JPS60122799A - Heat treatment of semiconductor wafer - Google Patents

Heat treatment of semiconductor wafer

Info

Publication number
JPS60122799A
JPS60122799A JP10458184A JP10458184A JPS60122799A JP S60122799 A JPS60122799 A JP S60122799A JP 10458184 A JP10458184 A JP 10458184A JP 10458184 A JP10458184 A JP 10458184A JP S60122799 A JPS60122799 A JP S60122799A
Authority
JP
Japan
Prior art keywords
box
oxygen
core tube
heater
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10458184A
Other languages
Japanese (ja)
Other versions
JPH0372599B2 (en
Inventor
Tamotsu Sasaki
保 佐々木
Masamoto Akeyama
明山 正元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10458184A priority Critical patent/JPS60122799A/en
Publication of JPS60122799A publication Critical patent/JPS60122799A/en
Publication of JPH0372599B2 publication Critical patent/JPH0372599B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/005Oxydation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To stabilize the temp. distribution in a treating chamber and to perform a wafer treatment having excellent quality and reliability by introducing O2 and H2 combined in the outside part into a reaction tube and subjecting a semiconductor wafer to a heat treatment in a wet oxygen atmosphere. CONSTITUTION:H2 is ejected from the nozzle 18 of a hydrogen supply pipe 14 of which the part near the nozzle is heated by a spiral heater 16 into the innermost layer box 11 of a hermetic vessel 8 housed in a doping box 9 and at the same time, O2 is supplied from an oxygen supply pipe 18 into said box to burn and combine 20 H2 and O2, thereby yielding wet oxygen. The wet oxygen is introduced from the box 11 via a conduit 19 and an auxiliary conduit 28 wound with a ribbon heater 30 to a reaction tube 26 having a heater part 31 so that a semiconductor wafer is heat-treated.

Description

【発明の詳細な説明】 本発明はウェット酸素雰囲気中での酸化処理または拡散
処理を行なう技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a technique for performing oxidation treatment or diffusion treatment in a wet oxygen atmosphere.

たとえば、熱処理技術に関してはElectronic
Integrated C1rcuits (J、 A
11ison著)の48頁〜50頁に紹介されている。
For example, regarding heat treatment technology, Electronic
Integrated C1rcuits (J, A
11ison), pages 48 to 50.

半導体装置等の製造圧おける半導体薄板(ウェハ)の酸
化・拡散プロセスにおいては、熱酸化膜の生成や高精度
のデポジション濃度、拡散の深さを得るために、水素(
H2)、酸素(0,)の直接反応によるウェット酸素生
成法()ぐ−ンニング法)が一般に採用されている。こ
の種のウェット酸素生成法としては第1図に示すように
ノくイロジェニツク用水素燃焼機構が知られている。す
なわち、炉の石英ガラスからなる炉心管(プロセスチュ
ーブ)1の細い尾管2に石英ガラスからなる水素供給管
3を相互のすり合せ面を介して気密状態で挿入して、炉
心管1内忙水素(H2)を供給するようにする。また1
尾管2と平行に炉心管1の閉塞端に枝管4を作り、この
枝管4を介して炉心管1内に酸素(02)を供給する。
In the oxidation/diffusion process of semiconductor thin plates (wafers) used in the production of semiconductor devices, hydrogen (
H2), a wet oxygen generation method (growning method) by direct reaction of oxygen (0,) is generally employed. As a method of producing wet oxygen of this type, a hydrogen combustion mechanism for hydrogen gas as shown in FIG. 1 is known. That is, a hydrogen supply pipe 3 made of quartz glass is inserted in an airtight state into a thin tail pipe 2 of a process tube 1 made of quartz glass in a furnace through the mutual rubbing surfaces. Hydrogen (H2) is supplied. Also 1
A branch pipe 4 is made at the closed end of the core tube 1 in parallel with the tail pipe 2, and oxygen (02) is supplied into the core tube 1 through this branch pipe 4.

また、炉心管1の外周には均熱管やヒータ等からなるヒ
ータ部5が配設され、炉心管1内の処理室6を適宜な温
度に加熱している。そして、ウェハに酸化膜を形成する
場合には、所定の温度に加熱されている処理室6内に図
示しない熱処理治具等を用いてシリコンウェハを入れ、
その後、枝管4から酸素を処理室6内に供給するととも
に水素供給管3かも処理室6内に水素を入れる。処理室
6内が所定温度に達していることと、水素および酸素が
それぞれ所定の比率で処理室6内に送られることから、
水素および酸素は爆発することなく燃焼(図中炎7を示
す)して水蒸気(図中点で示す。)となり、水蒸気を含
む酸素すなわちウェット酸素を炉心管1の中央方向に供
給し、ウエノ・表面に熱酸化(St、、)膜を形成させ
ることが行なわれている。
Further, a heater section 5 consisting of a soaking tube, a heater, etc. is disposed around the outer periphery of the furnace core tube 1, and heats a processing chamber 6 within the furnace core tube 1 to an appropriate temperature. When forming an oxide film on the wafer, the silicon wafer is placed into the processing chamber 6 heated to a predetermined temperature using a heat treatment jig or the like (not shown).
Thereafter, oxygen is supplied into the processing chamber 6 from the branch pipe 4, and hydrogen is also introduced into the processing chamber 6 through the hydrogen supply pipe 3. Since the inside of the processing chamber 6 has reached a predetermined temperature and hydrogen and oxygen are each sent into the processing chamber 6 at a predetermined ratio,
Hydrogen and oxygen burn without exploding (flame 7 in the figure) and turn into water vapor (indicated by a dot in the figure). Oxygen containing water vapor, that is, wet oxygen, is supplied toward the center of the reactor core tube 1, and A thermal oxidation (St, .) film is formed on the surface.

しかし、このような機構ではつぎのような欠点がある。However, such a mechanism has the following drawbacks.

(1)細長い炉心管は一般に直列に並んだ3本のヒータ
A、B、Cによって温度制御され、第2図で示すように
、その中央部は一定の温度分布となる。
(1) The temperature of an elongated reactor core tube is generally controlled by three heaters A, B, and C arranged in series, and as shown in FIG. 2, the temperature distribution is constant in the central part.

また、一定の長さに亘って一定の温度分布となるように
するために1両端部に位置するヒータA9Cによって、
炉心管の両端部は中央部処較べてわずかに温度が高くな
るように制御される。しかし、炉心管の閉塞端部で水素
と酸素を反応させて燃焼させると、炉心管の奥は第2図
の二点鎖線で示すように部分的に温度が上り、炉心管内
の均一な温度分布が損なわれ、酸化膜の生成が不均一と
なる。
In addition, in order to maintain a constant temperature distribution over a constant length, heaters A9C located at both ends of the
The temperature at both ends of the core tube is controlled to be slightly higher than that at the center. However, when hydrogen and oxygen are reacted and burned at the closed end of the core tube, the temperature rises partially at the back of the core tube, as shown by the two-dot chain line in Figure 2, and the temperature distribution inside the core tube is uniform. is damaged, and the formation of the oxide film becomes non-uniform.

なお、一般的には中央のヒータBは一定の温度を上下動
するだけの役割しか果たさず、炉心管の両端の温度格差
を是正する作用はしない。
Note that, in general, the central heater B only plays the role of raising and lowering a constant temperature, and does not have the function of correcting the temperature difference between the two ends of the reactor core tube.

(2)安全性あるいは適正に酸化膜生成が成されている
か否か等を確かめるために点火(燃焼)状態を確認する
必要があるが、燃焼は炉心管内で行なわれ、炉心管は外
側をヒータ部で取り囲まれていることから5点火(炎7
)を確認するには炉心管の開口部から覗かねばならない
。しかし、炉心管内にはウェハが林立状態等で挿入され
ているため。
(2) It is necessary to check the ignition (combustion) state in order to confirm safety and whether oxide film is being formed properly, but combustion takes place inside the core tube, and the outside of the core tube is heated. 5 ignition (flame 7) because it is surrounded by
) must be seen through the opening in the core tube. However, this is because the wafers are inserted into the reactor core tube in a row.

点火(燃焼)を確認できにくい難点がある。The problem is that it is difficult to confirm ignition (combustion).

(3)水素と酸素の混合比が変化したり、処理室の温度
が低くなって爆発が生じた場合、炉心管は石英ガラスで
形作られているため粉粉に破壊して周辺に飛び散り、危
険であるとともに、ウェハやヒータ部を破損させる欠点
がある。
(3) If an explosion occurs due to a change in the mixture ratio of hydrogen and oxygen or the temperature in the processing chamber becomes low, the reactor core tube is made of quartz glass, so it will break into powder and scatter into the surrounding area, creating a dangerous situation. In addition, it has the disadvantage of damaging the wafer and heater section.

(4)特に拡散炉の場合などには、反応ガスを供給する
ために、炉心管の閉塞端側には尾管以外に新に枝管を設
けるのが一般的である。しかしながら、上述したもので
は、炉心管の構造が複雑となり。
(4) Particularly in the case of a diffusion furnace, it is common to provide a new branch pipe in addition to the tail pipe on the closed end side of the reactor core tube in order to supply the reactant gas. However, in the above-described structure, the structure of the reactor core tube becomes complicated.

製造コストが高くなる。また、炉心管の一端には細くて
折れ易い尾管、枝管が2つもあることから取扱いも従来
の尾管だけの炉心管に較べて面倒である。
Manufacturing costs increase. Furthermore, since there are two thin and easily broken tail pipes and two branch pipes at one end of the furnace core tube, handling is more troublesome than the conventional furnace core tube that only has a tail pipe.

したがって、本発明の目的は、処理室内の温度分布を乱
すことのないウェット酸素中での熱処理技術を提供する
ことにある。
Therefore, an object of the present invention is to provide a heat treatment technique in wet oxygen that does not disturb the temperature distribution within the processing chamber.

また、本発明の他の目的は1点火状態が確認し易く、か
つ安全性の高いものを提供することにある。
Another object of the present invention is to provide a device that allows one ignition state to be easily confirmed and is highly safe.

このような目的を達成するために本発明は1反応管の外
部で酸素および水素を燃焼させることにより、ウェハ等
への悪影響を除去することのできる熱処理方法にある。
In order to achieve such an object, the present invention provides a heat treatment method that can eliminate adverse effects on wafers and the like by burning oxygen and hydrogen outside one reaction tube.

第3図は本発明の一実施例で使用するウェット酸素生成
装置及びそれを有する拡散炉を示す略図である。同図に
は石英ガラスからなる気密性の容器(ボックス)8が示
されている。この容器8は拡散炉のドーピングボックス
9内に収容される。
FIG. 3 is a schematic diagram showing a wet oxygen generation device and a diffusion furnace including the wet oxygen generation device used in an embodiment of the present invention. The figure shows an airtight container (box) 8 made of quartz glass. This container 8 is housed in a doping box 9 of a diffusion furnace.

また、前記容器8は三層構造からなり、最内層ボックス
10は不純物を発生したすせず、また高温にも耐えられ
ることのできるように石英ガラスからなっている。また
、最外層ボックス11は容器内で爆発が起きても破損し
ない強度を有する金属容器、たとえばステンレスからな
っている。また。
Further, the container 8 has a three-layer structure, and the innermost layer box 10 is made of quartz glass so that it can withstand high temperatures and is free from impurities. Further, the outermost box 11 is made of a metal container, such as stainless steel, which has a strength that will not cause damage even if an explosion occurs inside the container. Also.

最外層ボックス11と最内層ボックス10との間には断
熱効果を高めるために石英ウール等の断熱材が入れられ
、断熱層12を形作っている。
A heat insulating material such as quartz wool is inserted between the outermost box 11 and the innermost box 10 to enhance the heat insulation effect, forming a heat insulating layer 12.

前記最内層ボックス10にはその上面および側部に複数
のバイブ13が一体的に取り付けられている。すなわち
、−側壁には水素ガスを容器8内に導入する水素供給管
14および酸素ガスを容器8内に導入する酸素供給管1
5が設けられている。
A plurality of vibrators 13 are integrally attached to the innermost box 10 on its upper surface and side portions. That is, on the − side wall are a hydrogen supply pipe 14 for introducing hydrogen gas into the container 8 and an oxygen supply pipe 1 for introducing oxygen gas into the container 8.
5 is provided.

水素供給管14は最内層ボックス10を貫通して容器内
に延び、その先端は最内層ボックス10の天井の中央の
下方に突出している。また、容器8内の水素供給管14
部分には螺旋形のヒータ16が巻き付けられ、その両端
は最内層ボックス10゜断熱層12.最外層ボックス1
1を貫いて容器外に延び1図示しない所定の電源部に接
続さねて(・る。また、このヒータ16は外側を石英ガ
ラスで被われるとともに、最内層ボックス10には石英
ガラスを介して溶着され、挿入部の気密性が保たれてい
る。抜だ、ヒータ16の螺旋部17の上部は水素供給管
14の先端部のノズル部18の延長上に亘って延び、ノ
ズル部18の周囲を加熱するようになっている。
The hydrogen supply pipe 14 extends into the container through the innermost box 10, and its tip protrudes below the center of the ceiling of the innermost box 10. In addition, the hydrogen supply pipe 14 inside the container 8
A helical heater 16 is wound around the portion, and the innermost box 10° and the heat insulation layer 12 are connected to each other at both ends. Outermost box 1
The heater 16 extends outside the container through the heater 16 and is connected to a predetermined power source (not shown).The heater 16 is covered with quartz glass on the outside, and is connected to the innermost box 10 through the quartz glass. The upper part of the spiral part 17 of the heater 16 extends over the extension of the nozzle part 18 at the tip of the hydrogen supply pipe 14, and the upper part of the spiral part 17 of the heater 16 extends over the nozzle part 18 at the tip of the hydrogen supply pipe 14. It is designed to heat up.

また、前記ノズル部18に対面する最内層ボックス10
の天井釦は導管19が設けられ、ノズル部18から噴き
出される水素ガスと容器内に充満する酸素ガスとの燃焼
反応によって生じた水蒸気(図中散点で示す。)を容器
8の外に酸素と共に導くようになっている。また、燃焼
圧よる炎20の温度を検出するために、熱電対端子21
が炎20の近傍にまで容器外から侵入している。この熱
電対端子21は内端が閉塞した最内層ボックス10かも
延びる石英ガラスからなる保睡管22で被われている。
Also, the innermost box 10 facing the nozzle part 18
A ceiling button is provided with a conduit 19 that directs water vapor (indicated by scattered dots in the figure) generated by the combustion reaction between the hydrogen gas spouted from the nozzle part 18 and the oxygen gas filling the container to the outside of the container 8. It is designed to lead together with oxygen. Additionally, a thermocouple terminal 21 is used to detect the temperature of the flame 20 due to combustion pressure.
has entered the vicinity of the flame 20 from outside the container. This thermocouple terminal 21 is covered with a storage tube 22 made of quartz glass that also extends to the innermost box 10 whose inner end is closed.

また、容器8の下部側面には容器底に溜った水を抜く石
英ガラスからなるドレーンパイプ23が取り付けられて
いる。このドレーンパイプ23にはドレーンコック24
が設けられている。
Further, a drain pipe 23 made of quartz glass is attached to the lower side of the container 8 to drain water accumulated at the bottom of the container. This drain pipe 23 has a drain cock 24.
is provided.

また、図示しないが、被処理体を処理するための反応ガ
ス供給管が容器8に設けられている。さらに、容器8内
で燃える炎20を容器外から観察できるように一最外層
ボックス11および断熱層12は部分的に取り除かれて
観察窓25が作られている。なお、この観察窓25には
最内層ボックス10が爆発した際保護板となる耐熱性の
優れた透明保護板を取り付けておいてもよい。さらに、
前記最内層ボックス10.断熱層12は最外層ボックス
11から順次取り外しが可能な構造となっている。
Although not shown, the container 8 is provided with a reaction gas supply pipe for processing the object to be processed. Further, the outermost box 11 and the heat insulating layer 12 are partially removed to form an observation window 25 so that the flame 20 burning inside the container 8 can be observed from outside the container. Note that a transparent protective plate with excellent heat resistance may be attached to the observation window 25 to serve as a protective plate when the innermost box 10 explodes. moreover,
Said innermost box 10. The heat insulating layer 12 has a structure that can be removed sequentially from the outermost layer box 11.

一方、容器8から突出した導管19は標準型の炉心管2
6の細い尾管27にフッ素樹脂などからなるチューブか
らなる補助導管28を介して連結される。なお、連結部
には一般公知のこの埋1\0イブを連結するコネクタ2
9がそれぞれ用いられる。
On the other hand, the conduit 19 protruding from the container 8 is a standard type reactor core tube 2.
It is connected to the narrow tail tube 27 of No. 6 through an auxiliary conduit 28 made of a tube made of fluororesin or the like. In addition, the connection part is equipped with a connector 2 that connects this generally known buried 1\0 Eve.
9 are used respectively.

また、コネクタ29および補助導管28の外周にはリボ
ンヒータ30が巻き付けられ、補助導管28内を流れる
水蒸気の水滴化を防止するとともに常に一定温度のウェ
ット酸素が炉心管に供給されるようになっている。また
、図中31は炉心管26を加熱するヒータ部である。
Furthermore, a ribbon heater 30 is wrapped around the outer periphery of the connector 29 and the auxiliary conduit 28 to prevent the water vapor flowing inside the auxiliary conduit 28 from turning into water droplets, and to constantly supply wet oxygen at a constant temperature to the reactor core tube. There is. Further, numeral 31 in the figure is a heater section that heats the furnace core tube 26.

つぎに、炉心管26にウェット酸素を供給する作業につ
いて説明する。ヒータ16によって水素供給管14のノ
ズル部18の近傍を所定温度に加熱するとともに、容器
8内忙酸素供給管15から酸素ガスを噴射させて酸素を
充満させる。また、ノズル部18から水素ガスを噴射さ
せる。なお、水素ガスおよび酸素ガスの供給量は所定比
となるように供給する。この結果、ノズル部18から噴
射される水素は酸素と反応して燃焼し、水蒸気を発生す
る。そして、容器8内の圧力が高いこともあって、容器
内の水蒸気と酸素と(必要に応じて拡散不純物などの反
応ガスと)とは導管19.補−助導管28を通って炉心
管26内に順次供給される。
Next, the operation of supplying wet oxygen to the furnace core tube 26 will be explained. The vicinity of the nozzle portion 18 of the hydrogen supply pipe 14 is heated to a predetermined temperature by the heater 16, and oxygen gas is injected from the oxygen supply pipe 15 inside the container 8 to fill it with oxygen. Further, hydrogen gas is injected from the nozzle portion 18. Note that the hydrogen gas and oxygen gas are supplied in a predetermined ratio. As a result, the hydrogen injected from the nozzle portion 18 reacts with oxygen and burns, generating water vapor. Since the pressure inside the container 8 is high, the water vapor and oxygen (and reactant gases such as diffusion impurities, if necessary) in the container are transferred to the conduit 19. It is sequentially fed into the core tube 26 through an auxiliary conduit 28.

このような実施例によれば、つぎのような効果を奏する
According to such an embodiment, the following effects are achieved.

(1)炉心管へ供給されるウェット酸素はリボンヒータ
によって常に一定温度に維持されて炉心管に供給される
。このため、炉心管の温度分布は安定するため、品質お
よび信頼性の優れたウェハ処理が行なえ1歩留も向上す
る。
(1) Wet oxygen supplied to the reactor core tube is always maintained at a constant temperature by a ribbon heater and is supplied to the reactor core tube. Therefore, the temperature distribution in the furnace core tube is stabilized, so that wafer processing with excellent quality and reliability can be performed, and the yield rate can also be improved.

(2)燃焼状態は容器の観察窓から簡単に観察できるこ
とから、炉心管に確実に水蒸気が送らねているか否かを
確認できる。したがって、水蒸気が行なわれていない状
態でウエノ・処理を行なうことも避けられる。
(2) Since the combustion state can be easily observed through the observation window of the vessel, it can be confirmed whether or not steam is not being sent to the reactor core tube. Therefore, it is also possible to avoid carrying out Ueno treatment in a state where steam is not being applied.

(3)容器内で爆発が生じても、容器の最外層ボックス
は耐圧性で強度が大きいことから、従来のように容器外
に石英ガラスの破片が飛び散ることもない。したがって
、安全である。また、従来のようにウェハな飛散する石
英ガラス片で破損させるコトモナいので1歩留の低下を
引き起こすこともない。さらに、飛散する石英ガラス片
でヒータ部を破壊させることもないので、熱処理炉装置
各部の寿命も長くなり、製品の処理コストの軽減化にも
繋がる。
(3) Even if an explosion occurs inside the container, the outermost box of the container is pressure resistant and strong, so quartz glass fragments will not scatter outside the container as in the case of conventional methods. Therefore, it is safe. Furthermore, unlike the conventional method, the wafer is not damaged by flying quartz glass pieces, so there is no reduction in yield. Furthermore, since the heater part is not destroyed by flying quartz glass pieces, the life of each part of the heat treatment furnace apparatus is extended, which also leads to a reduction in product processing costs.

(4)炉心管は尾管な有する標準品を使用することがで
きることから、設備費も安価となる。
(4) Since standard products such as tail pipes can be used for the reactor core tube, equipment costs are also reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の拡散炉の炉心管へウェット酸素を供給す
るウェット酸素生成機構を示す一部断面図、第2図は同
じく炉心管における温度分布な示す温度曲線図、第3図
は本発明に使用するウェット酸素生成装置及びそれを有
する拡散炉を示す断面図である。 1・・・炉心管、3・・・水素供給管、5・・・ヒータ
部。 6・・・処理室、7・・・炎、8・・・容器、10・・
・最内層ボックス% 11・・・最外層ボックス、12
・・・断熱層。 14・・・水素供給管、15・・・酸素供給管、16・
・・ヒータ、18・・・ノズル部、19・・・導管、2
0・・・炎、21・・・熱電対端子、25・・・観察窓
、26・・・炉心管、27・・・尾管、28・・・補助
導管、30・・・リボンヒータ、31・・・ヒータ部。 、/− 代理人 弁理士 高 橋 明 夫 (;\−9
Figure 1 is a partial sectional view showing a wet oxygen generation mechanism that supplies wet oxygen to the core tube of a conventional diffusion furnace, Figure 2 is a temperature curve diagram showing the temperature distribution in the core tube, and Figure 3 is a diagram showing the present invention. 1 is a cross-sectional view showing a wet oxygen generation device and a diffusion furnace including the same. 1... Furnace core tube, 3... Hydrogen supply pipe, 5... Heater section. 6... Processing chamber, 7... Flame, 8... Container, 10...
・Innermost box% 11...Outermost box, 12
...insulation layer. 14... Hydrogen supply pipe, 15... Oxygen supply pipe, 16.
... Heater, 18 ... Nozzle part, 19 ... Conduit, 2
0... Flame, 21... Thermocouple terminal, 25... Observation window, 26... Furnace tube, 27... Tail tube, 28... Auxiliary conduit, 30... Ribbon heater, 31 ...Heater section. ,/- Agent Patent Attorney Akio Takahashi (;\-9

Claims (1)

【特許請求の範囲】[Claims] 1、半導体ウニ・・をウェット酸素雰囲気中で熱処理す
るにあたり、反応管の外部で酸素および水素を化合させ
た後、上記反応管に導入することを特徴とする半導体ウ
エノ・の熱処理方法。
1. A method for heat treating semiconductor sea urchin, which is characterized in that when heat treating semiconductor sea urchin in a wet oxygen atmosphere, oxygen and hydrogen are combined outside the reaction tube and then introduced into the reaction tube.
JP10458184A 1984-05-25 1984-05-25 Heat treatment of semiconductor wafer Granted JPS60122799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10458184A JPS60122799A (en) 1984-05-25 1984-05-25 Heat treatment of semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10458184A JPS60122799A (en) 1984-05-25 1984-05-25 Heat treatment of semiconductor wafer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15986078A Division JPS5590405A (en) 1978-12-27 1978-12-27 Forming device for wet oxygen and heat treatment furnace provided with the said device

Publications (2)

Publication Number Publication Date
JPS60122799A true JPS60122799A (en) 1985-07-01
JPH0372599B2 JPH0372599B2 (en) 1991-11-19

Family

ID=14384398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10458184A Granted JPS60122799A (en) 1984-05-25 1984-05-25 Heat treatment of semiconductor wafer

Country Status (1)

Country Link
JP (1) JPS60122799A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906595A (en) * 1986-12-08 1990-03-06 U.S. Philips Corporation Method of manufacturing a semiconductor device, in which a silicon wafer is provided at its surface with field oxide regions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372572A (en) * 1976-12-10 1978-06-28 Mitsubishi Electric Corp Manufacturing device for semiconductor device
JPS53123667A (en) * 1977-04-04 1978-10-28 Mitsubishi Electric Corp Generator for semiconuctor oxidized film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372572A (en) * 1976-12-10 1978-06-28 Mitsubishi Electric Corp Manufacturing device for semiconductor device
JPS53123667A (en) * 1977-04-04 1978-10-28 Mitsubishi Electric Corp Generator for semiconuctor oxidized film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906595A (en) * 1986-12-08 1990-03-06 U.S. Philips Corporation Method of manufacturing a semiconductor device, in which a silicon wafer is provided at its surface with field oxide regions

Also Published As

Publication number Publication date
JPH0372599B2 (en) 1991-11-19

Similar Documents

Publication Publication Date Title
KR100814594B1 (en) System and method for heat treating semiconductor
EP0247384B1 (en) Reformer
JPS60122799A (en) Heat treatment of semiconductor wafer
JPS6360528B2 (en)
JPS60131807A (en) Apparatus for producing wet oxygen atmosphere
US5434090A (en) Processing chamber for processing semiconductor substrates
JP3242244B2 (en) Oxidation treatment apparatus and oxidation treatment method
JP2598637B2 (en) Oxidation / diffusion equipment
JPH08217401A (en) Fuel reformer
JP2585962B2 (en) High pressure oxidation furnace
JPH1167750A (en) External burning system, external burning, processing system with the external burning system and processing using the external burning system
US2034693A (en) Process for heating materials
US4256052A (en) Temperature gradient means in reactor tube of vapor deposition apparatus
JPS58173837A (en) Forming method for thermal oxide film
JPS61207023A (en) Manufacturing equipment for semiconductor device
JPS60186023A (en) Steam treating device
JPS61268025A (en) Heat treatment device for wafer
JPS619518A (en) Gaseous hydrogen atmospheric furnace
JPS62198128A (en) Method and apparatus for forming silicon oxide film
KR0165331B1 (en) Diffusion furnace tube
JPH01264228A (en) External combustion apparatus
JPH05343388A (en) Heat treatment apparatus
JPH0364912A (en) Hydrogen burning oxidative diffusion furnace
JPS6191934A (en) Manufacturing apparatus of semiconductor device
JP2001068464A (en) Heat treating apparatus