JPS62167291A - Growing method for iii-v compound semiconductor thin film - Google Patents

Growing method for iii-v compound semiconductor thin film

Info

Publication number
JPS62167291A
JPS62167291A JP903586A JP903586A JPS62167291A JP S62167291 A JPS62167291 A JP S62167291A JP 903586 A JP903586 A JP 903586A JP 903586 A JP903586 A JP 903586A JP S62167291 A JPS62167291 A JP S62167291A
Authority
JP
Japan
Prior art keywords
region
group
thin film
group iii
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP903586A
Other languages
Japanese (ja)
Inventor
Hiroshi Terao
博 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP903586A priority Critical patent/JPS62167291A/en
Publication of JPS62167291A publication Critical patent/JPS62167291A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To grow a semiconductor thin film consisting of an accurate single atomic layer by presetting both the temp. of the first region introducing organic compd. of group III elements and the temp. of the second region introducing group V elements separately and properly and transferring a base plate alternately to both regions. CONSTITUTION:The region I of the inside of a reaction vessel 1 is held at low temp. capable of adsorbing a molecule of organic compd. of group III elements and a region II is held at high temp. wherein reaction between the raw materials of group III and group V is advanced. A base plate 2 is set in the region I and organic compd. of group III element fed through a gas introduction port 5 is adsorbed on the surface of the base plate 2. The base plate 2 is transferred to the region II and a semiconductor thin film of the compds. is grown thereon by allowing V group elements (compds.) fed through a gas introduction port 6 to react with group III elements. Thereafter the base plate 2 is transferred to the region I. The thin film of GaAs of the like consisting of an accurate single atomic layer is grown in a required thickness in one reciprocation by repeating this motion. The control precision of the film thickness of a grown layer can be improved by this method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はm−v族化合物半導体薄膜の成長方法、特に原
子層レベルでの精密な膜厚制御および極薄膜の成長方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for growing m-v group compound semiconductor thin films, and in particular to a method for precisely controlling film thickness at the atomic layer level and growing ultra-thin films.

〔従来の技術〕[Conventional technology]

半導体デバイスの高度化に伴い、半導体結晶成長に対す
る精密制御への要請はますます強くなり、遂に単一原子
層レベルでの膜厚制御が必要となってきた。有機金属気
相成長法(MOCVD法)、分子線エピタキシャル法(
MBE法)は膜厚制御に優れた方法として近年盛んに研
究されているが、その成長速度は基本的には原料の基板
表面への供給速度によって決まる。このため、膜厚を極
めて正確に制御するには、単位時間当たりの原料供給量
の正確な制御が必要であるが、単一原子層レベルでの制
御は困難である。
With the advancement of semiconductor devices, the demand for precise control over semiconductor crystal growth has become stronger, and film thickness control at the level of a single atomic layer has finally become necessary. Metal organic chemical vapor deposition method (MOCVD method), molecular beam epitaxial method (
Although the MBE method (MBE method) has been actively researched in recent years as an excellent method for controlling film thickness, its growth rate is basically determined by the rate at which raw materials are supplied to the substrate surface. Therefore, in order to control the film thickness extremely accurately, it is necessary to accurately control the amount of raw material supplied per unit time, but control at the level of a single atomic layer is difficult.

一方、原料の供給量に依存せずに膜厚を正確に制御でき
る方法として、原子層エピタキシャル法あるいは分子層
エピタキシャル法と呼ばれる方法が提案されている。こ
れは、結晶成長に際して、通常のMOCVD法、MBE
法のように連続的に成長を行うのではなく、結晶の構成
元素あるいはその化合物を基板表面上に一原子層ずつ吸
着2反応させて成長を進めるものである。このため、理
論上は、膜厚を一原子層単位で数えながら成長でき、通
常のMOCVD法、MBE法のような正確な原料供給量
の制御は不要となり、広範囲の成長条件の変化に対して
も常に成長回数(一原子層を成長させる工程を一回と数
える)のみで膜厚が決定される。
On the other hand, a method called an atomic layer epitaxial method or a molecular layer epitaxial method has been proposed as a method for accurately controlling the film thickness without depending on the amount of raw material supplied. This method is used for crystal growth using the normal MOCVD method, MBE
Instead of growing continuously as in the conventional method, growth proceeds by adsorbing the constituent elements of the crystal or their compounds one atomic layer at a time on the substrate surface and causing two reactions. Therefore, in theory, it is possible to grow the film while counting the film thickness in units of one atomic layer, eliminating the need for precise control of the raw material supply amount as in the usual MOCVD method and MBE method, and allowing it to withstand a wide range of changes in growth conditions. The film thickness is always determined only by the number of growths (the step of growing one atomic layer is counted as one).

有機金属を用いたm−v族化合物半導体であるガリウム
砒素(GaAs)の原子層エピタキシャル法を例にとっ
て以下にその方法を説明する。
The method will be explained below by taking as an example the atomic layer epitaxial method of gallium arsenide (GaAs), which is an m-v group compound semiconductor using an organic metal.

(i)まず、基板の設置された反応容器内に、ガリウム
(Ga)の有機金属化合物であるトリメチルガリウム(
TMGa)を導入して基板表面に吸着させる。
(i) First, trimethylgallium (Ga), which is an organometallic compound of gallium (Ga), is placed in a reaction vessel in which a substrate is installed.
TMGa) is introduced and adsorbed onto the substrate surface.

(ii)反応容器内のTMGaを排出する。(ii) Discharge TMGa from the reaction vessel.

(iii )砒素(As)の原料としてアルシン(As
H3)を導入して基板上に吸着しているGaの有機化合
物と反応させGaAsを一層成長させる。
(iii) Arsine (As) as a raw material for arsenic (As)
H3) is introduced and reacts with the organic compound of Ga adsorbed on the substrate to further grow GaAs.

(iv) A s H3を排出し、その後再び工程(i
)〜(iv)を繰返す。
(iv) Discharge A s H3 and then repeat step (i
) to (iv) are repeated.

以上の各工程を通して、基板温度は常に一定の値に保た
れている。
Throughout the above steps, the substrate temperature is always kept at a constant value.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記の有機金属を用いた従来の原子層エピタキシャル法
においては、基板温度を常に一定としているために、正
確な一原子層ずつの成長は困難である。前記の工程(i
ii )において、反応を十分進行させるためには一定
以上の高温(TMGaとAsH3によるGaAs成長の
場合500℃以上)が必要であるが、そうすると工程(
i)でGaの有機化合物分子を正確に一層だけ吸着させ
ることができない。高温ではTMGaの熱分解が生じ、
一旦Gaが発生するとGaの蒸気圧は極めて小さいため
にGaの堆積が起こってしまうからである。
In the conventional atomic layer epitaxial method using the above-mentioned organic metal, since the substrate temperature is always kept constant, it is difficult to accurately grow one atomic layer at a time. The above step (i
In ii), a high temperature above a certain level (500°C or higher in the case of GaAs growth using TMGa and AsH3) is required for the reaction to proceed sufficiently;
In i), it is not possible to accurately adsorb only one layer of Ga organic compound molecules. At high temperatures, thermal decomposition of TMGa occurs,
This is because once Ga is generated, the vapor pressure of Ga is extremely low, so that Ga is deposited.

結局、基板温度が低い場合には成長反応が進行しないた
め成長速度は極めて小さくなり、一方高い場合には成長
速度が大きくなり、また過剰なGaのための結晶の品質
の悪化も生じてしまうので、理想的な一原子層ずつの成
長が可能となる温度は存在しない。これは、■族元素の
有機化合物を用いる場合の一般的な問題点である。
After all, if the substrate temperature is low, the growth reaction will not proceed and the growth rate will be extremely low, while if it is high, the growth rate will increase and the quality of the crystal will deteriorate due to excess Ga. , there is no temperature at which ideal single atomic layer growth is possible. This is a common problem when using organic compounds of group (I) elements.

また、単一の反応容器内で成長を行う場合、−回導入し
た■族元素原料が完全に反応容器外に排出されてから■
族元素原料を導入する必要がある。
In addition, when growth is performed in a single reaction vessel, after the group ■ element material introduced - times is completely discharged from the reaction vessel,
It is necessary to introduce group element raw materials.

■族元素原料を再び■族元素原料に切換える場合も同様
で、これらの完全な切換のためには比較的長時間を要し
、原子層エピタキシャル成長のように数多くの切換を必
要とする場合には成長時間が長くなり、また、切換のた
めのバルブ操作も複雑なものとなってしまう。
The same is true when switching the group III element raw material to the group III element raw material, and it takes a relatively long time to completely switch these elements, and when many switches are required, such as in atomic layer epitaxial growth, The growth time becomes long and the valve operation for switching becomes complicated.

本発明の目的は、この問題点を解決したm−v族化合物
薄膜の成長方法を提供することにある。
An object of the present invention is to provide a method for growing an m-v group compound thin film that solves this problem.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のm−v族化合物半導体薄膜の成長方法は、第一
の領域と第二の領域を有する反応容器の第一の領域に■
族元素の有機化合物を導入し、第二の領域にV族元素も
しくはその化合物を供給し、第一の領域は■族元素有機
化合物分子の吸着が可能な低温に保持し、第二の領域は
■族と■族元素原料間の反応が進行する高温に保持し、
基板を第一の領域および第二の領域間で交互に移動させ
て、基板上にm−v族化合物半導体薄膜を成長させるこ
とを特徴としている。
In the method for growing an m-v group compound semiconductor thin film of the present invention, a first region of a reaction vessel having a first region and a second region is
An organic compound of a group element is introduced, a group V element or its compound is supplied to a second region, the first region is maintained at a low temperature that allows the adsorption of the group II organic compound molecules, and the second region is Maintain the temperature at a high temperature where the reaction between group ■ and group ■ element raw materials progresses,
The method is characterized in that the substrate is alternately moved between a first region and a second region to grow an m-v group compound semiconductor thin film on the substrate.

〔作用〕[Effect]

本発明によれば、■族元素の有機化合物原料と■族元素
原料とは反応容器の別々の第一および第二の領域に供給
されているため、これらの原料の供給は連続的でよく、
面倒な切換作業は一切不要となる。また、反応容器内の
ガス切換を待つ時間もなくなる。さらに、第一の領域に
おける基板温度を■族元素の有機化合物から■族元素単
体が分解して生じる温度以下とすれば完全な■族元素有
機化合物の単一原子層の吸着が実現する。なお、あまり
低温とすると一層でなく、二層以上の吸着の可能性があ
ることと、実際の成長において、二つの領域間を移動さ
せた時の温度変化に要する時間が長くなることから、あ
る程度加熱するほうが良い。また、第二の領域の温度は
第一の領域の温度とは別に高温に設定可能であり、吸着
された■族元素有機化合物分子と■族元素原料との反応
を十分進行させることが可能となり正確な単一原子層ず
つの成長が実現する。
According to the present invention, since the raw material for the organic compound of the group (III) element and the raw material for the group (III) element are supplied to separate first and second regions of the reaction vessel, these raw materials may be continuously supplied;
There is no need for any troublesome switching work. Moreover, there is no longer a time to wait for gas switching in the reaction vessel. Furthermore, if the substrate temperature in the first region is set to be lower than the temperature at which a single group element is decomposed from an organic compound of a group II element, complete adsorption of a single atomic layer of an organic compound of a Group III element can be realized. Note that if the temperature is too low, there is a possibility that two or more layers will be adsorbed instead of just one layer, and in actual growth, the time required for temperature change when moving between two regions will be longer. Better to heat. In addition, the temperature of the second region can be set to a high temperature separately from the temperature of the first region, making it possible to sufficiently advance the reaction between the adsorbed group III element organic compound molecules and the group III element raw material. Accurate single atomic layer-by-layer growth is achieved.

〔実施例〕〔Example〕

以下図面を参照して本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例に用いられる装置の断面模式
図である。反応容器1は石英製であり、二つの領域に分
離されている。領域■側にはガス導入口5が、領域■側
にはガス導入口6が設けられており、領域■と■の中間
にはガス排出ロアが設けられている。領域1.  II
には、加熱用光照射のための窓41,4■がそれぞれ設
けられており、これら窓に対向する外部には基板加熱用
ランプ31.3I[がそれぞれ配置°されている。反応
容器1の容器壁に設けられたシール8を介してロッド1
0が二つの領域I、II間を往復移動するように支持さ
れている。このロッドは、反応容器lの外部に配置され
ている基板移動機構9により往復駆動される。ロッド先
端部には、基板2が保持される。
FIG. 1 is a schematic cross-sectional view of an apparatus used in one embodiment of the present invention. The reaction vessel 1 is made of quartz and is separated into two regions. A gas inlet 5 is provided on the area (2) side, a gas inlet 6 is provided on the area (2), and a gas discharge lower is provided between the areas (2) and (2). Area 1. II
Windows 41 and 4 for irradiating heating light are provided respectively, and substrate heating lamps 31 and 3I are arranged outside facing these windows. The rod 1 is inserted through a seal 8 provided on the wall of the reaction vessel 1.
0 is supported to move back and forth between the two regions I and II. This rod is reciprocated by a substrate moving mechanism 9 placed outside the reaction vessel l. A substrate 2 is held at the tip of the rod.

以上の装置において、原料としてTMGaとAsH3を
用い、GaAsの成長を行う場合について説明する。成
長にあたり、ガス導入口5からはTMGaの分圧1.8
 X 10−4気圧、全圧を1気圧、水素流量2j2/
minとしてTMGaとH2の混合ガスを常に流してお
く。ガス導入口6からはAsH3の分圧1×10−3気
圧、全圧を1気圧、水素流量21/minとしてAsH
3とH2の混合ガスを常に流しておく。そして、領域I
での基板温度は300℃、領域■での基板温度は520
℃となるようそれぞれの加熱用ランプ3I、3I[の出
力を制御する。
A case will be described in which GaAs is grown using TMGa and AsH3 as raw materials in the above apparatus. During growth, the partial pressure of TMGa is 1.8 from the gas inlet 5.
X 10-4 atm, total pressure 1 atm, hydrogen flow rate 2j2/
A mixed gas of TMGa and H2 is always allowed to flow as a minimum. AsH3 is supplied from the gas inlet 6 with a partial pressure of AsH3 of 1 x 10-3 atm, a total pressure of 1 atm, and a hydrogen flow rate of 21/min.
A mixed gas of 3 and H2 is kept flowing. And area I
The substrate temperature in area 3 is 300℃, and the substrate temperature in area ■ is 520℃.
The output of each heating lamp 3I, 3I[ is controlled so that the temperature becomes ℃.

以上の状態で、基板移動機構9によりロッド10を駆動
して、基板2をまず領域Iに5秒間置き、ガス導入口5
より供給されているTMGaを基板2の表面に吸着させ
、次に領域■に移動した。領域■への移動時間は1秒で
ある。領域■には5秒間置き、ガス導入口6より供給さ
れているAsH3と基板上に吸着しているTMGaと反
応させGaAsを成長させた。その後、基板2を再び領
域Iに移動した。領域Iへの移動に際しては、中間地点
の低温領域に5秒置いて基板2の温度低下を待った。−
往復の時間は合計18秒である。
In the above state, the rod 10 is driven by the substrate moving mechanism 9, and the substrate 2 is first placed in the area I for 5 seconds, and then the gas inlet 5
The TMGa supplied from the substrate 2 was adsorbed onto the surface of the substrate 2, and then moved to the area (2). The travel time to area ■ is 1 second. The area (3) was left for 5 seconds to cause the AsH3 supplied from the gas inlet 6 to react with TMGa adsorbed on the substrate to grow GaAs. Thereafter, the substrate 2 was moved to area I again. When moving to region I, the substrate 2 was placed in a low temperature region at the intermediate point for 5 seconds to wait for the temperature of the substrate 2 to decrease. −
The total round trip time is 18 seconds.

以上の往復工程を300回繰返したところ、GaAsの
(100)面上の成長層膜厚は840人となり、−往復
で一原子層すなわち2.83人成長した時の値とほぼ一
致し、成長が正確な単一原子層ずつの成長であることが
確認された。
When the above back-and-forth process was repeated 300 times, the thickness of the grown layer on the (100) plane of GaAs was 840 layers, which is almost the same as the value when one atomic layer, or 2.83 layers, was grown in a round trip. It was confirmed that the growth is accurate single atomic layer by layer.

ここに示した実施例では、基板温度の変化をなるべく短
時間で可能とするためにランプ加熱方式を用いたが、加
熱方法は他の抵抗加熱法、高周波誘導加熱法でも差し支
えない。また、キャリアガスとしての水素は反応に直接
は関与していないから、反応容器内の圧力を下げ、最終
的には真空中でTMGaとA s H3のみを用いても
全(同様の成長が可能である。
In the embodiment shown here, a lamp heating method is used in order to change the substrate temperature in as short a time as possible, but other resistance heating methods or high frequency induction heating methods may be used as the heating method. Furthermore, since hydrogen as a carrier gas is not directly involved in the reaction, it is possible to lower the pressure inside the reaction vessel and ultimately achieve total growth (similar growth) using only TMGa and As H3 in a vacuum. It is.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の方法によれば、有機金属化合
物を用いた原子層エピタキシャル法において、煩雑な原
料供給の断続、切換を必要とせずに、さらに、■族元素
有機化合物の基板表面上への完全な単一原子層吸着と十
分な■族および■族元素原料間の反応の進行による正確
な原子層成長が可能となり、成長層膜厚の制御精度が飛
躍的に向上する。
As described above, according to the method of the present invention, in the atomic layer epitaxial method using an organometallic compound, there is no need for complicated interruption or switching of the supply of raw materials, and furthermore, the method of the present invention can be applied to the substrate surface of the group Accurate atomic layer growth is possible due to complete single atomic layer adsorption to and sufficient progress of reaction between Group I and Group II element raw materials, and the control accuracy of the thickness of the grown layer is dramatically improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するための装置の断面
模式図である。 1・・・・・・反応容器 2・・・・・・基板 3I、3n・・加熱用ランプ 41.41・・窓 5.6・・・・ガス導入口 ア・・・・・・ガス排出口 8・・・・・・シール 9・・・・・・基板移動機構 10・・・・・ロッド
FIG. 1 is a schematic cross-sectional view of an apparatus for explaining one embodiment of the present invention. 1...Reaction container 2...Substrate 3I, 3n...Heating lamp 41.41...Window 5.6...Gas inlet a...Gas exhaust Outlet 8...Seal 9...Substrate moving mechanism 10...Rod

Claims (1)

【特許請求の範囲】[Claims] (1)第一の領域と第二の領域を有する反応容器の第一
の領域にIII族元素の有機化合物を導入し、第二の領域
にV族元素もしくはその化合物を供給し、第一の領域は
III族元素有機化合物分子の吸着が可能な低温に保持し
、第二の領域はIII族とV族元素原料間の反応が進行す
る高温に保持し、基板を第一の領域および第二の領域間
で交互に移動させて、基板上にIII−V族化合物半導体
薄膜を成長させることを特徴とするIII−V族化合物半
導体薄膜の成長方法。
(1) A group III element organic compound is introduced into the first region of a reaction vessel having a first region and a second region, a group V element or its compound is supplied to the second region, and a group V element or its compound is supplied to the second region. The area is
The substrate is held at a low temperature that allows the adsorption of group III element organic compound molecules, the second region is held at a high temperature where the reaction between the group III and group V element materials proceeds, and the substrate is placed between the first region and the second region. 1. A method for growing a III-V compound semiconductor thin film on a substrate, the method comprising growing a III-V compound semiconductor thin film on a substrate by moving the thin film alternately between substrates.
JP903586A 1986-01-21 1986-01-21 Growing method for iii-v compound semiconductor thin film Pending JPS62167291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP903586A JPS62167291A (en) 1986-01-21 1986-01-21 Growing method for iii-v compound semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP903586A JPS62167291A (en) 1986-01-21 1986-01-21 Growing method for iii-v compound semiconductor thin film

Publications (1)

Publication Number Publication Date
JPS62167291A true JPS62167291A (en) 1987-07-23

Family

ID=11709394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP903586A Pending JPS62167291A (en) 1986-01-21 1986-01-21 Growing method for iii-v compound semiconductor thin film

Country Status (1)

Country Link
JP (1) JPS62167291A (en)

Similar Documents

Publication Publication Date Title
EP0307995A2 (en) Process and device for gas delivery to an epitaxy apparatus
JP2003324070A (en) Method and device of manufacturing thin film
JPS6291495A (en) Vapor growth method for thin semiconductor film
JPS62167291A (en) Growing method for iii-v compound semiconductor thin film
JPH02185026A (en) Selective forming method of al thin-film
JPH02230720A (en) Vapor growth method and apparatus for compound semiconductor
JPH01290221A (en) Semiconductor vapor growth method
JPH02199820A (en) Vapor phase treatment apparatus
JPS62182195A (en) Method for growing iii-v compound semiconductor
JPH0274029A (en) Thin film formation and device thereof
JPS6134922A (en) Manufacture of super lattice semiconductor device
JPS58209117A (en) Manufacture of compound semiconductor film
JPH01290222A (en) Semiconductor vapor growth method
JPH03185716A (en) Method of growing compound semiconductor crystal
JPS61260622A (en) Growth for gaas single crystal thin film
CN113621942A (en) Aluminum-doped gallium oxide film and preparation method thereof
JP2620546B2 (en) Method for producing compound semiconductor epitaxy layer
JPS63159296A (en) Vapor phase epitaxy
JPS63136616A (en) Epitaxial crystal growth method for compound semiconductor
JPS6355193A (en) Apparatus for growing compound semiconductor crystal
JPS61176111A (en) Manufacture of compound semiconductor thin film
JPS63174314A (en) Method for doping iii-v compound semiconductor crystal
JPS63266816A (en) Growing method for iii-v compound semiconductor crystal
JPH02143419A (en) Method and apparatus for forming thin film by vapor growth
JPS6390833A (en) Manufacture of compound thin film of group ii and vi elements