JPS63225510A - Production of co-rich gas - Google Patents

Production of co-rich gas

Info

Publication number
JPS63225510A
JPS63225510A JP62059761A JP5976187A JPS63225510A JP S63225510 A JPS63225510 A JP S63225510A JP 62059761 A JP62059761 A JP 62059761A JP 5976187 A JP5976187 A JP 5976187A JP S63225510 A JPS63225510 A JP S63225510A
Authority
JP
Japan
Prior art keywords
combustion furnace
furnace
gas
combustion
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62059761A
Other languages
Japanese (ja)
Other versions
JPH0674125B2 (en
Inventor
Mamoru Aoki
守 青木
Tomio Suzuki
富雄 鈴木
Yukio Watanabe
幸夫 渡辺
Shuzo Ito
修三 伊東
Shigeki Sasahara
笹原 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62059761A priority Critical patent/JPH0674125B2/en
Publication of JPS63225510A publication Critical patent/JPS63225510A/en
Publication of JPH0674125B2 publication Critical patent/JPH0674125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the durability of a combustion furnace and to increase the amount of CO in the product gas, by blowing CO2 into the combustion furnace along the inner wall side, when a hydrocarbon type fuel is imperfectly burnt in the combustion furnace to produce a reductive gas containing H2 and CO. CONSTITUTION:The hydrocarbon type fuel (for example, natural gas) is introduced in the combustion furnace 1 through the fuel introducing pipe 2 of a main burner 8 and an auxiliary burning material (for example, air) is introduced through an auxiliary burning material introducing pipe 3 to carry out imperfect combustion, and the reductive gas containing at least H2 and CO. In this case, CO2 is blown into the combustion furnace 1 through the CO2 introducing pipes 4 disposed near the inner wall surface of the combustion furnace 1 so as to ascend along the inner wall surface so that the inner wall is cooled and prevented from bringing into direct contact with the flame produced by the burner 8, and is prevented from melting. Moreover, as this method eliminates the need of introduction of steam for adjusting the temp. in the furnace, the production amount of H2 is reduced and a CO-rich gas is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は炭化水素系燃料を燃焼炉内で不完全燃焼させて
H2及びCOを含むガス(以下Coリッチガスという)
を製造する方法に関し、特に燃焼炉の耐久性を向上させ
るとともにCo量の調整をすることのできるCOリッチ
ガスの製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention produces gas containing H2 and CO (hereinafter referred to as Co-rich gas) by incompletely burning hydrocarbon fuel in a combustion furnace.
In particular, the present invention relates to a method for producing a CO-rich gas that can improve the durability of a combustion furnace and adjust the amount of Co.

[従来の技術] 燃料油、ナフサ、天然ガス等の炭化水素系燃料を単独で
、若しくはこれにスチーム及び/若しくはC02を混合
して不完全燃焼させ、H2+Co、Cow 、H20等
を含む混合ガスを製造する方法について鎗既に実用化さ
れている。ここに製造されるガスは、炭化水素に由来す
るH2とスチームに由来するH2を含有し、従ってH2
リッチとなっているからアンモニア製造用の原料ガスと
して広く利用されている。上記反応を進行させる為の熱
源としては原料の一部を利用しているので、反応温度を
保つためにリフォーミングのように外部から熱を加える
必要がなく、燃焼炉は内部を耐火物で内張すした円筒形
状の極めて簡単な構造のもので良い。
[Prior art] A hydrocarbon fuel such as fuel oil, naphtha, or natural gas is incompletely combusted alone or mixed with steam and/or CO2 to produce a mixed gas containing H2+Co, Cow, H20, etc. The manufacturing method for spears has already been put into practical use. The gas produced here contains H2 derived from hydrocarbons and H2 derived from steam, and therefore H2
Because it is rich, it is widely used as a raw material gas for ammonia production. Since a part of the raw material is used as the heat source for the above reaction to proceed, there is no need to apply heat from the outside like in reforming to maintain the reaction temperature, and the combustion furnace is lined with refractory material. An extremely simple structure with a stretched cylindrical shape may be sufficient.

[発明が解決しようとする問題点] 上記方法において添加されるスチームはH。[Problem to be solved by the invention] The steam added in the above method is H.

リッチガスを製造する上で有効であるばかりでなく、炉
壁耐大物の冷却保護機能も果している。しかしスチーム
を添加しすぎると燃焼温度が下がり過ぎると共に燃焼性
の低下を招いてカーボンの発生量が多くなり、このため
後段でカーボン除去装置を設置しなくてはならない。
Not only is it effective in producing rich gas, but it also serves as a cooling protector for large furnace wall components. However, if too much steam is added, the combustion temperature will drop too much and the combustibility will drop, resulting in a large amount of carbon being generated, and therefore a carbon removal device must be installed at a later stage.

カーボン発生量が多くなるのはたとえばca Ha→6
C+31(z  (分解反応)−(1)C+ 02 →
COz         ”’ (2a)C+Co2→
2CO・−(2b) の反応において燃焼温度が下がってくると(1)の反応
に比べて(2a) 、 (2b)の反応が遅くなってく
るためである。
For example, the amount of carbon generated increases when ca Ha → 6
C+31(z (decomposition reaction)-(1)C+ 02 →
COz ”' (2a) C+Co2→
This is because when the combustion temperature decreases in the reaction of 2CO.-(2b), the reactions of (2a) and (2b) become slower than the reaction of (1).

このようにスチームの添加によって炉内温度は低下する
が、炉内では元々燃焼という高温反応がおこっているの
であるからかなりの高温となっており、また火炎の接触
により炉壁の損傷は避けられない、このため炉を巨大に
して対処するといったことも行なわれている。
The addition of steam lowers the temperature inside the furnace, but since the high-temperature reaction of combustion is already occurring inside the furnace, the temperature is quite high, and damage to the furnace walls due to contact with the flames can be avoided. There are no such problems, so some measures are being taken to deal with this problem, such as making the furnace larger.

一方、近年炭素数が1つの化合物を出発原料とするC1
化学が注目を集めており、COリッチガスを製造する必
要性が高まっている。そこで本発明においては炉壁を保
護することができるとともに生成ガス中のCO量の調整
が可能となるCOリッチガスの製造方法の提供について
検討した。
On the other hand, in recent years, C1 using a compound with one carbon number as a starting material
Chemistry is gaining attention and the need to produce CO-rich gas is increasing. Therefore, in the present invention, consideration has been given to providing a method for producing CO-rich gas that can protect the furnace wall and also make it possible to adjust the amount of CO in the generated gas.

[問題点を解決するための手段] 上記問題点を解決することのできた本発明とは炭化水素
系燃料を必要によりスチーム及び/若しくはCO2添加
の下で燃焼炉内で不完全燃焼させることによって少なく
ともH,とCOを含む還元性ガスを製造する方法におい
て、前記燃焼炉の内壁面側にCO2を吹込むことを構成
要旨とするものである。
[Means for Solving the Problems] The present invention has solved the above-mentioned problems by at least partially burning a hydrocarbon fuel in a combustion furnace with the addition of steam and/or CO2 as necessary. A method for producing a reducing gas containing H, and CO, the gist of which is to inject CO2 into the inner wall surface of the combustion furnace.

[作用] 第1図は本発明の実施に適した炉体構造の一例を示す断
面であり、以下第1図に基づいて本発明の主旨を明らか
にする。尚第1図(a)は縦断面図であり、第1図(b
)は第1図(a)のA−A’線矢視断面図である。
[Operation] FIG. 1 is a cross-sectional view showing an example of a furnace body structure suitable for carrying out the present invention, and the gist of the present invention will be explained below based on FIG. 1. Note that FIG. 1(a) is a longitudinal cross-sectional view, and FIG. 1(b) is a vertical cross-sectional view.
) is a sectional view taken along line AA' in FIG. 1(a).

燃焼炉1内のメインバーナー8は燃料導入管2および助
燃剤導入管3よりなる2重管によって形成されており、
たとえばスチームを含有する炭化水素系燃料(以下単に
燃料ということもある)は予熱された後燃料導入管2か
ら燃焼炉1内に導入し、また助燃剤としての酸素(あi
いは空気)を助燃剤導入管3より導入して燃料の一部を
燃焼させ、その時発生する燃焼熱を利用して燃料の残部
を分離・ガス化して不完全燃焼ガスを生成する。
The main burner 8 in the combustion furnace 1 is formed by a double pipe consisting of a fuel introduction pipe 2 and a combustion improver introduction pipe 3.
For example, hydrocarbon fuel (hereinafter also simply referred to as fuel) containing steam is preheated and then introduced into the combustion furnace 1 through the fuel introduction pipe 2.
(or air) is introduced through the combustion improver introduction pipe 3 to combust a part of the fuel, and the combustion heat generated at that time is used to separate and gasify the remainder of the fuel to generate incomplete combustion gas.

一方燃焼炉1の内壁面近くに配されたCOI導入管4か
らCO,を燃焼炉1内に吹込む、この吹込まれたCO2
は燃焼炉1の内壁に沿って上昇し、内壁を冷却するとと
もにバーナーからの火炎が内壁に直接接触するのを防ぎ
、また輻射熱を遮断する。従って炉壁にホットスポット
の様な溶損′が生じるのを防止し、炉壁の寿命を延長さ
せることが可能となった。さらにこのCO2は前記燃焼
ガスと混合されて排ガス管5より排出される。尚第1図
において6は温度測定用フランジ、7はパイロットバー
ナーである。
On the other hand, CO2 is blown into the combustion furnace 1 from the COI introduction pipe 4 arranged near the inner wall surface of the combustion furnace 1.
rises along the inner wall of the combustion furnace 1, cools the inner wall, prevents the flame from the burner from coming into direct contact with the inner wall, and blocks radiant heat. Therefore, it is possible to prevent melting damage such as hot spots from occurring on the furnace wall and to extend the life of the furnace wall. Furthermore, this CO2 is mixed with the combustion gas and discharged from the exhaust gas pipe 5. In FIG. 1, 6 is a temperature measuring flange, and 7 is a pilot burner.

この燃焼炉内でおこっている反応は次に示す通りである
。尚この反応式のうち(4) 、 (5)式の反応はス
チームを合わせて吹込んだ場合を示す。
The reactions taking place in this combustion furnace are as follows. Of these reaction equations, reactions in equations (4) and (5) show the case where steam is blown together.

2                 ICmHn+m
H20−4mC0+  (m+−)H。
2 ICmHn+m
H20-4mC0+ (m+-)H.

CO+  H20−C02+  H2””  (S)こ
こで炭化水素系燃料とは天然ガス、精油所からのオフガ
ス、ベンゼン等の芳香族炭化水素、ナフサ等の軽買油お
よび重質油あるいはこれらの混合物等であり、これら燃
料単独、あるいはこれらの燃料にスチームおよび/また
はCO諺を混合使用するものであり、上記反応式では炭
化水素系燃料をCmHnとして表わしたが、それらの成
分組成については一切制限を受けない、尚C02やスチ
ームの役割は後述する如<C(煤)の発生を抑制する点
にある。
CO+ H20-C02+ H2"" (S) Here, hydrocarbon fuels include natural gas, off-gas from refineries, aromatic hydrocarbons such as benzene, light oil such as naphtha, heavy oil, or mixtures thereof, etc. These fuels can be used alone or in combination with steam and/or CO. In the above reaction formula, the hydrocarbon fuel is expressed as CmHn, but there are no restrictions on their component composition. The role of C02 and steam is to suppress the generation of C (soot), as will be described later.

またCO2導入管4から吹込むCO2はどの様な経路で
入手したものでも良いが、第2図に示すように排ガス管
5から排出されるガスを排熱回収、カーボン除去、水分
除去、ガス分離等の各装置に通して回収されたCO7を
リサイクルすることが推奨される。この様に本発明では
スチームを炉内温度調整用としては導入しないのでH2
の生成量が減少して相対的にCOガス比率が向上すると
共に、C転化率が向上するので、本発明の目的で、ある
Coリッチガスを得ることが可能となった。また燃焼温
度の低下およびこれに伴う燃焼性の低下を防ぎ、その結
果カーボン発生量を抑制することができる。尚発生した
Cは炉内が高温になればなる程C02やH2Oと反応し
てCOあるいはH2を生成する。
The CO2 injected from the CO2 introduction pipe 4 may be obtained through any route, but as shown in Fig. 2, the gas discharged from the exhaust gas pipe 5 is collected by exhaust heat recovery, carbon removal, moisture removal, and gas separation. It is recommended to recycle the CO7 collected through various devices such as . In this way, in the present invention, since steam is not introduced to adjust the temperature inside the furnace, H2
Since the production amount of CO is reduced, the CO gas ratio is relatively improved, and the C conversion rate is also improved, it has become possible to obtain a certain Co-rich gas for the purpose of the present invention. Further, it is possible to prevent a decrease in combustion temperature and the accompanying decrease in combustibility, and as a result, it is possible to suppress the amount of carbon generated. The generated C reacts with CO2 and H2O to generate CO or H2 as the temperature inside the furnace increases.

C+CO2→2CO C+H20→H,+CO この際スチームだけの添加ではCOリッチにならず、ス
チーム量を多量に吹込むとCO3を吹込む以上に燃焼温
度が下がフでくる。このように本発明によると熱利用率
を向上することができて燃料消費量を少なくすることが
でき、これらの面もCO生成量の増大に寄与する。
C+CO2→2CO C+H20→H,+CO In this case, adding only steam will not make the mixture rich in CO, and blowing in a large amount of steam will lower the combustion temperature more than blowing in CO3. As described above, according to the present invention, it is possible to improve the heat utilization efficiency and reduce fuel consumption, and these aspects also contribute to an increase in the amount of CO produced.

[実施例] 第1表に示す配合割合で燃料、助燃剤および内壁面側吹
込み用CO2を第1図に示す燃焼炉1内に導入し、Co
リッチガスを生成した。得られた生成ガス量、出口ガス
温度、ガス成分組成、82/CoおよびC転化率は同表
下欄に示すとおりである。またこの時の002の内壁面
側吹込みによる炉内温度分布に対する影響を第3図に示
す。
[Example] Fuel, combustion improver, and CO2 for injection into the inner wall side were introduced into the combustion furnace 1 shown in FIG.
Produced rich gas. The resulting produced gas amount, outlet gas temperature, gas component composition, 82/Co and C conversion rates are as shown in the lower column of the same table. Furthermore, the influence of the injection of 002 on the inner wall surface side on the temperature distribution in the furnace at this time is shown in FIG.

第 1 表  燃焼条件と結果比較 (S CF M : 5tandard  Cubic
  feet/@1nut@)第1表から明らかなよう
に002の内壁面側吹込量を多くすると生成ガス中のC
o量を多くすることができ、H2/Coを小に、またC
転化率を大にすることができる。さらに第3図から明ら
かなようにCO3を導入することにより、炉の内壁部温
度を全体的に下げることができる。つまり出口部分で約
13℃、炉内最高温度も約20℃下げることができる。
Table 1 Comparison of combustion conditions and results (S CF M: 5 standard Cubic
feet/@1 nut@) As is clear from Table 1, when the amount of 002 blown into the inner wall side is increased, the amount of C in the generated gas increases.
The amount of O can be increased, H2/Co can be reduced, and C
The conversion rate can be increased. Furthermore, as is clear from FIG. 3, by introducing CO3, the temperature of the inner wall of the furnace can be lowered as a whole. In other words, the maximum temperature inside the furnace can be lowered by about 13°C at the outlet and by about 20°C.

[発明の効果] 本発明は以上の様に構成されているので、炉内温度調整
用としてのH2Oの導入に伴う弊害をなくすことができ
、CO7を内壁面側に吹込むことにより燃焼炉を巨大化
させなくてもその耐久性の向上と生成ガス中のCo量の
増大を図ることができる。
[Effects of the Invention] Since the present invention is configured as described above, it is possible to eliminate the adverse effects associated with the introduction of H2O for temperature adjustment in the furnace, and to inject CO7 into the inner wall side of the combustion furnace. It is possible to improve the durability and increase the amount of Co in the generated gas without increasing the size.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための燃焼炉の一例を示す概
略図、第2図は本発明のプロセスフローの一例を示す概
略図、第3図はCO2の内壁面側吹込みによる炉内温度
分布に対する影響を示す図である。 1・・・燃焼炉     2・・・燃料導入管3・・・
助燃剤導入管  4−CO、導入管5・・・排ガス管 
   6・・・温度測定用フランジ7・・・パイロット
バーナー 8・・・メインバーナー 9・・・排熱ボイラー10−
・・スクラバー   11.13.18・・・ドラム1
2・・・ダスト集塵装置 14−・・コンプレッサー1
5・・・H20除去装置 16・−CO2吸着装置17
・・・Con脱着装置
Fig. 1 is a schematic diagram showing an example of a combustion furnace for carrying out the present invention, Fig. 2 is a schematic diagram showing an example of the process flow of the present invention, and Fig. 3 is a schematic diagram showing an example of the process flow of the present invention. It is a figure showing the influence on temperature distribution. 1... Combustion furnace 2... Fuel introduction pipe 3...
Combustion aid introduction pipe 4-CO, introduction pipe 5...exhaust gas pipe
6...Temperature measurement flange 7...Pilot burner 8...Main burner 9...Exhaust heat boiler 10-
...Scrubber 11.13.18...Drum 1
2...Dust collector 14-...Compressor 1
5...H20 removal device 16.-CO2 adsorption device 17
...Con detachment device

Claims (1)

【特許請求の範囲】[Claims] 炭化水素系燃料を燃焼炉内で不完全燃焼させることによ
って少なくともH_2及びCOを含む還元性ガスを製造
する方法において、前記燃焼炉の内壁面側にCO_2を
吹込むことを特徴とするCOリッチガス製造方法。
A method for producing a reducing gas containing at least H_2 and CO by incompletely burning a hydrocarbon fuel in a combustion furnace, characterized in that CO_2 is injected into the inner wall side of the combustion furnace. Method.
JP62059761A 1987-03-13 1987-03-13 CO Rich Gas Production Method Expired - Lifetime JPH0674125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62059761A JPH0674125B2 (en) 1987-03-13 1987-03-13 CO Rich Gas Production Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62059761A JPH0674125B2 (en) 1987-03-13 1987-03-13 CO Rich Gas Production Method

Publications (2)

Publication Number Publication Date
JPS63225510A true JPS63225510A (en) 1988-09-20
JPH0674125B2 JPH0674125B2 (en) 1994-09-21

Family

ID=13122572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62059761A Expired - Lifetime JPH0674125B2 (en) 1987-03-13 1987-03-13 CO Rich Gas Production Method

Country Status (1)

Country Link
JP (1) JPH0674125B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360416A (en) * 1989-07-25 1991-03-15 Ube Ind Ltd Method for partially oxidizing carbonaceous fuel
JP2001278610A (en) * 2000-03-31 2001-10-10 Nippon Sanso Corp Method of generating atmospheric gas for high temperature rapid carburization
JP2002173305A (en) * 2000-12-05 2002-06-21 Tokyo Gas Co Ltd Apparatus for producing hydrogen
US8398729B2 (en) 2005-12-15 2013-03-19 General Electric Company Gasification systems for partial moderator bypass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346901A (en) * 1976-10-13 1978-04-27 Nitto Chem Ind Co Ltd Preparation of carbon monoxide for synthetic raw material use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346901A (en) * 1976-10-13 1978-04-27 Nitto Chem Ind Co Ltd Preparation of carbon monoxide for synthetic raw material use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360416A (en) * 1989-07-25 1991-03-15 Ube Ind Ltd Method for partially oxidizing carbonaceous fuel
JP2001278610A (en) * 2000-03-31 2001-10-10 Nippon Sanso Corp Method of generating atmospheric gas for high temperature rapid carburization
JP2002173305A (en) * 2000-12-05 2002-06-21 Tokyo Gas Co Ltd Apparatus for producing hydrogen
US8398729B2 (en) 2005-12-15 2013-03-19 General Electric Company Gasification systems for partial moderator bypass

Also Published As

Publication number Publication date
JPH0674125B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
JP2022109069A (en) Ammonia decomposition device
JP5282455B2 (en) Gasification gas reforming method and apparatus
JP3771728B2 (en) Blowing pulverized coal and reducing gas into the blast furnace
US1924856A (en) Continuous gas manufacture
JPS61185591A (en) Manufacture of gas
EP0086504B1 (en) A process for generating mechanical power
JPS63252903A (en) Device for generating reducing gas
JPS63225510A (en) Production of co-rich gas
JP3976888B2 (en) Coal air bed gasification method and apparatus
JP3904161B2 (en) Method and apparatus for producing hydrogen / carbon monoxide mixed gas
JP4473568B2 (en) CO-containing reducing gas production equipment
US984605A (en) Method of producing nitrogen and carbon dioxid from gaseous products of combustion.
JP3984535B2 (en) Reforming apparatus for gasified solid fuel and method for reforming the same
US2694621A (en) Process for the manufacture of carbon black
JP2774923B2 (en) High-temperature carbonized gas heating method and apparatus in vertical type continuously formed coke manufacturing equipment
US1964207A (en) Process of manufacturing producer gas of high calorific value
US570382A (en) Apparatus for manufacturing fuel-gas
SU1761777A1 (en) Method for production of combustible gases from solid carbon-containing fuel
KR102161597B1 (en) Method and apparatus for manufacturing molten iron
JP2006028211A (en) Waste gasifier
US226397A (en) Process and apparatus for manufacturing gas
US1369825A (en) Method of making carbon bisulfid
JPS63251495A (en) Method of regulating components of reducing gas
US873250A (en) Gas manufacture.
US1409682A (en) Method of manufacturing water gas