JPS60117770A - One-dimensional thin film sensor - Google Patents

One-dimensional thin film sensor

Info

Publication number
JPS60117770A
JPS60117770A JP58225904A JP22590483A JPS60117770A JP S60117770 A JPS60117770 A JP S60117770A JP 58225904 A JP58225904 A JP 58225904A JP 22590483 A JP22590483 A JP 22590483A JP S60117770 A JPS60117770 A JP S60117770A
Authority
JP
Japan
Prior art keywords
amorphous silicon
electrode
thin film
electrodes
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58225904A
Other languages
Japanese (ja)
Other versions
JPH0464185B2 (en
Inventor
Shinichiro Ishihara
伸一郎 石原
Masatoshi Kitagawa
雅俊 北川
Atsuo Nishikawa
西川 敦夫
Masaharu Ono
大野 雅晴
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58225904A priority Critical patent/JPS60117770A/en
Publication of JPS60117770A publication Critical patent/JPS60117770A/en
Publication of JPH0464185B2 publication Critical patent/JPH0464185B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Abstract

PURPOSE:To obtain a long, one-dimensional sensor, which is compact and highly reliable and can perform high speed operation, by selectively diffusing impurities so as to form an amorphous silicon semiconductor film and a thin film, whose optical forbidden band width is smaller than the amorphous silicon, and applying wiring in three dimensions. CONSTITUTION:At the initial period of operation of a long, one-dimentional sensor, first electrodes 12, 12', and 12'' and second electrodes 17'' are opened. Then, the first electrode 12' is grounded, and the second electrodes 17'' are sequentially grounded from the end, or in accordance with a random number. From individual light receiving elements, to which light is projected, optical currents, which are generated by a-Si:Hpin diodes constituted in a thin film 15, are taken out. Then, the first electrode 12'' is grounded, the second electrodes 17'' are sequentially grounded, and the optical currents are taken out. When all the first electrodes are grounded by one round and the optical currents are all taken out, the initial state is restored. Then this procedure is repeated. During these processes, the change dur to the movement of an original paper and the like is detected by the optical currents.

Description

【発明の詳細な説明】 産業上の利用分野 不発Ffiは、水素化された非晶質シリコン(以下a−
si:)()を用いた長尺−次元センサーすなわち、多
数の絵素をある一方向のみに配列させ、その方列2 向における光の強度を検完する素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Industrial application field Ffi is hydrogenated amorphous silicon (hereinafter a-
The present invention relates to a long-dimensional sensor using si:)(), that is, a device that arranges a large number of picture elements in only one direction and completely tests the intensity of light in two directions.

従来例の構成とその問題点 従来、長尺−次元センサーの基本的な構成は第1図に示
すようにセンサー部に対してその信号処理に必要な配線
部が占めるような構成になっていた。第1図はその平面
図であシ、1はガラス基板、2は透明導電膜よりなる第
1電極、3は光起電力を発生させる材料、4は各絵素に
分離された第2電極である。このように光に感じて信号
を発生する部分は、第1電極2と第2電極4との重なっ
た部分だけであり、他の部分のほとんどは、配線のため
に必要なものであった。実際のセンサーは、絵素の数が
第1図より多くなっている。そして第1図に示した構成
を横方向にくシ返した構成となっており、第2電極4の
幅が広くなった部分に各々ハンダ付けしてリード線をと
り出している。すなわち絵素の数だけ不良率の高いハン
ダ付けをしなければならなかった。
Conventional configuration and its problems Conventionally, the basic configuration of long-dimensional sensors was such that the sensor section was occupied by the wiring section necessary for signal processing, as shown in Figure 1. . Figure 1 is a plan view of the same, in which 1 is a glass substrate, 2 is a first electrode made of a transparent conductive film, 3 is a material that generates photovoltaic force, and 4 is a second electrode separated into each picture element. be. The only part that senses light and generates a signal is the overlapping part of the first electrode 2 and second electrode 4, and most of the other parts are necessary for wiring. The actual sensor has more picture elements than in Figure 1. The structure shown in FIG. 1 is laterally reversed, and the wider portions of the second electrodes 4 are soldered and lead wires are taken out. In other words, it was necessary to perform soldering with a high failure rate for the number of picture elements.

発明の目的 本発明は、」二連した2点の問題点を軽減し、コンパク
トで信頼性が高く、高速動作可能な長尺−次元センサー
を提供するものである。
OBJECTS OF THE INVENTION The present invention alleviates the following two problems and provides a long-dimensional sensor that is compact, highly reliable, and capable of high-speed operation.

発明の構成 本発明は透光性絶縁基板上に透明導電膜よりなる第1電
極および分離されてなる配線電極、水素イヒされた非晶
質シリコン(a−si:H)p型、i型。
Structure of the Invention The present invention includes a first electrode made of a transparent conductive film on a light-transmitting insulating substrate, a wiring electrode separated therefrom, and hydrogen-immersed amorphous silicon (a-si:H) p-type and i-type.

n型の各半導体膜、上記a Sl:Hよりも光学的禁止
帯幅が小さな薄膜、各絵素に対応し上記第1電極に対応
する分離された第2電極を順次配するものであり、上記
配線電極と上記第2電極とを上記a−3i:H半導体膜
および上記光学的禁止帯幅(Eq)がa−3i:Hより
も小さな薄膜を貫通させて二次元的に配線することによ
り小型化し、小型化することによって直列抵抗が減少す
るだめに高速動作が可能となり、カラーフィルタの重ね
合わせおよびEqが小さな薄膜によってa−3i:Hに
よる信号と外部から入射する光による雑音との比を増大
させる。
Each of the n-type semiconductor films, a thin film having an optical band gap smaller than the above a Sl:H, and a separated second electrode corresponding to each picture element and corresponding to the first electrode are successively arranged; By two-dimensionally wiring the wiring electrode and the second electrode by penetrating the a-3i:H semiconductor film and the thin film whose optical band gap (Eq) is smaller than a-3i:H. Miniaturization enables high-speed operation as the series resistance decreases, and the ratio of the signal due to a-3i:H to the noise due to externally incident light is reduced by overlapping color filters and a thin film with a small Eq. increase.

実施例の説明 以下、本発明の構成およびその製造法について図に基づ
いて説明する。第2図は、本発明による構成を説明する
平面図である。第2図のイーイ′線での断面図を示した
のが第3図である。第2図のローロ′線での断面図を第
4図に示す。透光性絶縁基板例えばガラス板11上に透
明導電膜12.12’。
DESCRIPTION OF EMBODIMENTS The structure of the present invention and its manufacturing method will be described below with reference to the drawings. FIG. 2 is a plan view illustrating the configuration according to the present invention. FIG. 3 shows a cross-sectional view taken along line E' in FIG. 2. FIG. 4 shows a cross-sectional view taken along the Rollo' line in FIG. 2. A transparent conductive film 12, 12' is provided on a transparent insulating substrate such as a glass plate 11.

12“、13を選択的に蒸着するか、ガラス板11上全
面に蒸着し選択的にエツチングする。この上に、第2図
に示した14の部分に、Affi、Fe、Cu。
12'' and 13 are selectively deposited, or they are deposited on the entire surface of the glass plate 11 and selectively etched. On top of this, Affi, Fe, and Cu are deposited on the portion 14 shown in FIG.

Zn、Pd、Ag、Cd、In、Sn、Au等を約50
00八蒸着する。この上に6−3t:H膜および、a−
3i:H膜より、光学的禁止帯幅の小さな膜例えば、a
−G。
Approximately 50% of Zn, Pd, Ag, Cd, In, Sn, Au, etc.
008 is deposited. On top of this, a 6-3t:H film and a-
3i: A film with a smaller optical band gap than the H film, for example, a
-G.

膜16を堆積する。基板温度は2501Z程度である。Deposit film 16. The substrate temperature is about 2501Z.

S iH4に流量比としてB2H6を0.1%程度混合
させたガスを約10mW/cfAの放電電力密度で分解
させp型a−8i:H膜を、S X H4ガスのみを分
解させてi型a−8i:H膜を、SiH4にPH3を流
量比1チ程度混合させてn型B−3i:H膜を順次堆積
させa−3i:Hpinルミnダイオードした後、上記
a−3t:H膜より光学的禁止帯幅(E(J)の小さな
膜である光学的遮蔽膜、ここではa −G o膜を堆積
する。a −G oはa−3t:H膜と同様な堆積装置
、堆積条件で製造できる。原料ガスとしてG e H4
を用いる。本実施例では、p型、i型、n型のそれぞれ
a−3t″H膜を順に約100人、約4000人。
A p-type a-8i:H film is formed by decomposing a gas mixture of SiH4 and B2H6 at a flow rate ratio of approximately 0.1% at a discharge power density of approximately 10 mW/cfA, and an i-type film is formed by decomposing only the S X H4 gas. The a-8i:H film is mixed with SiH4 and PH3 at a flow rate of about 1 inch, and an n-type B-3i:H film is sequentially deposited to form an a-3i:Hpin luminum diode, and then the above a-3t:H film is formed. An optical shielding film with a smaller optical bandgap (E(J)), here an a-G o film, is deposited. a-G o is deposited using the same deposition apparatus and deposition method as the a-3t:H film. Can be produced under certain conditions.G e H4 as raw material gas
Use. In this embodiment, about 100 people and about 4000 people used p-type, i-type, and n-type a-3t''H films, respectively.

6o〇八堆積させ、a−Ge膜は約1000人堆積させ
′る。上記a−8i:H膜より、Eqが小さな薄膜、本
実施例ではa −G o膜は、受光部面と反対側の面か
め、遮光は十分性なわれている。これら薄膜16を堆積
させると、前述の蒸着金属14は、第3図に示すように
薄膜16を貫通し、表面にまで達する。
The a-Ge film is deposited by about 1000 people. A thin film having a smaller Eq than the above a-8i:H film, the a-Go film in this embodiment, has a surface facing opposite to the light-receiving surface, and is sufficiently light-shielded. When these thin films 16 are deposited, the aforementioned vapor-deposited metal 14 penetrates through the thin films 16 and reaches the surface, as shown in FIG.

この合金領域16に重なるように裏面電極17(ここで
はA1.蒸着膜)を形成する。合金領域16は、薄膜1
6堆積後でもその上に第2図に示した14の部分に、A
n、Fe、Cu、Zn、Pd、Ag、Cd、In。
A back electrode 17 (here, A1. vapor deposited film) is formed so as to overlap this alloy region 16. The alloy region 16 is the thin film 1
Even after 6 depositions, A
n, Fe, Cu, Zn, Pd, Ag, Cd, In.

Sn、Au等を基板温度をIE50〜250℃程度上昇
させて蒸着するか、蒸着してから加熱することによって
形成することができる。裏面電極17の一部を外部電極
とり出し部1′7′とすることにより、ここのみにハン
ダ付けをするだけでよく、不良率の高いハンダ付箇所が
大幅に減少する。ξれでも配線抵抗が高くなる場合は、
第2図ではセンサーの一端のみを示しである臥他端にも
17′と同様な外部型、極?とり出し部を設ければ良い
。丑だ、ハンダ付けはこの構成の場合は、必ずしも必要
でになく、バネで押えたシ、ソケット等にさし込んでも
外部との接続は行える。受光部は第2電極17″と、配
線電極13.配線電極13とN面配線電極17とを合金
部分16で、接続されるようにする。
Sn, Au, etc. can be formed by increasing the substrate temperature by about 50 to 250° C. by vapor deposition, or by vapor deposition and then heating. By making a part of the back electrode 17 the external electrode extraction part 1'7', it is only necessary to solder this part, and the number of soldered parts with a high defect rate is greatly reduced. If the wiring resistance increases even if ξ
In Figure 2, only one end of the sensor is shown; the other end also has an external type similar to 17', with a pole? It is sufficient to provide a take-out portion. Unfortunately, soldering is not necessarily necessary with this configuration, and you can connect it to the outside by pressing it with a spring or inserting it into a socket. The light receiving portion connects the second electrode 17'' and the wiring electrode 13. The wiring electrode 13 and the N-plane wiring electrode 17 are connected by the alloy portion 16.

なお本実施例では、基板11にガラス板を用いてbるが
、例えばポリエステルンイルム等ヲ用いれば、自由に曲
げることができるため、被写体に完全密着することがで
き、装置も小型化することが可能となる。
In this embodiment, a glass plate is used as the substrate 11, but if a polyester film or the like is used, for example, it can be bent freely, so it can be in complete contact with the subject, and the device can also be made smaller. becomes possible.

本実施例のような構造では、受光部以外の配線部でも、
光を感じるため、薄M16の裏面電極17側にa−Go
堆積させ遮光させたのと同様、遮光材料が必要である。
In the structure of this embodiment, even in wiring parts other than the light receiving part,
To sense the light, a-Go is placed on the back electrode 17 side of the thin M16.
Similar to the deposited light blocking material, a light blocking material is required.

またセンサーのカラー化も素子高級化には必要である。Furthermore, colorization of sensors is also necessary for the upgrading of devices.

本発明では、上記2点を兼ねて、基板の光入射側の面全
体にフィルタを形成し、受光部のみにカラー化に必要な
フィルタ構成をする。すなわち、例えば赤21.緑22
.青23のフィルタ3枚を重ねれば(第3図、第4図)
In the present invention, in order to meet the above two points, a filter is formed on the entire surface of the substrate on the light incident side, and a filter structure necessary for colorization is provided only in the light receiving section. That is, for example, red 21. green 22
.. If you stack three blue 23 filters (Figures 3 and 4)
.

光すべて吸収され遮光の働きをし、受光部のみにフィル
タ1枚のみを残せば3原色の1色を検知するセンサーと
なる。薄膜16の3原色の感度の低−ものがあれば、セ
ンサーの数を増加させると回路側での色補正が簡単にな
る。また第4図の31の部分には、フィルタを蒸着して
いない。これは、明るさのセンサーとしても使え、また
原稿の位置センサ、原稿の枚数検知、移動速度検知等の
役割を持たせることができる。
All of the light is absorbed and acts as a light shield, and if only one filter is left in the light receiving area, it becomes a sensor that can detect one of the three primary colors. If the thin film 16 has low sensitivity for the three primary colors, increasing the number of sensors will simplify color correction on the circuit side. Further, no filter is deposited on the portion 31 in FIG. 4. This can be used as a brightness sensor, and can also serve as a document position sensor, document number detection, movement speed detection, etc.

なお、本実施例では、透明導電膜付きガラス板上にa−
3i:H膜によるセンサーを構成したが、全く逆の構成
すなわち、ガラス板上に、第2電極配線電極を配しa−
3i:H膜センサーを配し金属によって貫通、短絡させ
た後、透明導電膜、カラーフィルタを順に配しても本発
明は実施される。
In this example, a-
3i: Although a sensor was constructed using an H film, the configuration was completely reversed, that is, the second electrode wiring electrode was arranged on a glass plate, and a-
The present invention can also be carried out by disposing a 3i:H film sensor, penetrating it and short-circuiting it with a metal, and then disposing a transparent conductive film and a color filter in this order.

第2図に基づいて本発明にょる長尺−次元センサーの動
作について説明する。まず動作初期には、第1電極12
.12’、12“および第2電極17r開放の状態にす
る。次に第1電極12′を接地し、第2電極17“全順
次端から、または乱数を発生させその乱数に従って接地
状態にさせることにより光が照射されている個別の受光
素子から、薄膜16中に構成されているa−3t:Hp
inルミnダイオード生する光電流をとり出す。次に第
1電極12″を接地し、上述したように第2電極17“
を次々と接地し光電流をとり出す。このようにして第1
電極を1通り接地して光電流を取シ出し終わった後、再
び初めの状態にもどって上述した動作をくり返す。この
間に原稿等の移動によって変化した様子を光電流で検出
することができる。
The operation of the long-dimensional sensor according to the present invention will be explained based on FIG. First, in the initial stage of operation, the first electrode 12
.. 12', 12'' and the second electrode 17r are opened.Next, the first electrode 12' is grounded, and the second electrode 17'' is grounded from all sequential ends or according to a random number generated. a-3t:Hp formed in the thin film 16 from the individual light-receiving elements irradiated with light.
The photocurrent generated by the in-luminium diode is taken out. Next, the first electrode 12'' is grounded, and the second electrode 17'' is grounded as described above.
are grounded one after another and the photocurrent is extracted. In this way the first
After the electrodes are grounded once and the photocurrent is extracted, the process returns to the initial state and repeats the above-described operations. During this time, changes due to movement of the original can be detected using photocurrent.

以上述べた動作は光起電力効果の光電流検出によるもの
であるが、短絡状態を開放状態とすべて置き換えること
によシ光起電力効果の光電圧検出による動作もできる。
The operation described above is based on photocurrent detection of the photovoltaic effect, but by replacing all short-circuit states with open states, the operation can also be performed using photovoltage detection of the photovoltaic effect.

寸た、透明導電膜よりなる第1電極12.12’、12
’とi型” S1#Hとのへテロ接合によってもこの動
作は同様に行なうことができる。との場合、センサーは
上述のpin構造からp型をとり除けば良い。
First electrodes 12, 12', 12 made of a transparent conductive film
This operation can be similarly performed by a heterojunction between '' and i-type S1#H. In this case, the p-type may be removed from the above-mentioned pin structure of the sensor.

上記動作説明は光起電力効果を利用したものであるが、
光導電効果を利用してもセンサーは動作可能である。こ
の場合、薄膜15の構成は実施例で説明したものでも良
く、また、a−3i:H膜はi型層のみでも、ptp型
、 nin型、 pi型、ni型等、i型層でキャリア
の光励起が起こりi型層の抵抗が下がるような構造であ
ればいずれの構造であっても艮い。また、この場合、i
型層の抵抗が光照射によシ下がることを検知できるよう
に電界をかけておけば良い。実施例で説明した構成で光
導電効果を利用する動作にするためには、ダイオードを
逆バイアスさせれば良い。
The above operation explanation uses the photovoltaic effect, but
The sensor can also operate using the photoconductive effect. In this case, the structure of the thin film 15 may be the one explained in the embodiment, and the a-3i:H film may have only an i-type layer, or may have carriers in the i-type layer, such as ptp type, nin type, pi type, ni type, etc. Any structure is acceptable as long as it is such that photoexcitation occurs and the resistance of the i-type layer decreases. Also, in this case, i
An electric field may be applied so that it can be detected that the resistance of the mold layer decreases due to light irradiation. In order to operate the structure described in the embodiment using the photoconductive effect, it is sufficient to reverse bias the diode.

発明の効果 本発明によれば、前述のように立体配線を簡単に行なう
ことができるため、素子をコンパクトに形成でき生産性
が向上できる。また、受光部以外の遮光にカラーフィル
タを用いれば、素子のカラー化と同時にS/N比を向上
させることができる。
Effects of the Invention According to the present invention, three-dimensional wiring can be easily performed as described above, so that elements can be formed compactly and productivity can be improved. Furthermore, if a color filter is used to block light from areas other than the light receiving part, the S/N ratio can be improved at the same time as the element is colored.

さらに、外部端子の接続に必要ないハンダ付けの箇所を
減らすことができ、全くハンダ工程を通さずに素子を作
成することもできるため、歩留の高い作成工程にするこ
とや素子故障時にとり換え簡単な素子を作ることができ
る。
Furthermore, it is possible to reduce the number of soldering points that are not necessary for connecting external terminals, and it is also possible to create devices without going through the soldering process at all, allowing for high-yield manufacturing processes and replacement in the event of device failure. You can make simple elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の構成を示す平面図、第2図は本発明の
一実施例を示す平面図、第3図は第2図イーイ′線にお
ける断面図、第4図は第2図ローロ′線における断面図
である。 1.11・・・・・・透光性絶縁基板、2,12.12
’。 12’、・・・・・・透明導電性第1電極、4 、17
’・・・・・・第2電極、3・・・・・・光起電力を発
生させる材料、13・・・・・・配線電極、14−・・
−A1.、Fe、Cu、Zn、Pd。 Ag、Cd、In、Sn、Au等金属を蒸着させる部分
、15・・・・・・a−8i:H膜およびa−3i:H
膜より光学的禁止帯幅の小さな薄膜、16・・・・・・
An、Fe、Cu。 Zn、Pd、Ag、Cd、In、Sn、Au等金属とa
−3t:I(膜等薄膜との合金部分、17・・・・・・
裏面配線電極、17′・・・・・・外部電極とり出し部
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
Fig. 1 is a plan view showing the configuration of a conventional example, Fig. 2 is a plan view showing an embodiment of the present invention, Fig. 3 is a sectional view taken along line E' in Fig. FIG. 1.11...Translucent insulating substrate, 2,12.12
'. 12',...transparent conductive first electrode, 4, 17
'...Second electrode, 3...Material for generating photovoltaic force, 13...Wiring electrode, 14-...
-A1. , Fe, Cu, Zn, Pd. Part where metals such as Ag, Cd, In, Sn, and Au are deposited, 15...a-8i:H film and a-3i:H
A thin film with a smaller optical band gap than a film, 16...
An, Fe, Cu. Metals such as Zn, Pd, Ag, Cd, In, Sn, Au and a
-3t:I (alloy part with thin film such as film, 17...
Back side wiring electrode, 17'...external electrode extraction part. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (3)

【特許請求の範囲】[Claims] (1)透光性絶縁基板上に透明導電膜よりなる第1電極
および分離されてなる配線電極、水素化された非晶質シ
リコン半導体膜、前記非晶質シリコンよりも光学的禁止
帯幅が小さな薄膜、各絵素に対応するとともに前記第1
電極に複数本宛対向する第2電極を順次配し、前記配線
電極と前記第2電極とを前記非晶質シリコン半導体膜お
よび前記光学的禁止帯幅が非晶質シリコンよりも小さな
薄膜を選択的に不純物拡散させて三次元的に配線するこ
とを特徴とする一次元薄膜センサー。
(1) A first electrode made of a transparent conductive film on a light-transmitting insulating substrate, a wiring electrode separated therefrom, a hydrogenated amorphous silicon semiconductor film, and an optical band gap larger than that of the amorphous silicon. A small thin film corresponding to each pixel and the first
A plurality of second electrodes facing the electrodes are sequentially arranged, and the wiring electrode and the second electrode are selected from the amorphous silicon semiconductor film and a thin film having an optical band gap smaller than that of the amorphous silicon. A one-dimensional thin film sensor characterized by three-dimensional wiring by diffusion of impurities.
(2)非晶質ゲルマニウム、非晶質シリコンゲルマニウ
ム、非晶質シリコンスズまたは水素含有量が5%未満の
非晶質シリコンを、水素化された非晶質シリコンより光
学的禁止帯幅が小さな薄膜として使用することを特徴と
する特許請求の範囲第1項記載の一次元薄膜センサー。
(2) Amorphous germanium, amorphous silicon germanium, amorphous silicon tin, or amorphous silicon with a hydrogen content of less than 5% has a smaller optical bandgap than hydrogenated amorphous silicon. The one-dimensional thin film sensor according to claim 1, which is used as a thin film.
(3)透光性絶縁基板の一面に透明導電膜よりなる第1
電極および分離されてなる配線電極、水素化された非晶
質シリコン半導体膜、前記非晶質シリコンよりも光学的
禁止帯幅が小さな薄膜、各絵素に対応するとともに前記
第1電極に複数本宛対向する第2電極を順次配し、前記
配線電極と前記第2電極とを前記非晶質シリコン半導体
膜および前記光学的禁止帯幅が非晶質シリコンよりも/
J’sさな薄膜を選択的に不純物拡散させて三次元的に
配線し、前記透性基板の他面に前記第2電極と対向す冨 る位置に、赤、緑、青の三原色に対応する個別のカラー
フィルタを配し、その他の部分に前記三原色に対応する
カラーフィルタを配することを特徴とする一次元薄膜セ
ンサー。
(3) A first layer made of a transparent conductive film on one surface of a transparent insulating substrate.
An electrode and a wiring electrode separated from each other, a hydrogenated amorphous silicon semiconductor film, a thin film having an optical bandgap smaller than the amorphous silicon, and a plurality of wires corresponding to each picture element and on the first electrode. second electrodes facing each other are sequentially arranged, and the wiring electrode and the second electrode are connected to the amorphous silicon semiconductor film and the optical bandgap width is smaller than that of the amorphous silicon.
The J's small thin film is selectively diffused with impurities and wired three-dimensionally, and on the other side of the transparent substrate, at multiple positions facing the second electrode, corresponding to the three primary colors of red, green, and blue are formed. A one-dimensional thin film sensor, characterized in that individual color filters are arranged for the three primary colors, and color filters corresponding to the three primary colors are arranged in other parts.
JP58225904A 1983-11-30 1983-11-30 One-dimensional thin film sensor Granted JPS60117770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58225904A JPS60117770A (en) 1983-11-30 1983-11-30 One-dimensional thin film sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58225904A JPS60117770A (en) 1983-11-30 1983-11-30 One-dimensional thin film sensor

Publications (2)

Publication Number Publication Date
JPS60117770A true JPS60117770A (en) 1985-06-25
JPH0464185B2 JPH0464185B2 (en) 1992-10-14

Family

ID=16836706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58225904A Granted JPS60117770A (en) 1983-11-30 1983-11-30 One-dimensional thin film sensor

Country Status (1)

Country Link
JP (1) JPS60117770A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687381A (en) * 1979-12-19 1981-07-15 Ricoh Co Ltd Photoelectric conversion element
JPS5853870A (en) * 1981-09-26 1983-03-30 Matsushita Electric Ind Co Ltd Thin film solar battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687381A (en) * 1979-12-19 1981-07-15 Ricoh Co Ltd Photoelectric conversion element
JPS5853870A (en) * 1981-09-26 1983-03-30 Matsushita Electric Ind Co Ltd Thin film solar battery

Also Published As

Publication number Publication date
JPH0464185B2 (en) 1992-10-14

Similar Documents

Publication Publication Date Title
US4517403A (en) Series connected solar cells and method of formation
US5232519A (en) Wireless monolithic photovoltaic module
JPH0481353B2 (en)
EP0549707A1 (en) Photovoltaic device with decreased gridline shading and method for its manufacture.
JPS60161664A (en) Tightly adhered two-dimensional image readout device
JP2001515275A (en) Multi color sensor
US5015838A (en) Color sensor having laminated semiconductor layers
JPS6154756A (en) Contact type image sensor
US4570332A (en) Method of forming contact to thin film semiconductor device
JPS60117770A (en) One-dimensional thin film sensor
JPH1012903A (en) Photoelectric transducer
US5468653A (en) Photoelectric conversion device and method of making the same
US3806779A (en) Semiconductor device and method of making same
US5458695A (en) Solar cell and process for fabricating the same
JPS5825283A (en) Photodetector
JPS6148796B2 (en)
JPH02148773A (en) Optical sensor
JPS62193173A (en) Manufacture of image reading head
JP3242513B2 (en) Photoelectric conversion device
KR960015272B1 (en) Ccd structure and manufacturing method thereof
JPH01179373A (en) Solar cell element
JPH05347427A (en) Photosensor
JPS61234574A (en) Photocell unit and manufacture thereof
JP2002270868A (en) Integrated photovoltaic apparatus and its manufacturing method
JPS58116781A (en) Photosensitive device