JPS60123022A - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JPS60123022A
JPS60123022A JP23180583A JP23180583A JPS60123022A JP S60123022 A JPS60123022 A JP S60123022A JP 23180583 A JP23180583 A JP 23180583A JP 23180583 A JP23180583 A JP 23180583A JP S60123022 A JPS60123022 A JP S60123022A
Authority
JP
Japan
Prior art keywords
reaction
substrate
susceptor
chamber
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23180583A
Other languages
Japanese (ja)
Other versions
JPH0586643B2 (en
Inventor
Kazumi Kasai
和美 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23180583A priority Critical patent/JPS60123022A/en
Publication of JPS60123022A publication Critical patent/JPS60123022A/en
Publication of JPH0586643B2 publication Critical patent/JPH0586643B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enable to form steep a junction face and a doping profile by a method wherein reaction gases of different kinds are supplied to pertitioned reaction chamber parts respectively, and a substrate is transferred from the reaction chamber part on one side to the reaction chamber part on another side during reaction treatment to form the growth films of different kinds. CONSTITUTION:Hydrogen, arsine and trimethylgallium are supplied as reaction gases to grow non-doped GaAs as the buffer layer of an FET from a gas pipe 10 to a reaction tube chamber on one side. Moreover, hydrogen, arsine, TMG and hydrogen sulfide H2S are supplied as reaction gases to grow N type GaAs as the active layer of the FET from a gas pipe 11 to a reaction tube chamber on another side. A movable susceptor 7 accommodating a GaAs substrate 5, and a susceptor supporting part 9 in the reaction tube are heated to the temperature of about 700 deg.C by a high-frequency coil 12. After a non-doped GaAs film is grown in the tube chamber on one side by controlling the treating hours in such a condition, by transferring the substrate instantaneously to the tube chamber on the other side by half turning the movable susceptor 7 according to a shaft 8, changing over to growth of an N type GaAs film can be attained instantaneously and morever without changing the temperature of the substrate.

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明はCVD (Chemical Vapour 
Deposition)法による半導体膜生成をなす気
相成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical field of the invention The present invention relates to CVD (Chemical Vapor
The present invention relates to a vapor phase growth method for producing a semiconductor film using a deposition method.

(b)技術の背景 ヘテロ接合を利用した半導体デバイスでは、接合界面の
ドーピングプロファイルを厳密に制御する必要があり、
特に超格子デバイスでは分子線源によるビーム蒸着法が
用いられるが量産性に難点があり、 GaAs系又はI
nP系デバイスの製作にはHOCVDと称されるCVD
法が適用されつつある。HOCVD法では反応ガスとし
て有機金属を用いるものであり取扱いの簡便さから広い
応用が期待されてい−る。
(b) Technical background In semiconductor devices using heterojunctions, it is necessary to strictly control the doping profile at the junction interface.
In particular, beam evaporation using a molecular beam source is used for superlattice devices, but there are difficulties in mass production.
CVD called HOCVD is used to manufacture nP-based devices.
The law is being applied. The HOCVD method uses an organic metal as a reaction gas and is expected to find wide application because of its ease of handling.

(C)従来技術と問題点 従来この種のHOCVD法に於いて9反応管内を原料ガ
ス流方向に複数分割し1分割の各室に異成分のガス流を
付与して基板成膜の条件を個別に制御する多室法とよば
れる方法がある。
(C) Conventional technology and problems Conventionally, in this type of HOCVD method, the inside of 9 reaction tubes is divided into multiple chambers in the direction of raw material gas flow, and gas flows of different components are applied to each divided chamber to control the conditions for substrate film formation. There is a method called the multi-chamber method that controls each chamber individually.

前記多室法は1反応管を石英壁で分割し、各室間は完全
に分4+1独立するが、管内一部を分割しない領域とし
、ここで異室間の基板移動をすることが一般的に行なわ
れている。
In the multi-chamber method, one reaction tube is divided by a quartz wall, and each chamber is completely independent by 4+1, but it is common to use a part of the tube as an undivided area to transfer substrates between different chambers. is being carried out.

しかしながら、前記構成の気相成長反応管は。However, the vapor phase growth reaction tube with the above configuration.

(1)成長位置と基板退避位置が離れている為。(1) The growth position and substrate retraction position are far apart.

移動に時間がかかる。又1反復して基板移動をなす操作
が比較的大変である。
It takes time to move. Furthermore, the operation of moving the substrate repeatedly is relatively difficult.

(2)基板移動時、成長条件と異なる場所を通過させね
ばならない。
(2) When moving the substrate, it must pass through a location different from the growth conditions.

(3)前記(])項に関連して特に高周波加熱のカーボ
ンサセプタ(基板支持盤)等を用いる場合、基板温度が
変化する可能性がある。
(3) In relation to the above item ( ), especially when using a carbon susceptor (substrate support board) etc. heated by high frequency, there is a possibility that the substrate temperature changes.

等、気相膜成長の観点から諸種の問題がある。There are various problems from the viewpoint of vapor phase film growth.

(d)発明の目的 本発明の目的は、前記の問題点を解決することである。(d) Purpose of the invention The purpose of the present invention is to solve the above-mentioned problems.

本発明は多層の化合物半導体素子など特に、急峻な接合
界面及びドーピングプロファイルを形成する気相成長方
法を提示することにある。
The present invention provides a vapor phase growth method for forming steep junction interfaces and doping profiles, especially in multilayer compound semiconductor devices.

(e)発明の構成 前記目的は1反応室を複数に分割する仕切板と一体とな
り1分割された反応室部分に延びた固定発熱体を設け、
該固定発熱体上を分割された反応室部分に移動可能な発
熱体よりなるサセプタを設け1分割された反応室部分に
各々種類の異なる反応ガスを供給すると共に2反応処理
中一方の反応室部分から他方の反応室部分へ基板を移動
させて異なる種類の成長膜を生成させることにより達成
される。
(e) Structure of the invention The above object is to provide a fixed heating element that is integrated with a partition plate that divides one reaction chamber into a plurality of parts and extends into one divided reaction chamber part,
A susceptor made of a movable heating element is provided on the fixed heating element in the divided reaction chamber part, and a different type of reaction gas is supplied to each divided reaction chamber part, and one reaction chamber part is used during two reactions. This is accomplished by moving the substrate from one reaction chamber section to another to produce different types of growth films.

(f)発明の実施例 以下1本発明の多室分割の反応管に於ける隔壁部の構成
と、高周波コイル時の基板温度を一定に保ちながら膜成
長条件の瞬時的変化が可能であり。
(f) Embodiments of the Invention The following 1 structure of the partition wall in the multi-chamber divided reaction tube of the present invention makes it possible to instantaneously change the film growth conditions while keeping the substrate temperature constant during the high-frequency coil.

各反応室間を移動させる基板の回転またはスライド機構
を具えるカーボンサセプタを有する反応管実施例を第1
図〜第6図に従って詳細に説明する。
A first embodiment of a reaction tube having a carbon susceptor with a rotating or sliding mechanism for a substrate to be moved between reaction chambers is shown.
This will be explained in detail according to FIGS.

第1図は9例えばGaAs基板上にGaAsバッファ層
とGaAs−FET動作層などを成膜する縦型多室反応
管実施例を示す簡略斜視図である。
FIG. 1 is a simplified perspective view showing an embodiment of a vertical multi-chamber reaction tube in which, for example, a GaAs buffer layer and a GaAs-FET operating layer are formed on a GaAs substrate.

該反応管の構成は次の通り。The configuration of the reaction tube is as follows.

第1図図中、1は石英製の反応管、2は反応管1と同軸
配置されたその内部が二車に分割された石英ライナ管、
3はライナ管中央部にある石英分割壁、4は石英壁3と
連続してその下方に設けるカーボンサセプタ(固定の仕
切板)、5は前記カーボンサセプタ4の窓開部で二車に
跨る窓、6は気相成長対象の半導体基板、7は前記基板
6の収納凹部を具えかつ二車に跨り基板を露出するカー
ボンサセプタ(可動部)であってその下方は石英製回転
軸8に連接される。9は前記の固定仕切板或いは仕切壁
4と一体的に形成された前記可動サセプタ7に対する支
承部で、該支承部は分割の各反応室に跨っている。
In Fig. 1, 1 is a quartz reaction tube, 2 is a quartz liner tube coaxially arranged with the reaction tube 1 and whose interior is divided into two wheels;
3 is a quartz partition wall in the center of the liner pipe, 4 is a carbon susceptor (fixed partition plate) provided below the quartz wall 3, and 5 is a window opening in the carbon susceptor 4 that spans the two cars. , 6 is a semiconductor substrate to be vapor-phase grown, and 7 is a carbon susceptor (movable part) that has a recess for storing the substrate 6 and exposes the substrate across two wheels, and its lower part is connected to a rotating shaft 8 made of quartz. Ru. Reference numeral 9 denotes a support portion for the movable susceptor 7 formed integrally with the fixed partition plate or partition wall 4, and the support portion spans each of the divided reaction chambers.

前記半導体(たとえばGaAs) 6が装着されるサセ
プタ構成部分はカーボンであるため加工が容易で且つ二
車分離の壁構造等精密な加工が出来るため室間のガス洩
れを非常に小さくし得る。又サセプタ7と支承部9間の
スライド潤滑性にも優れ、る為、基板6の加熱温度を一
定に保持したままで基板6の室間移動ならびに移動の繰
り返しもたやすい。
Since the susceptor component to which the semiconductor (for example, GaAs) 6 is attached is made of carbon, it is easy to process, and the wall structure separating the two wheels can be precisely processed, so that gas leakage between the chambers can be made very small. Furthermore, since the sliding lubricity between the susceptor 7 and the support portion 9 is excellent, it is easy to move the substrate 6 between rooms and repeat the movement while keeping the heating temperature of the substrate 6 constant.

又、10と11は分割壁で仕切られた二車それぞれに異
なる成膜反応ガス体を流すガス管、12は石英反応管1
外周配置の高周波コイル、13はステンレス製のマニホ
ールド、14はガス吸気管、及び15は前記可動側サセ
プタ7に対する基板の室間移動制御部であって前記軸8
と連結される。
Further, 10 and 11 are gas pipes that flow different film-forming reaction gases into two wheels separated by a dividing wall, and 12 is a quartz reaction tube 1.
13 is a stainless steel manifold, 14 is a gas intake pipe, and 15 is a chamber-to-room movement control unit for the substrate relative to the movable susceptor 7, which is connected to the shaft 8.
is connected with.

マニホールド13は、複数分割のライナ管2内ガスを重
役気管14へ連接する。併し上下のマニホールド締結リ
ング16を緩めれば1反応管内のう・イナ管2を下方に
引出すことが出来ると共にライナ管から前記サセプタ組
立体を管軸に沿って引出し加工対象基板6を取り出すこ
とが出来る。
The manifold 13 connects the gas in the plurally divided liner pipes 2 to the executive trachea 14 . However, by loosening the upper and lower manifold fastening rings 16, the inner tube 2 in one reaction tube can be pulled out downward, and the susceptor assembly can be pulled out from the liner tube along the tube axis to take out the substrate 6 to be processed. I can do it.

第2図は、気相成長基板6を収納するカーボンサセプタ
分割壁4の要部構成を示す側面図、及び第3図は第2図
基板サセプタの上面図である。
FIG. 2 is a side view showing the main structure of the carbon susceptor dividing wall 4 that accommodates the vapor growth substrate 6, and FIG. 3 is a top view of the substrate susceptor shown in FIG.

図中、17は可動サセプタ7に設ける基板6収納の凹み
エフである。可動サセプタ7は室間移動制御部15と軸
8により駆動され、サセプタ分割壁4の二車に跨る窓5
を経て左右空間への自在な速度で移動が可能となる。
In the figure, 17 is a recess F provided in the movable susceptor 7 to accommodate the substrate 6. The movable susceptor 7 is driven by an inter-room movement control unit 15 and a shaft 8, and is moved by a window 5 that spans two wheels of the susceptor dividing wall 4.
Through this, it becomes possible to move to the left and right in space at any speed.

係る構成の多室(図示は二車の例)反応管を用いて行う
成膜対象例を以下に述べる。
An example of a film to be formed using a multi-chamber (two-wheeled example shown) reaction tube having such a configuration will be described below.

て、水素、アルシン^sH3,及びトリメチルガリウ成
長するための反応ガス、水素、アルシン、 TMG。
Hydrogen, arsine^sH3, and trimethylgallium, hydrogen, arsine, and TMG as reaction gases for growth.

及び硫化水素H2Sが供給される。反応管内、 GaA
s基板5収納の可動サセプタ7とサセプタ支承g■9は
、高周波コイルにより温度約700°Cに加熱される。
and hydrogen sulfide H2S are supplied. Inside the reaction tube, GaA
The movable susceptor 7 and the susceptor support g9 housed in the s-substrate 5 are heated to a temperature of approximately 700°C by a high-frequency coil.

係る状態で2時間をコントロールして前記一方の管掌で
ノンドープGaAs膜を成長させた1麦、・軸8により
可動サセプタ7を半回転して基板をI舜1?i的に他方
の管掌に移動することで瞬時に然も基板温度をかえるこ
とな(n−GaAs膜の成長に切り変えることが出来る
A non-doped GaAs film was grown on one of the tubes under such conditions for 2 hours under control.The movable susceptor 7 was turned half a turn by the shaft 8 and the substrate was placed on the tube 1. By automatically moving to the other control point, it is possible to switch to growth of an n-GaAs film instantaneously and without changing the substrate temperature.

斯くしてPETバッファ層とFET動作層との界面を急
峻に形成し得る。更にノンドープGaAs成膜室とn−
GaAs成膜室とは隔壁3と4で分離されており。
In this way, the interface between the PET buffer layer and the FET operating layer can be formed steeply. Furthermore, a non-doped GaAs film formation chamber and an n-
It is separated from the GaAs film forming chamber by partition walls 3 and 4.

−万のノンドープGaAs成膜室が他室側ドーノクント
ガスHasにより汚染されることがなく、再現1生の良
い低キヤリア密度のノンドープ層を得ること力く出来る
- The non-doped GaAs film forming chamber of 10,000 times is not contaminated by the donokund gas Has on the other chamber side, and it is possible to obtain a low carrier density non-doped layer with good reproducibility.

第4図は、前記本発明の縦型反応管を、横型反応管に適
用した一実施例を示す斜視図である。
FIG. 4 is a perspective view showing an embodiment in which the vertical reaction tube of the present invention is applied to a horizontal reaction tube.

同図中、第1図装置と同一機能構成部しま同一参照番号
が付与しである。但し9反応管は図示されてない。
In the figure, the same functional components as those in the apparatus of FIG. 1 are designated by the same reference numerals. However, nine reaction tubes are not shown.

第4図横型ライチ管は図示の如く2石英の分離壁3と連
接するカーボン製固定サセプタ4による仕切壁が形成さ
れ、異成分の反応ガス室が形成される。前記サセプタ4
には1前後の反応室に跨る貫通窓5.及び各室に跨る可
動サセプタ7の支承部9が設けられる(第3図参照)。
As shown in FIG. 4, in the horizontal litchi tube, a partition wall is formed by a fixed susceptor 4 made of carbon and connected to a partition wall 3 made of quartz, and a reaction gas chamber containing different components is formed. The susceptor 4
There is a through window spanning the reaction chambers 1 and 5. A support portion 9 for a movable susceptor 7 that spans each chamber is also provided (see FIG. 3).

そして支承部9の面上で回転可能な基板6収納になる可
動サセプタ7が前記同様に配置される。
A movable susceptor 7 that accommodates the rotatable substrate 6 on the surface of the support portion 9 is arranged in the same manner as described above.

前記縦型反応管構成との主たる相違は、可1Jサセプタ
7の駆動部、即ち2石英軸8はカーボン製連結ギヤー1
8を介して水平駆動軸19により駆動されることにある
The main difference from the above-mentioned vertical reaction tube configuration is that the drive unit of the 1J susceptor 7, that is, the quartz shaft 8 is connected to the carbon connecting gear 1.
8 by a horizontal drive shaft 19.

前記実施例図は加工対象基板に対する反応室間の移動は
何れも回転式であるが、前記移動は水平面内のスライド
方式で行うことも出来る。
Although the movement of the substrate to be processed between the reaction chambers in the above-mentioned embodiment diagrams is performed in a rotational manner, the movement may also be performed in a sliding manner in a horizontal plane.

第5図は基板スライド機構によるライナ管の要部断面図
、又第6図は第5図スライド機構部の斜視図である。
FIG. 5 is a cross-sectional view of the main part of the liner tube by the substrate slide mechanism, and FIG. 6 is a perspective view of the slide mechanism part shown in FIG.

第5図と第6図に於いて1反応室部の仕切板或いは固定
側サセプタ4.及び異なる反応室部分に延びる固定サセ
プタの支承部9は一体に成形されること、又前記支承部
9の面上を摺動する可動サセプタ20が配置されること
など基本的構成器よ+ ’fin図例えば第1図と同じ
である。
In FIGS. 5 and 6, the partition plate or fixed side susceptor 4 of one reaction chamber. The basic components include that the support part 9 of the fixed susceptor extending to different reaction chamber parts is integrally molded, and that a movable susceptor 20 that slides on the surface of the support part 9 is disposed. The figure is the same as, for example, FIG.

図中、20は固定サセプタの貫通窓5内を左右方向ど摺
動する可動サセプタ、これには基板6の収納四部が設け
られる。21は支承部上面のスライドガイドをなすレー
ル、22は前記サセプタ20の底面側の一側面に形成す
るう・ツクギヤー、及び236まラックギヤー22と噛
み合うビニオンギヤーである。
In the figure, reference numeral 20 denotes a movable susceptor that slides in the left-right direction within the through-hole 5 of the fixed susceptor, and is provided with four storage parts for the substrate 6. Reference numeral 21 designates a rail forming a slide guide on the upper surface of the support, 22 a gear gear formed on one side of the bottom surface of the susceptor 20, and 236 a pinion gear that meshes with the rack gear 22.

ビニオンギヤー23はライナ管中心の石英軸8を経て基
板移動制御部(第1図を参照されたG1)で駆動される
。而して該軸8の正負回転方向を変えることにより基板
を異なる反応室間に瞬時自9Gこスライド移動させ得る
The binion gear 23 is driven by a substrate movement control section (G1 in FIG. 1) via a quartz shaft 8 located at the center of the liner tube. By changing the positive and negative rotation directions of the shaft 8, the substrate can be instantly slid by 9G between different reaction chambers.

前記スライド機構による場合は3回転式よりもライナ管
の管径を小さくすることが出来る為、装置稼働の例えば
高周波コイル12のサセプタ加熱効率がよくなる利点が
ある。これに伴い、生産加工性をより高めることが出来
る。
In the case of using the slide mechanism, the diameter of the liner tube can be made smaller than in the three-rotation type, so there is an advantage that the efficiency of heating the susceptor of the high frequency coil 12 during device operation, for example, is improved. Accordingly, production processability can be further improved.

この様な多室構成反応管隔壁の基板ザセプタ部を、気密
性が形成しやすい固定カーボン壁とし。
The substrate zaceptor portion of such a multi-chamber reaction tube partition wall is made of a fixed carbon wall that can easily form airtightness.

然も一方の室から他方の室へ加工成膜基板を瞬間的に移
動可能な可動サセプタを具える反応管とすれば、高周波
加熱時のサセプタ基板温度を一定に保持して反応室間の
基板移動操作環、従来5問題とされた事項が解決される
However, if the reaction tube is equipped with a movable susceptor that can instantaneously move the processed film-formed substrate from one chamber to the other, the temperature of the susceptor substrate during high-frequency heating can be kept constant and the substrate between the reaction chambers can be moved. The five problems of the mobile operation ring in the past are solved.

斯(して1例えば急峻な界面を有する多層のエピタキシ
膜成膜を容易に形成することが出来、特性がより良好な
FET等の半導体素子の形成が提供できる。
In this way, for example, a multilayer epitaxial film having a steep interface can be easily formed, and semiconductor elements such as FETs with better characteristics can be formed.

(g)発明の効果 以上、実施例により詳細に説明した本発明の多室反応管
を具備する半導体気相成長装置とすれは。
(g) Effects of the Invention The semiconductor vapor phase growth apparatus equipped with the multi-chamber reaction tube of the present invention has been described in detail with reference to Examples.

急峻なドーピングプロファイルを有する多層の化合物半
導体膜などを効率良く成膜することが出来る。又+MB
E (Molecular Beam Epitaxy
)などの高価な成膜装置を用いる必要がないため半導体
装置形成のコストを軽減することも出来る。
A multilayer compound semiconductor film or the like having a steep doping profile can be efficiently formed. Also + MB
E (Molecular Beam Epitaxy
) It is not necessary to use expensive film forming equipment, so the cost of forming a semiconductor device can also be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明の縦型構成多室反応管実施例を示す簡
略斜視図、第2図は第1図カーボンサセプタの仕切壁要
部構成を示す側面図、第3図は第2図の上面図、及び第
4図は横型反応管実施例を示す簡略斜視図である。又、
第5図と第6図は縦型のスライド機構を有する多室反応
管の要部側断面図と斜視図である。 図中、1は反応管、2は二車分割のライナ管。 4ばカーボンサセプタ(固定部)、5は4の百通窓、6
は加工対象とする半導体基板、7はカーボンサセプタ(
可動部)、8と19は何れも回転軸。 9は7の支承部、10と11は共にガス管、12は高周
波コイル、13はマニホールド、15は基板6の移動制
御部、17は基板収納の凹部、18はギヤー、20はス
ライド式カーボンサセプタ、21は20の支承部。 22はラックギヤー、及び23はピニオンギヤ−である
。 亨1屈 不2川 第3目 第4閃 茅6間
Fig. 1 is a simplified perspective view showing an embodiment of a vertically configured multi-chamber reaction tube of the present invention, Fig. 2 is a side view showing the main structure of the partition wall of the carbon susceptor shown in Fig. 1, and Fig. 3 is Fig. 2 The top view and FIG. 4 are simplified perspective views showing an embodiment of the horizontal reaction tube. or,
FIGS. 5 and 6 are a side sectional view and a perspective view of essential parts of a multichamber reaction tube having a vertical slide mechanism. In the figure, 1 is a reaction tube, and 2 is a two-car liner tube. 4 is the carbon susceptor (fixed part), 5 is the hundred window of 4, 6
7 is the semiconductor substrate to be processed, and 7 is the carbon susceptor (
(movable part), 8 and 19 are both rotating shafts. 9 is a support part for 7, 10 and 11 are both gas pipes, 12 is a high frequency coil, 13 is a manifold, 15 is a movement control part for the board 6, 17 is a recess for storing the board, 18 is a gear, and 20 is a sliding carbon susceptor. , 21 is the bearing part of 20. 22 is a rack gear, and 23 is a pinion gear. Toru 1 unyielding 2 rivers 3rd eye 4th flash 6 days

Claims (1)

【特許請求の範囲】 反応室を複数に分割する仕切板と一体となり。 分割された反応室部分に延びた固定発熱体を設しナ。 該固定発熱体上を分割された反応室部分に移動可能な発
熱体よりなるサセプタを設け2分割された反応室部分に
各々種類の異なる反応ガスを供給すると共に1反応処理
中一方の反応室部分から他方の反応室部分へ基板を移動
させて異なる種類の成長膜を生成させることを特徴とす
る気相成長方法。
[Claims] It is integrated with a partition plate that divides the reaction chamber into a plurality of parts. A fixed heating element extending into the divided reaction chamber is installed. A susceptor made of a movable heating element is provided on the fixed heating element in the divided reaction chamber part, and a different type of reaction gas is supplied to each of the divided reaction chamber parts, and one reaction chamber part is used during one reaction process. A vapor phase growth method characterized by moving a substrate from one reaction chamber to another to produce different types of growth films.
JP23180583A 1983-12-08 1983-12-08 Vapor growth method Granted JPS60123022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23180583A JPS60123022A (en) 1983-12-08 1983-12-08 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23180583A JPS60123022A (en) 1983-12-08 1983-12-08 Vapor growth method

Publications (2)

Publication Number Publication Date
JPS60123022A true JPS60123022A (en) 1985-07-01
JPH0586643B2 JPH0586643B2 (en) 1993-12-13

Family

ID=16929292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23180583A Granted JPS60123022A (en) 1983-12-08 1983-12-08 Vapor growth method

Country Status (1)

Country Link
JP (1) JPS60123022A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100092666A1 (en) * 2006-12-25 2010-04-15 Tokyo Electron Limited Film deposition apparatus and film deposition method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350973A (en) * 1976-10-20 1978-05-09 Matsushita Electric Ind Co Ltd Vapor phase growth method and vapor phase growth apparatus
JPS53110366A (en) * 1977-03-04 1978-09-27 Gnii Pi Redkometa Device for epitaxially growing semiconductor period structure from gaseous phase

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350973A (en) * 1976-10-20 1978-05-09 Matsushita Electric Ind Co Ltd Vapor phase growth method and vapor phase growth apparatus
JPS53110366A (en) * 1977-03-04 1978-09-27 Gnii Pi Redkometa Device for epitaxially growing semiconductor period structure from gaseous phase

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100092666A1 (en) * 2006-12-25 2010-04-15 Tokyo Electron Limited Film deposition apparatus and film deposition method
TWI424475B (en) * 2006-12-25 2014-01-21 Tokyo Electron Ltd Film forming apparatus and film forming method
US8696814B2 (en) * 2006-12-25 2014-04-15 Tokyo Electron Limited Film deposition apparatus and film deposition method

Also Published As

Publication number Publication date
JPH0586643B2 (en) 1993-12-13

Similar Documents

Publication Publication Date Title
CN1265432C (en) High-speed low-power semiconductor memory architecture
US5431738A (en) Apparatus for growing group II-VI mixed compound semiconductor
US4316430A (en) Vapor phase deposition apparatus
CN103160814B (en) Reaction chamber and air flow control method
JPS60123022A (en) Vapor growth method
JPS6291495A (en) Vapor growth method for thin semiconductor film
CN113604874B (en) Vapor phase epitaxy system and maintenance operation method thereof
WO2004020688A1 (en) Metal sulfide thin film and method for production thereof
JP2007109685A (en) Apparatus and method for manufacturing compound semiconductor
KR20220103405A (en) Multi-layer thin film liquid phase epitaxial apparatus and method thereof
CN113604875B (en) Vapor phase epitaxy system and maintenance operation method thereof
JP2005303168A (en) Vapor deposition device
JP2537626B2 (en) Monoatomic layer thin film deposition system
JPH06338466A (en) Vapor growth device
JPS63248797A (en) Device for vapor phase epitaxy
JPS62182196A (en) Vapor growth apparatus
JPS62247520A (en) Vapor phase treating device
JPH0794414A (en) Cvd device
CN117821938A (en) Growth equipment for realizing heterojunction of various two-dimensional materials and preparation method
JP2817298B2 (en) Vapor phase epitaxial growth equipment
JPS62167291A (en) Growing method for iii-v compound semiconductor thin film
JPS6134930A (en) Growing process of selective type crystal
JPH06338456A (en) Vapor growth device
JPH0536397B2 (en)
JPH02160693A (en) Vapor phase epitaxial growth unit