8S i
If an attempt is made to obtain such porous film quality in the 02 film, the film will end up containing 5i-OH bonds in the film. Since such a film itself has hygroscopic properties, it has the disadvantage of easily causing poor conduction, corrosion of wiring, and cracks in the TE01-3i○2 film itself, as in the conventional case.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、半導体装置の絶縁膜
として、有機シランガスを原料に使ったプラズマCVD
法によりシリコンオキシナイトライド膜を形成するもの
である。
The method for manufacturing a semiconductor device of the present invention is a plasma CVD method using an organic silane gas as a raw material to form an insulating film of a semiconductor device.
A silicon oxynitride film is formed by this method.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例を説明するための半導体
チップの断面図であり、本発明をパッシベーション膜に
適用した場合である。また第2図は実施例で用いたプラ
ズマCVD装置であり、反応室8内には加熱源10上に
置かれた電極を兼ねる基板台15と、これに対向して電
極板13が設けられている。これら電極板には高周波電
源9が接続されており、反応室8は排出口11を介して
真空ポンプ12により真空になるように構成されている
。また、反応ガスは電極板13の中央部のガス供給口1
4より供給される。
FIG. 1 is a cross-sectional view of a semiconductor chip for explaining a first embodiment of the present invention, in which the present invention is applied to a passivation film. Further, FIG. 2 shows the plasma CVD apparatus used in the example, in which a substrate table 15 which also serves as an electrode placed on a heating source 10 is provided in the reaction chamber 8, and an electrode plate 13 is provided opposite to this. There is. A high frequency power source 9 is connected to these electrode plates, and the reaction chamber 8 is evacuated by a vacuum pump 12 via an outlet 11. In addition, the reaction gas is supplied to the gas supply port 1 in the center of the electrode plate 13.
Supplied from 4.

まずシリコン基板1に素子形成したのち、PSG膜2を
介して幅10μm2間隔08〜1.4μmのアルミ配線
3を形成する。このシリコン基板1を第2図に示したプ
ラズマCVD装置の基板台15上にセットしたのち、電
極板13に13.6MHz。
First, elements are formed on a silicon substrate 1, and then aluminum interconnections 3 with a width of 10 μm and an interval of 08 to 1.4 μm are formed via a PSG film 2. After this silicon substrate 1 was set on the substrate stand 15 of the plasma CVD apparatus shown in FIG. 2, the electrode plate 13 was heated at 13.6 MHz.

500W、基板台15に200KHz、500Wの電力
を与え、原料ガスとしてテトラメトキシシラン(TM0
1)60SCCM、亜酸化窒素(N20)1、 OS 
LM、アンモニア(NH3)2.O8LMをガス供給口
14より反応室8内に流し、基板温度300℃、 2.
0Torrのガス圧下でアルミ配線3上に厚さ約1.0
μmの5iON膜4を形成した。
A power of 500 W and 200 KHz was applied to the substrate table 15, and tetramethoxysilane (TM0
1) 60SCCM, nitrous oxide (N20) 1, OS
LM, ammonia (NH3)2. 2. Flow O8LM into the reaction chamber 8 from the gas supply port 14, and set the substrate temperature to 300°C.
Approximately 1.0 mm thick on aluminum wiring 3 under 0 Torr gas pressure.
A 5iON film 4 having a thickness of μm was formed.

このようにして得られた5iON膜4は、ステップカバ
レッジが良好で、アルミ配線3の間隔が狭くなっても゛
、アルミ配線側壁部の膜厚もあまり薄くなることはなく
、耐湿性に優れたパッシベーション膜を形成することが
できた。また、5IH4,N20及びNH’3の原料ガ
スで5iON膜を形成する従来例では、5iON膜を厚
く堆積するとアルミ配線間に空洞が形成されたが、本実
施例では空洞の発生は全くみられなかった。
The 5iON film 4 obtained in this way has good step coverage, and even if the interval between the aluminum wiring lines 3 becomes narrow, the film thickness on the side wall of the aluminum wiring does not become too thin, and it has excellent moisture resistance. A passivation film could be formed. In addition, in the conventional example in which a 5iON film is formed using raw material gases of 5IH4, N20, and NH'3, cavities were formed between the aluminum wirings when the 5iON film was deposited thickly, but in this example, no cavities were observed. There wasn't.

第3図はアルミ配線間隔と、アルミ配線3表面及び側面
の5iON膜4の厚さの比b/aとの関係を示した図で
ある。アルミ配線間隔が1.0μmの場合、S iHt
を用いる従来例ではアルミ配線側面の5iON膜の厚さ
は表面の厚さに対し約50%であったが、本実施例によ
れば80%の厚さが得られている。
FIG. 3 is a diagram showing the relationship between the aluminum wiring interval and the ratio b/a of the thickness of the 5iON film 4 on the surface and side surface of the aluminum wiring 3. When the aluminum wiring spacing is 1.0 μm, SiHt
In the conventional example using aluminum wiring, the thickness of the 5iON film on the side surface of the aluminum wiring was about 50% of the surface thickness, but according to this embodiment, the thickness was 80%.

また第3図に示したのと同一の試料を125℃2気圧の
条件でプレッシャークッカーテス)  (PCT)を行
ない、アルミ配線の腐食が始まる時間(故障開始時間)
を調べた。その結果を第4図に示す。゛第4図から明ら
かなように、実施例ではアルミ配線間隔が狭くなっても
耐湿性が劣化しないことが分かる。
In addition, the same sample shown in Figure 3 was subjected to a pressure cooker test (PCT) at 125°C and 2 atm, and the time at which aluminum wiring begins to corrode (failure start time) was measured.
I looked into it. The results are shown in FIG. As is clear from FIG. 4, it can be seen that in the example, the moisture resistance does not deteriorate even if the aluminum wiring spacing becomes narrower.

第5図は本発明の第2の実施例を説明するための半導体
チップの断面図であり、本発明を層間絶縁膜に適用した
場合である。
FIG. 5 is a cross-sectional view of a semiconductor chip for explaining a second embodiment of the present invention, in which the present invention is applied to an interlayer insulating film.

まず第5図に示すように、素子が形成されたシリコン基
板1上にSiO2等の絶縁膜2Aを介してアルミ配線3
を形成したのち層間絶縁膜として厚さ05μmのプラズ
マS 102膜5.平坦部での厚さ0.2μmのSOG
膜6及び厚さ0.5μmのよい。5iON膜4Aの形成
は、第1の実施例と同様に行った。すなわち、原料ガス
としてテトラエトキシシラン(TE01)50SCCM
、亜酸化窒素(N20)1.O3LM、アンモニア(N
H3) 2. OS LMを反応室8に流し、2.0T
orrのガス圧で平行平板電極に50’OWの電圧を与
えることにプラズマを発生させ、基板温度300℃でC
VD成長を行った。
First, as shown in FIG. 5, an aluminum wiring 3 is placed on a silicon substrate 1 on which an element is formed via an insulating film 2A such as SiO2.
5. After forming a plasma S102 film with a thickness of 05 μm as an interlayer insulating film. SOG with a thickness of 0.2μm at the flat part
The film has a thickness of 6 and a thickness of 0.5 μm. The 5iON film 4A was formed in the same manner as in the first example. That is, 50 SCCM of tetraethoxysilane (TE01) was used as the raw material gas.
, nitrous oxide (N20)1. O3LM, ammonia (N
H3) 2. Flow OS LM into reaction chamber 8, 2.0T
Plasma is generated by applying a voltage of 50'OW to the parallel plate electrodes at a gas pressure of orr, and C
VD growth was performed.

こうして得られた5iON膜4A中のSl−○H結合を
FTRI測定により調べた結果、SOG膜の40%程度
であることが確認された。また成膜後400℃30分の
熱処理を行なうことにより、SOG膜6中の水分が5i
ON膜4Aを通して放出されるため、層間絶縁膜に接続
孔を形成し上層配線用のアルミをスパッタ法により成膜
する際、下層のアルミ配線表面が酸化されることがない
ので良好な歩留りを得ることができる。
As a result of examining the Sl-○H bond in the 5iON film 4A thus obtained by FTRI measurement, it was confirmed that it was about 40% of that in the SOG film. In addition, by performing heat treatment at 400°C for 30 minutes after film formation, moisture in the SOG film 6 is reduced to 5i.
Since it is emitted through the ON film 4A, when forming connection holes in the interlayer insulating film and depositing aluminum for upper layer wiring by sputtering, the surface of the lower aluminum wiring is not oxidized, resulting in a good yield. be able to.

このSOG膜からのガス(水分)の透過性を調べるため
、実施例及び従来例としての次の4種類の膜をそれぞれ
81基板上と、Si基板の」二のSOG膜(0,:2μ
m)lに0.5 μmの厚さに形成した。すなわち試料
A:プラズマ(P) −T E OS−3iON膜、試
料B:プラズマ(P) −T E OS−8iO2膜、
試料C:プラズマ(P)−TE01−8iCh膜(多孔
質)、試料D:プラズマ(P)−8102膜である。
In order to investigate the permeability of gas (moisture) from this SOG film, the following four types of films were prepared as examples and conventional examples, one on an 81 substrate, and the other on a Si substrate (0,:2μ).
m)l to a thickness of 0.5 μm. That is, sample A: plasma (P) -TE OS-3iON film, sample B: plasma (P) -TE OS-8iO2 film,
Sample C: Plasma (P)-TE01-8iCh film (porous), Sample D: Plasma (P)-8102 film.

81基板上の試料膜をリファレンスにSOG膜上の試料
膜のFTIRスペクトルを測定すると、SOG膜のIR
スペクトルが得られるが、この時のS 1−OH吸収ピ
ークの大きさを、SOG膜単層のIRスペクトルにおけ
るS 1−ORピークとの比で表わし第6図に示す。第
6図に形成直後と、400℃30分後の結果を示すが、
試料B、Dでは5i−OHが熱処理によりあまり減って
いないのに対し、試料A、Cではほとんど消えている。
When measuring the FTIR spectrum of the sample film on the SOG film using the sample film on the 81 substrate as a reference, the IR of the SOG film is
A spectrum is obtained, and the magnitude of the S 1-OH absorption peak at this time is expressed as a ratio to the S 1-OR peak in the IR spectrum of the single layer SOG film, and is shown in FIG. Figure 6 shows the results immediately after formation and after 30 minutes at 400°C.
In Samples B and D, 5i-OH did not decrease much due to heat treatment, whereas in Samples A and C, it almost disappeared.

次に試料A−Dの膜を含む層間絶縁膜を2層配線の層間
絶縁膜として用い、5000個の接続孔が直列に並んだ
パターンを形成してその良品率を調べた。その結果を第
7図に示す。接続孔の径を1.0μm口で比較すると、
良品率100%を達成できだのは試料Aを含む層間絶縁
膜のみであった。
Next, an interlayer insulating film containing the films of samples A to D was used as an interlayer insulating film for two-layer wiring, a pattern in which 5000 connection holes were arranged in series was formed, and the yield rate was examined. The results are shown in FIG. Comparing the diameter of the connection hole with a 1.0 μm opening,
Only the interlayer insulating film containing sample A was able to achieve a non-defective rate of 100%.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、有機シランを原料とした
Si□N膜を絶縁膜として形成するため、この5iON
膜をパッシベーション膜として用いる場合は、配線間隔
が微細になっても配線側壁部の膜厚が薄くなることはな
く、耐湿性が劣化しないので、半導体装置の信頼性を向
上させることができる。
As explained above, in the present invention, in order to form a Si□N film made of organic silane as a raw material as an insulating film, this 5iON
When the film is used as a passivation film, even if the wiring spacing becomes fine, the film thickness on the side wall of the wiring does not become thinner, and the moisture resistance does not deteriorate, so that the reliability of the semiconductor device can be improved.

また5iON膜をSOG膜上に形成し層間絶縁膜として
用いる場合は、後の熱処理によりSOG膜中の水分をS
 i OH膜を通して放出することができるので、接続
孔においてSOG膜からのガスを原因とする導通不良が
発生することがなくなるため、安定した高い歩留りで半
導体装置を製造することができる。また、有機シランを
原料とするため、カバレジが良く、平坦性が向上するの
で、上層配線の断線やエツチング残りを低減できるとい
う効果もある。
In addition, when a 5iON film is formed on an SOG film and used as an interlayer insulating film, the moisture in the SOG film is removed by the subsequent heat treatment.
Since it can be released through the i OH film, conduction defects caused by gas from the SOG film will not occur in the connection holes, so semiconductor devices can be manufactured with a stable high yield. Furthermore, since organic silane is used as a raw material, coverage is good and flatness is improved, which has the effect of reducing disconnections and etching residues in upper layer wiring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を説明するための半導体
チップの断面図、第2図は実施例に使用したプラズマC
VD装置の構成図、第3図及び第4図はアルミ配線間隔
と5iON膜厚比及び故障開始時間との関係を示す図、
第5図は本発明の第2の実施例を説明するための半導体
チップの断面図、第6図及び第7図は、評価用試料と8
1−○Hピーク比及び良品率との関係を示す図である。 1・・・・・・シリコン基板、2・・・・・・PSG膜
、2A・・・・・・絶縁膜、3・・・・・アルミ配線、
4,4A・・・・・・Si’ON膜、5・・・・・・プ
ラズマ5iOJ!iW:、6・・・・・・5OGIlu
。 代理人 弁理士  内 原   晋
FIG. 1 is a cross-sectional view of a semiconductor chip for explaining the first embodiment of the present invention, and FIG. 2 is a plasma C
The configuration diagram of the VD device, Figures 3 and 4 are diagrams showing the relationship between aluminum wiring spacing, 5iON film thickness ratio, and failure start time,
FIG. 5 is a cross-sectional view of a semiconductor chip for explaining the second embodiment of the present invention, and FIGS.
It is a figure showing the relationship between the 1-○H peak ratio and the non-defective product rate. 1... Silicon substrate, 2... PSG film, 2A... Insulating film, 3... Aluminum wiring,
4,4A...Si'ON film, 5...Plasma 5iOJ! iW:,6...5OGIlu
. Agent Patent Attorney Susumu Uchihara

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上にプラズマCVD法により絶縁膜を形成
する半導体装置の製造方法において、前記絶縁膜は有機
シランガスを原料とするシリコンオキシナイトライド膜
であることを特徴とする半導体装置の製造方法。
1. A method of manufacturing a semiconductor device in which an insulating film is formed on a semiconductor substrate by a plasma CVD method, wherein the insulating film is a silicon oxynitride film using organic silane gas as a raw material.
JP28612990A 1990-10-24 1990-10-24 Manufacture of semiconductor device Pending JPH04162428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28612990A JPH04162428A (en) 1990-10-24 1990-10-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28612990A JPH04162428A (en) 1990-10-24 1990-10-24 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04162428A true JPH04162428A (en) 1992-06-05

Family

ID=17700307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28612990A Pending JPH04162428A (en) 1990-10-24 1990-10-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04162428A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372668B2 (en) * 2000-01-18 2002-04-16 Advanced Micro Devices, Inc. Method of forming silicon oxynitride films
JP2007324616A (en) * 2007-07-25 2007-12-13 Macronix Internatl Co Ltd Passivation structure for flash memory and method for manufacturing the same
JP2015529852A (en) * 2012-09-03 2015-10-08 東方電気グループ(宜興)Magi太陽エネルギー科技有限公司 Method for manufacturing anti-reflection coating having anti-PID effect

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239940A (en) * 1988-03-22 1989-09-25 Seiko Epson Corp Semiconductor device
JPH01260833A (en) * 1988-04-11 1989-10-18 Fujitsu Ltd Vapor growth method of insulating film
JPH0439934A (en) * 1990-06-05 1992-02-10 Mitsubishi Electric Corp Semiconductor device and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239940A (en) * 1988-03-22 1989-09-25 Seiko Epson Corp Semiconductor device
JPH01260833A (en) * 1988-04-11 1989-10-18 Fujitsu Ltd Vapor growth method of insulating film
JPH0439934A (en) * 1990-06-05 1992-02-10 Mitsubishi Electric Corp Semiconductor device and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372668B2 (en) * 2000-01-18 2002-04-16 Advanced Micro Devices, Inc. Method of forming silicon oxynitride films
JP2007324616A (en) * 2007-07-25 2007-12-13 Macronix Internatl Co Ltd Passivation structure for flash memory and method for manufacturing the same
JP2015529852A (en) * 2012-09-03 2015-10-08 東方電気グループ(宜興)Magi太陽エネルギー科技有限公司 Method for manufacturing anti-reflection coating having anti-PID effect

Similar Documents

Publication Publication Date Title
JP2682403B2 (en) Method for manufacturing semiconductor device
JP3135198B2 (en) Method of depositing silicon oxynitride film by plasma enhanced CVD
JPH08153784A (en) Manufacture of semiconductor device
JPH09237785A (en) Semiconductor device and its manufacture
JP3492634B2 (en) Method for filling a gap on a semiconductor wafer
JP2003045959A (en) Semiconductor device and method of manufacturing same
US5635425A (en) In-situ N2 plasma treatment for PE TEOS oxide deposition
KR20010021449A (en) Method of Manufacturing Silicon Nitride System Film
US5763005A (en) Method for forming multilayer insulating film of semiconductor device
JPH0831825A (en) Production of semiconductor device
JPH04162428A (en) Manufacture of semiconductor device
US7074698B2 (en) Method of fabricating semiconductor device using plasma-enhanced CVD
US6207590B1 (en) Method for deposition of high stress silicon dioxide using silane based dual frequency PECVD process
JPH05291415A (en) Production of semiconductor device
JPH05206282A (en) Manufacturing method of multilayer wiring structure of semiconductor device
JP2002289609A (en) Semiconductor device and its manufacturing method
JP3539741B2 (en) Method for manufacturing semiconductor device
JP2646878B2 (en) Semiconductor device and manufacturing method thereof
JPH10189578A (en) Manufacture of semiconductor device
EP1460685A1 (en) Semiconductor device and method of manufacturing the same
JPH01152631A (en) Formation of sixoynz insulating film
JPH09115901A (en) Forming method for sinx/psg laminated construction
JPH0638456B2 (en) Method for manufacturing semiconductor device
JPH0669361A (en) Semiconductor device and its manufacture
JPH05218027A (en) Semiconductor device and manufacture thereof