JPS58173837A - Forming method for thermal oxide film - Google Patents

Forming method for thermal oxide film

Info

Publication number
JPS58173837A
JPS58173837A JP57057095A JP5709582A JPS58173837A JP S58173837 A JPS58173837 A JP S58173837A JP 57057095 A JP57057095 A JP 57057095A JP 5709582 A JP5709582 A JP 5709582A JP S58173837 A JPS58173837 A JP S58173837A
Authority
JP
Japan
Prior art keywords
gas
nozzle
oxide film
core pipe
thermal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57057095A
Other languages
Japanese (ja)
Inventor
Etsuo Takahashi
高橋 悦男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP57057095A priority Critical patent/JPS58173837A/en
Publication of JPS58173837A publication Critical patent/JPS58173837A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To obtain the thermal oxide film with uniform thickness by bending a H2 gas introducing nozzle and ejecting H2 gas while being opposed to O2 gas when a semiconductor wafer is arranged into a core pipe, while H2 gas and O2 gas are burnt and steam is generated and the thermal oxide film is formed to the wafer. CONSTITUTION:A boat 13 on which a large number of the semiconductor wafers 12 are erected at intervals is encased into the core pipe 11, and a nozzle blowing O2 in and the nozzle 14 blowing H2 in are set up to one side of the core pipe 11. In the constitution, the nozzle for O2 is not protruded in long size in the core pipe 11, only the nozzle 14 for H2 is protruded up to the inside of the core pipe 11, and the nose is bent previously in the direction of the nozzle for O2 at 180 deg.C. According to such constitution, the temperature of the blow-off section of O2 gas is brought to approximately 100 deg.C, the temperature of the blow-off section of H2 gas is elevated up to approximately 800 deg.C, and gases are mixed sufficiently in the section of H2 gas, and forwarded to the wafers 12. Accordingly, a mixed gas collides directly with the wafers 12, and the oxide film with uniform film thickness is obtained.

Description

【発明の詳細な説明】 本発明は熱酸化膜の形成方法に関する。[Detailed description of the invention] The present invention relates to a method for forming a thermal oxide film.

従来の方法では炉心管(1)内に半導体ウェハ−[2)
・・・(2)をポート(3)Kill直に立てて多数配
置し、炉心管(1)の一方から並行に伸びるノズル+4
1 +4)を用いて水素ガス(■2)および酸素ガス(
02)を導入して、近接したノズル+4>+4)の先端
で燃焼させている。
In the conventional method, semiconductor wafers [2] are placed inside the reactor core tube (1).
...(2) are placed directly in line with the port (3) Kill, and the nozzle +4 extends in parallel from one side of the reactor core tube (1).
1 +4) using hydrogen gas (■2) and oxygen gas (
02) is introduced and burned at the tip of the adjacent nozzle +4>+4).

斯る方法ではノズル+41 +41の先端で約2000
’Cにも達し、仁のため炎が直接半導体ウェハー(2)
に当り半導体ウニ八−(2)がゆがんだり、あるいは炉
心管(1)や石英ボード(3)の損傷が激しい欠点があ
る。
In this method, the tip of the nozzle +41 +41 is approximately 2000
'C also reached, and the flame directly touched the semiconductor wafer (2)
The disadvantage is that the semiconductor urchin (2) may be distorted or the furnace core tube (1) or quartz board (3) may be severely damaged.

また発生する水蒸気圧が炉心管(1)内で不均一である
ため、熱鹸化膜の厚みのばらつ会が大きく、上記損傷に
より生ずる石英劣化物が半導体ウェハー(2)表面に付
着するディフェクト不良も発生していた。
In addition, since the water vapor pressure generated is non-uniform within the reactor core tube (1), there is a large variation in the thickness of the saponified film, resulting in defects in which quartz deterioration products caused by the above damage adhere to the surface of the semiconductor wafer (2). was also occurring.

本発明は斯点に鑑みてなされ、従来の欠点を完全に除去
する熱鹸化膜の形成方法を実現するものである。以下に
第2図を参照して本発明の一実施例を詳述する。
The present invention has been made in view of this point, and is intended to realize a method for forming a thermally saponified film that completely eliminates the conventional drawbacks. An embodiment of the present invention will be described in detail below with reference to FIG.

本発明に依れば炉心管α日内に半導体ウェハー(至)・
・・@をボードa3に垂直に立てて多数配置し、炉心管
(2)の一方から一本のノズルa−を伸ばしその先端を
U字状に曲折する。このノズル(1aから水素ガス(H
2)を噴出させ、炉心管αnの導入端付近から延在する
ノズルを用いずに酸素ガス(02)を噴出させる。斯る
状態でノズルα−の先端で燃焼させて水蒸気を発生させ
る。この水蒸気を矢印に示す如く管壁に沿って半導体ウ
ェハー(至)・・・(11に供給して均一な膜厚の熱酸
化膜を形成する。
According to the present invention, semiconductor wafers (up to) and
... A large number of @ are arranged vertically on board a3, one nozzle a- is extended from one side of the furnace core tube (2), and its tip is bent into a U-shape. Hydrogen gas (H
2) is ejected, and the oxygen gas (02) is ejected without using a nozzle extending from the vicinity of the introduction end of the furnace tube αn. In this state, it is combusted at the tip of the nozzle α- to generate water vapor. This water vapor is supplied to semiconductor wafers (11) along the tube wall as shown by arrows to form a thermally oxidized film of uniform thickness.

本発明では酸素ガスの噴出口部分では約100℃であり
、水素ガスの噴出するノズル1番先端では約800℃の
反応温度である。また水素ガスと酸素ガスは互いに対向
して噴出するので反応が促進され水蒸気を安定して発生
することができる。更にこの水蒸気は直接半導体ウェハ
ーql・・・□□□に吹き付けられず、間接的に管壁に
沿って矢印の如く半導体ウェハ−t13に均一に供給さ
れるので管内の水蒸気圧を均一に保つことができる。
In the present invention, the reaction temperature is about 100° C. at the oxygen gas ejection port, and about 800° C. at the first tip of the nozzle where hydrogen gas is ejected. Further, since hydrogen gas and oxygen gas are ejected in opposition to each other, the reaction is promoted and water vapor can be stably generated. Furthermore, this water vapor is not directly blown onto the semiconductor wafers ql...□□□, but is indirectly uniformly supplied to the semiconductor wafers t13 along the tube wall as shown by the arrow, so that the water vapor pressure inside the tube can be kept uniform. Can be done.

第3図に本発明と従来例との熱酸化膜の膜厚の分布図を
示す。実線は本発明による特性であり、設針値850 
AK対して約70%の半導体ウェハー(2)が840〜
880ムの中に納まり、均一な膜厚を得られることが明
らかである。これに対して点線で示す従来例では同範囲
には約40%の半導体ウェハ−(至)しか分布していな
い。
FIG. 3 shows a film thickness distribution diagram of thermal oxide films of the present invention and a conventional example. The solid line is the characteristic according to the present invention, and the set needle value is 850.
Approximately 70% of semiconductor wafers (2) for AK are 840~
It is clear that the film thickness falls within 880 μm and that a uniform film thickness can be obtained. On the other hand, in the conventional example shown by the dotted line, only about 40% of the semiconductor wafers are distributed in the same range.

以上に詳述した如く本発明に依れば、均一な膜厚の熱酸
化膜を容易に且つ高収率で形成できる利点を有する。ま
たノズルI先端の燃焼温度も下げられるので設備の損傷
も防止できる。
As detailed above, the present invention has the advantage that a thermally oxidized film having a uniform thickness can be easily formed with high yield. Furthermore, since the combustion temperature at the tip of nozzle I is lowered, damage to equipment can also be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を説明する断面図、第2図は本発明を説
明する断面図、第3図は本発明および従来例の膜厚分布
図である。 fillは炉心管、(至)は半導体ウエノ1−1(至)
はボード、USはノズルである。 工1;l+1 2  2     1 11     71        IIts    
           /4第8図
FIG. 1 is a cross-sectional view for explaining the conventional example, FIG. 2 is a cross-sectional view for explaining the present invention, and FIG. 3 is a film thickness distribution diagram for the present invention and the conventional example. fill is the reactor core tube, (to) is the semiconductor Ueno 1-1 (to)
is the board, and US is the nozzle. Engineering 1; l+1 2 2 1 11 71 IIts
/4 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 1、炉心管内に半導体ウェハーを配置し水素ガスと酸素
ガスとを燃焼させて水蒸気を発生させて前記半導体ウニ
八−に熱酸化膜を形成する方法に詔いて、水素ガスの導
入ノズルを曲折して酸素ガスと対向して噴出させること
を特徴とする熱酸化膜の形成方法。
1. A method of placing a semiconductor wafer in a reactor core tube, burning hydrogen gas and oxygen gas to generate water vapor, and forming a thermal oxide film on the semiconductor wafer, bending the hydrogen gas introduction nozzle. A method for forming a thermal oxide film, characterized by ejecting oxygen gas in the opposite direction.
JP57057095A 1982-04-05 1982-04-05 Forming method for thermal oxide film Pending JPS58173837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57057095A JPS58173837A (en) 1982-04-05 1982-04-05 Forming method for thermal oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57057095A JPS58173837A (en) 1982-04-05 1982-04-05 Forming method for thermal oxide film

Publications (1)

Publication Number Publication Date
JPS58173837A true JPS58173837A (en) 1983-10-12

Family

ID=13045942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57057095A Pending JPS58173837A (en) 1982-04-05 1982-04-05 Forming method for thermal oxide film

Country Status (1)

Country Link
JP (1) JPS58173837A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200536A (en) * 1987-02-16 1988-08-18 Canon Inc Apparatus for forming silicon oxide film
WO1991013461A1 (en) * 1990-02-20 1991-09-05 Kabushiki Kaisha Toshiba Method of treating semiconductor substrate surface and device therefor
US5489446A (en) * 1987-02-16 1996-02-06 Canon Kabushiki Kaisha Device for forming silicon oxide film
KR20210058905A (en) 2018-10-22 2021-05-24 닛폰세이테츠 가부시키가이샤 Casting method of cast steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200536A (en) * 1987-02-16 1988-08-18 Canon Inc Apparatus for forming silicon oxide film
EP0279406A2 (en) * 1987-02-16 1988-08-24 Canon Kabushiki Kaisha Device for forming silicon oxide film
US5489446A (en) * 1987-02-16 1996-02-06 Canon Kabushiki Kaisha Device for forming silicon oxide film
WO1991013461A1 (en) * 1990-02-20 1991-09-05 Kabushiki Kaisha Toshiba Method of treating semiconductor substrate surface and device therefor
US5314847A (en) * 1990-02-20 1994-05-24 Kabushiki Kaisha Toshiba Semiconductor substrate surface processing method using combustion flame
KR20210058905A (en) 2018-10-22 2021-05-24 닛폰세이테츠 가부시키가이샤 Casting method of cast steel

Similar Documents

Publication Publication Date Title
JP2683545B2 (en) Combustion method in furnace
JPS58173837A (en) Forming method for thermal oxide film
JP5180291B2 (en) Lean burn
JP5074417B2 (en) Multi-stage oxyfuel combustion process using preheated reactants
JP6043393B2 (en) Burner flame formation method
JP2582365B2 (en) Reducing gas generator
JP2018084389A (en) Heating burner, radiant tube, and method for heating steel material
JPS5577624A (en) Combustion apparatus for combustible gas
US6308738B1 (en) Drafting apparatus
JPS5433212A (en) Preventing apparatus for dew condensation in exhaust gas from industrial furnace
JPS58221306A (en) Bright flame emitting combustion
JPH0777310A (en) Low nitrogen oxide generating burner and burning method therefor
JPH06257723A (en) Oxygen burner
JPH07103428A (en) Oxygen burner
JPH0223764B2 (en)
KR970007113B1 (en) Oxdation apparatus
JPS6373009A (en) High load combustion device
US3063814A (en) Tubular furnace
JPS6360528B2 (en)
JPS6245128A (en) External combustion equipment
JPS623001A (en) External combustion oxidation device
JPS63225510A (en) Production of co-rich gas
JP2563497B2 (en) Semiconductor device manufacturing equipment
JP2521269B2 (en) External combustion burning device
JPH1112612A (en) Lance for injecting pulverized fine coal into blast furnace