JPH0464185B2 - - Google Patents

Info

Publication number
JPH0464185B2
JPH0464185B2 JP58225904A JP22590483A JPH0464185B2 JP H0464185 B2 JPH0464185 B2 JP H0464185B2 JP 58225904 A JP58225904 A JP 58225904A JP 22590483 A JP22590483 A JP 22590483A JP H0464185 B2 JPH0464185 B2 JP H0464185B2
Authority
JP
Japan
Prior art keywords
electrode
amorphous silicon
film
thin film
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58225904A
Other languages
Japanese (ja)
Other versions
JPS60117770A (en
Inventor
Shinichiro Ishihara
Masatoshi Kitagawa
Atsuo Nishikawa
Masaharu Oono
Takashi Hirao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58225904A priority Critical patent/JPS60117770A/en
Publication of JPS60117770A publication Critical patent/JPS60117770A/en
Publication of JPH0464185B2 publication Critical patent/JPH0464185B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素化された非晶質シリコン(以下
a−Si:H)を用いた長尺一次元センサーすなわ
ち、多数の絵素をある一方向のみに配列させ、そ
の方向における光の強度を検知する素子に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to a long one-dimensional sensor using hydrogenated amorphous silicon (hereinafter referred to as a-Si:H), that is, a long one-dimensional sensor using hydrogenated amorphous silicon (hereinafter referred to as a-Si:H). This relates to an element that is arranged in only one direction and detects the intensity of light in that direction.

従来例の構成とその問題点 従来、長尺一次元センサーの基本的な構成は第
1図に示すようにセンサー部に対してその信号処
理に必要な配線部が占めるような構成になつてい
た。第1図はその平面図であり、1はガラス基
板、2は透明導電膜よりなる第1電極、3は光起
電力を発生させる材料、4は各絵素に分離された
第2電極である。このように光に感じて信号を発
生する部分は、第1電極2と第2電極4との重な
つた部分だけであり、他の部分のほとんどは、配
線のために必要なものであつた。実際のセンサー
は、絵素の数が第1図より多くなつている。そし
て第1図に示した構成を横方向にくり返した構成
となつており、第2電極4の幅が広くなつた部分
に各々ハンダ付けしてリード線をとり出してい
る。すなわち絵素の数だけ不良率の高いハンダ付
けをしなければならなかつた。
Conventional structure and its problems Conventionally, the basic structure of a long one-dimensional sensor was such that the sensor section was occupied by the wiring section necessary for signal processing, as shown in Figure 1. . FIG. 1 is a plan view of the same, in which 1 is a glass substrate, 2 is a first electrode made of a transparent conductive film, 3 is a material that generates photovoltaic force, and 4 is a second electrode separated into each picture element. . The only part that senses light and generates a signal is the overlapping part of the first electrode 2 and second electrode 4, and most of the other parts are necessary for wiring. . The actual sensor has more picture elements than in Figure 1. The configuration shown in FIG. 1 is repeated in the horizontal direction, and lead wires are taken out by soldering to the widened portions of the second electrode 4. In other words, it was necessary to perform soldering with a high failure rate for the number of picture elements.

発明の目的 本発明は、上述した2点の問題点を軽減し、コ
ンパクトで信頼性が高く、高速動作可能な長尺一
次元センサーを提供するものである。
OBJECTS OF THE INVENTION The present invention alleviates the above two problems and provides a long one-dimensional sensor that is compact, highly reliable, and capable of high-speed operation.

発明の構成 本発明は透光性絶縁基板上に透明導電膜よりな
る第1電極および分離されてなる配線電極、水素
化された非晶質シリコン(a−Si:H)p型、i
型、n型の各半導体膜、上記a−Si:Hよりも光
学的禁止帯幅が小さな薄膜、各絵素に対応し上記
第1電極に対応する分離された第2電極を順次配
するものであり、上記配線電極と上記第2電極と
を上記a−Si:H半導体膜および上記光学的禁止
帯幅Egがa−Si:Hよりも小さな薄膜を貫通さ
せて二次元的に配線することにより小型化し、小
型化することによつて直列抵抗が減少するために
高速動作が可能となり、カラーフイルタの重ね合
わせおよびEgが小さな薄膜によつてa−Si:H
による信号と外部から入射する光による雑音との
比を増大させる。
Structure of the Invention The present invention includes a first electrode made of a transparent conductive film on a light-transmitting insulating substrate, a wiring electrode separated therefrom, hydrogenated amorphous silicon (a-Si:H) p-type, i
type and n-type semiconductor films, a thin film having an optical bandgap smaller than the above a-Si:H, and a separated second electrode corresponding to each picture element and corresponding to the above first electrode arranged in sequence. and the wiring electrode and the second electrode are two-dimensionally wired by penetrating the a-Si:H semiconductor film and the thin film whose optical bandgap Eg is smaller than a-Si:H. Due to miniaturization, series resistance is reduced and high-speed operation is possible, and a-Si:H
This increases the ratio between the signal caused by the noise caused by the external light and the noise caused by the light incident from the outside.

実施例の説明 以下、本発明の構成およびその製造法について
図に基づいて説明する。第2図は、本発明による
構成を説明する平面図である。第2図のイ−イ′
線での断面図を示したのが第3図である。第2図
のロ−ロ′線での断面図を第4図に示す。透光性
絶縁基板例えばガラス板11上に透明導電膜1
2,12′,12″,13を選択的に蒸着するか、
ガラス板11上全面に蒸着し選択的にエツチング
する。この上に、第2図に示した14の部分に、
Al,Fe,Cu,Zn,Pd,Ag,Cd,In,Sn,Au
等を約5000Å蒸着する。この上にa−Si:H膜お
よび、a−Si:H膜より、光学的禁止帯幅の小さ
な膜例えば、a−Ge膜15を堆積する。基板温
度は250℃程度である。SiH4に流量比として
B2H6を0.1%程度混合させたガスを約10mW/cm2
の放電電力密度で分解させp型a−Si:H膜を、
SiH4ガスのみを分解させてi型a−Si:H膜を、
SiH4にPH3を流量比1%程度混合させてn型a
−Si:H膜を順次堆積させa−Si:Hpinダイオ
ードを作成した後、上記a−Si:H膜より光学的
禁止帯幅Egの小さな膜である光学的遮蔽膜、こ
こではa−Ge膜を堆積する。a−Geはa−Si:
H膜と同様な堆積装置、堆積条件で製造できる。
原料ガスとしてGeH4を用いる。本実施例では、
p型、i型、n型のそれぞれa−Si:H膜を順に
約100Å、約4000Å、500Å堆積させ、a−Ge膜
は約1000Å堆積させる。上記a−Si:H膜より、
Egが小さな薄膜、本実施例ではa−Ge膜は、受
光部面と反対面の面からの光入射を遮へいするた
めである。a−Ge膜はEg=1.1eVであり、a−
Si:H膜はEg=1.7eVであるため、遮光は十分行
なわれている。これら薄膜15を堆積させると、
前述の蒸着金属14は、第3図に示すように薄膜
15を貫通し、表面にまで達する。この合金領域
16に重なるように裏面電極17(ここではAl
蒸着膜)を形成する。合金領域16は、薄膜15
堆積後でもその上に第2図に示した14の部分
に、Al,Fe,Cu,Zn,Pd,Ag,Cd,In,Sn,
Au等を基板温度を150〜250℃程度上昇させて蒸
着するか、蒸着してから加熱することによつて形
成することができる。裏面電極17の一部を外部
電極とり出し部17′とすることにより、ここの
みにハンダ付けをするだけでよく、不良率の高い
ハンダ付箇所が大幅に減少する。これでも配線抵
抗が高くなる場合は、第2図ではセンサーの一端
のみを示してあるが、他端にも17′と同様な外
部電極とり出し部を設ければ良い。また、ハンダ
付けはこの構成の場合は、必ずしも必要ではな
く、バネで押えたり、ソケツト等にさし込んでも
外部との接続は行える。受光部は第2電極17″
と、配線電極13、配線電極13と裏面配線電極
17とを合金部分16で、接続されるようにす
る。
DESCRIPTION OF EMBODIMENTS Hereinafter, the structure of the present invention and its manufacturing method will be explained based on the drawings. FIG. 2 is a plan view illustrating the configuration according to the present invention. I' in Figure 2
FIG. 3 shows a cross-sectional view taken along a line. A cross-sectional view taken along the Ro-Ro' line in FIG. 2 is shown in FIG. A transparent conductive film 1 is placed on a transparent insulating substrate, for example, a glass plate 11.
2, 12', 12'', 13 are selectively deposited,
It is deposited on the entire surface of the glass plate 11 and selectively etched. On top of this, in the section 14 shown in Figure 2,
Al, Fe, Cu, Zn, Pd, Ag, Cd, In, Sn, Au
etc. to a thickness of about 5000 Å. On this, an a-Si:H film and a film having a smaller optical band gap than the a-Si:H film, such as the a-Ge film 15, are deposited. The substrate temperature is about 250°C. As the flow rate ratio to SiH 4
Approximately 10 mW/cm 2 of gas containing approximately 0.1% B 2 H 6
The p-type a-Si:H film is decomposed at a discharge power density of
I-type a-Si:H film is made by decomposing only SiH4 gas,
Mix SiH 4 and PH 3 at a flow rate ratio of about 1% to form n-type a.
-Si:H films are sequentially deposited to create an a-Si:Hpin diode, and then an optical shielding film, here an a-Ge film, which is a film with a smaller optical band gap Eg than the above a-Si:H film is formed. Deposit. a-Ge is a-Si:
It can be manufactured using the same deposition equipment and deposition conditions as the H film.
GeH 4 is used as the raw material gas. In this example,
P-type, i-type, and n-type a-Si:H films are sequentially deposited to a thickness of approximately 100 Å, approximately 4000 Å, and 500 Å, respectively, and an a-Ge film is deposited to a thickness of approximately 1000 Å. From the above a-Si:H film,
The purpose of the thin film with a small Eg, the a-Ge film in this example, is to block light from entering from the surface opposite to the light receiving surface. The a-Ge film has Eg=1.1eV, and a-
Since the Si:H film has an Eg of 1.7 eV, light shielding is sufficient. When these thin films 15 are deposited,
The above-described vapor-deposited metal 14 penetrates through the thin film 15 and reaches the surface, as shown in FIG. The back electrode 17 (here Al
evaporated film). The alloy region 16 is the thin film 15
Even after deposition, Al, Fe, Cu, Zn, Pd, Ag, Cd, In, Sn,
It can be formed by evaporating Au or the like by increasing the substrate temperature by about 150 to 250°C, or by evaporating and then heating. By making a part of the back electrode 17 the external electrode extraction part 17', it is only necessary to solder this part, and the number of soldered parts with a high defect rate can be greatly reduced. If this still results in high wiring resistance, although only one end of the sensor is shown in FIG. 2, an external electrode extraction portion similar to 17' may be provided at the other end. Further, soldering is not necessarily necessary in this configuration, and connection to the outside can be made by pressing with a spring or inserting into a socket or the like. The light receiving part is the second electrode 17″
Then, the wiring electrode 13 and the wiring electrode 13 and the back wiring electrode 17 are connected by the alloy portion 16.

なお本実施例では、基板11にガラス板を用い
ているが、例えばポリエステルフイルム等を用い
れば、自由に曲げることができるため、被写体に
完全密着することができ、装置も小型化すること
が可能となる。
In this embodiment, a glass plate is used for the substrate 11, but if a polyester film or the like is used, for example, it can be bent freely, so it can be in complete contact with the subject, and the device can also be made smaller. becomes.

本実施例のような構造では、受光部以外の配線
部でも、光を感じるため、薄膜15の裏面電極1
7側にa−Ge堆積させ遮光させたのと同様、遮
光材料が必要である。またセンサーのカラー化も
素子高級化には必要である。本発明では、上記2
点を兼ねて、基板の光入射側の面全体にフイルタ
を形成し、受光部のみにカラー化に必要なフイル
タ構成をする。すなわち、例えば赤21、緑2
2、青23のフイルタ3枚を重ねれば(第3図、
第4図)、光すべて吸収され遮光の働きをし、受
光部のみにフイルタ1枚のみを残せば3原色の1
色を検知するセンサーとなる。薄膜15の3原色
の感度の低いものがあれば、センサーの数を増加
させると回路側での色補正が簡単になる。また第
4図の31の部分には、フイルタを蒸着していな
い。これは、明るさのセンサーとしても使え、ま
た原稿の位置センサ、原稿の枚数検知、移動速度
検知等の役割を持たせることができる。
In the structure of this embodiment, since light is sensed even in wiring parts other than the light receiving part, the back electrode 1 of the thin film 15
Similar to the case where a-Ge was deposited on the 7 side to block light, a light blocking material is required. Furthermore, colorization of sensors is also necessary for the upgrading of devices. In the present invention, the above 2
Also, a filter is formed on the entire surface of the substrate on the light incident side, and only the light receiving section is provided with the filter configuration necessary for colorization. That is, for example, red 21, green 2
2. If you stack three pieces of blue 23 filters (Fig. 3,
(Fig. 4), all of the light is absorbed and acts as a light shield, and if only one filter is left only in the light receiving area, one of the three primary colors can be used.
It becomes a sensor that detects color. If the sensitivity of the three primary colors of the thin film 15 is low, increasing the number of sensors will simplify color correction on the circuit side. Further, no filter is deposited on the portion 31 in FIG. 4. This can be used as a brightness sensor, and can also serve as a document position sensor, document number detection, movement speed detection, etc.

なお、本実施例では、透明導電膜付きガラス板
上にa−Si:H膜によるセンサーを構成したが、
全く逆の構成すなわち、ガラス板上に、第2電極
配線電極を配しa−Si:H膜センサーを配し金属
によつて貫通、短絡させた後、透明導電膜、カラ
ーフイルタを順に配しても本発明は実施される。
In this example, a sensor was constructed using an a-Si:H film on a glass plate with a transparent conductive film.
In a completely opposite configuration, a second electrode wiring electrode is arranged on a glass plate, an a-Si:H film sensor is arranged, the metal is used to penetrate and short-circuit, and then a transparent conductive film and a color filter are arranged in this order. However, the present invention can be practiced.

第2図に基づいて本発明による長尺一次元セン
サーの動作について説明する。まず動作初期に
は、第1電極12,12′,12″および第2電極
17″は開放の状態にする。次に第1電極12′を
接地し、第2電極17″を順次端から、または乱
数を発生させその乱数に従つて接地状態にさせる
ことにより光が照射されている個別の受光素子か
ら、薄膜15中に構成されているa−Si:Hpin
ダイオードより発生する光電流をとり出す。次に
第1電極12″を接地し、上述したように第2電
極17″を次々と接地し光電流をとり出す。この
ようにして第1電極を1通り接地して光電流を取
り出し終わつた後、再び初めの状態にもどつて上
述した動作をくり返す。この間に原稿等の移動に
よつて変化した様子を光電流で検出することがで
きる。
The operation of the long one-dimensional sensor according to the present invention will be explained based on FIG. First, in the initial stage of operation, the first electrodes 12, 12', 12'' and the second electrode 17'' are in an open state. Next, the first electrode 12' is grounded, and the second electrode 17'' is sequentially connected to the thin film from the end or from the individual light-receiving elements irradiated with light by generating random numbers and grounding them according to the random numbers. a-Si composed in 15: Hpin
Extract the photocurrent generated by the diode. Next, the first electrode 12'' is grounded, and as described above, the second electrodes 17'' are grounded one after another to extract the photocurrent. After the first electrode is grounded once and the photocurrent is extracted in this manner, the first electrode is returned to the initial state and the above-described operation is repeated. During this time, changes due to the movement of the document or the like can be detected using photocurrent.

以上述べた動作は光起電力効果の光電流検出に
よるものであるが、短絡状態を開放状態とすべて
置き換えることにより光起電力効果の光電圧検出
による動作もできる。また、透明導電膜よりなる
第1電極12,12′,12″とi型a−Si:Hと
のヘテロ接合によつてもこの動作は同様に行なう
ことができる。この場合、センサーは上述のpin
構造からp型をとり除けば良い。
The operation described above is based on photocurrent detection of the photovoltaic effect, but by replacing all short-circuit states with open states, the operation can also be performed using photovoltage detection of the photovoltaic effect. Further, this operation can be similarly performed by using a heterojunction between the first electrodes 12, 12', 12'' made of a transparent conductive film and i-type a-Si:H. In this case, the sensor is pin
All you have to do is remove the p-type from the structure.

上記動作説明は光起電力効果を利用したもので
あるが、光導電効果を利用してもセンサーは動作
可能である。この場合、薄膜15の構成は実施例
で説明したものでも良く、また、a−Si:H膜は
i型層のみでも、pip型、nin型、Pi型、ni型等、
i型層でキヤリアの光励起が起こりi型層の抵抗
が下がるような構造であればいずれの構造であつ
ても良い。また、この場合、i型層の抵抗が光照
射により下がることを検知できるように電界をか
けておけば良い。実施例で説明した構成で光導電
効果を利用する動作にするためには、ダイオード
を逆バイアスさせれば良い。
Although the above explanation of the operation uses the photovoltaic effect, the sensor can also operate using the photoconductive effect. In this case, the structure of the thin film 15 may be the one explained in the embodiment, and the a-Si:H film may have only an i-type layer, a pip-type, nin-type, Pi-type, ni-type, etc.
Any structure may be used as long as the carrier is optically excited in the i-type layer and the resistance of the i-type layer is reduced. Further, in this case, an electric field may be applied so that it can be detected that the resistance of the i-type layer decreases due to light irradiation. In order to operate the structure described in the embodiment using the photoconductive effect, it is sufficient to reverse bias the diode.

発明の効果 本発明によれば、前述のように立体配線を簡単
に行なうことができるため、素子をコンパクトに
形成でき生産性が向上できる。また、受光部以外
の遮光にカラーフイルタを用いれば、素子のカラ
ー化と同時にS/N比を向上させることができ
る。さらに、外部端子の接続に必要ないハンダ付
けの箇所を減らすことができ、全くハンダ工程を
通さずに素子を作成することもできるため、歩留
の高い作成工程にすることや素子故障時にとり換
え簡単な素子を作ることができる。
Effects of the Invention According to the present invention, three-dimensional wiring can be easily performed as described above, so that elements can be formed compactly and productivity can be improved. Furthermore, if a color filter is used to block light from areas other than the light receiving section, the S/N ratio can be improved at the same time as the element is colored. Furthermore, it is possible to reduce the number of soldering points that are not necessary for connecting external terminals, and it is also possible to create devices without going through the soldering process at all, allowing for high-yield manufacturing processes and replacement in the event of device failure. You can make simple elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の構成を示す平面図、第2図は
本発明の一実施例を示す平面図、第3図は第2図
イ−イ′線における断面図、第4図は第2図ロ−
ロ′線における断面図である。 1,11……透光性絶縁基板、2,12,1
2′,12″……透明導電性第1電極、4,17″
……第2電極、3……光起電力を発生させる材
料、13……配線電極、14……Al,Fe,Cu,
Zn,Pd,Ag,Cd,In,Sn,Au等金属を蒸着さ
せる部分、15……a−Si:H膜およびa−Si:
H膜より光学的禁止帯幅の小さな薄膜、16……
Al,Fe,Cu,Zn,Pd,Ag,Cd,In,Sn,Au
等金属とa−Si:H膜等薄膜との合金部分、17
……裏面配線電極、17′……外部電極とり出し
部。
FIG. 1 is a plan view showing the configuration of a conventional example, FIG. 2 is a plan view showing an embodiment of the present invention, FIG. 3 is a sectional view taken along the line A--I' in FIG. Figure low
FIG. 1, 11...transparent insulating substrate, 2, 12, 1
2', 12''...transparent conductive first electrode, 4,17''
... Second electrode, 3 ... Material that generates photovoltaic force, 13 ... Wiring electrode, 14 ... Al, Fe, Cu,
Part where metals such as Zn, Pd, Ag, Cd, In, Sn, and Au are deposited, 15...a-Si:H film and a-Si:
Thin film with smaller optical band gap than H film, 16...
Al, Fe, Cu, Zn, Pd, Ag, Cd, In, Sn, Au
Alloy part of metal and thin film such as a-Si:H film, 17
... Back side wiring electrode, 17' ... External electrode extraction part.

Claims (1)

【特許請求の範囲】 1 透光性絶縁基板上に、透明導電膜よりなる第
1電極および分離されて第1の方向に延びる複数
の配線電極、水素化された非晶質シリコン半導体
膜、前記非晶質シリコンよりも光学的禁止帯幅が
小さく受光部面と反対側の面から光入射を遮蔽す
る薄膜、各絵素に対応するとともに前記第1電極
に複数本宛対向する第2電極および分離されて第
1の方向と垂直な方向に延びる複数の裏面配線電
極を順次配し、前記配線電極と前記第2電極間お
よび前記配線電極と前記裏面配線電極間を、前記
非晶質シリコン半導体膜および前記光学的禁止帯
幅が非晶質シリコンよりも小さな薄膜に金属を選
択的に拡散させてなる合金領域で接続したことを
特徴とする一次元薄膜センサー。 2 非晶質ゲルマニウム、非晶質シリコンゲルマ
ニウム、非晶質シリコンスズまたは水素含有量が
5%未満の非晶質シリコンを、水素化された非晶
質シリコンより光学的禁止帯幅が小さな薄膜とし
て使用することを特徴とする特許請求の範囲第1
項記載の一次元薄膜センサー。 3 透光性絶縁基板の一面に、透明導電膜よりな
る第1電極および分離されて第1の方向に延びる
複数の配線電極、水素化された非晶質シリコン半
導体膜、前記非晶質シリコンよりも光学的禁止帯
幅が小さく受光部面と反対側の面から光入射を遮
蔽する薄膜、各絵素に対応するとともに前記第1
電極に複数本宛対向する第2電極および分離され
て第1の方向と垂直な方向に延びる複数の裏面配
線電極を順次配し、前記配線電極と前記第2電極
間および前記配線電極と前記裏面配線電極間を、
前記非晶質シリコン半導体膜および前記光学的禁
止帯幅が非晶質シリコンよりも小さな薄膜に金属
を選択的に拡散させてなる合金領域で接続し、前
記透光性絶縁基板の他面に前記第2電極と対向す
る位置に、赤、緑、青の三原色に対応する個別の
カラーフイルタを配し、その他の部分に前記三原
色に対応するカラーフイルタを重ね合わせて配し
たことを特徴とする一次元薄膜センサー。
[Scope of Claims] 1. A first electrode made of a transparent conductive film, a plurality of separated wiring electrodes extending in a first direction, a hydrogenated amorphous silicon semiconductor film, and a hydrogenated amorphous silicon semiconductor film; a thin film that has an optical bandgap smaller than that of amorphous silicon and blocks light from entering from a surface opposite to the light-receiving surface; a second electrode that corresponds to each picture element and faces the first electrode; A plurality of back wiring electrodes separated and extending in a direction perpendicular to the first direction are sequentially arranged, and the amorphous silicon semiconductor is connected between the wiring electrode and the second electrode and between the wiring electrode and the back wiring electrode. A one-dimensional thin film sensor, characterized in that the film is connected to the film by an alloy region formed by selectively diffusing metal into the thin film having an optical band gap smaller than that of amorphous silicon. 2. Amorphous germanium, amorphous silicon germanium, amorphous silicon tin, or amorphous silicon with a hydrogen content of less than 5% as a thin film with an optical bandgap smaller than that of hydrogenated amorphous silicon. Claim 1 characterized in that the use of
The one-dimensional thin film sensor described in Section 1. 3. A first electrode made of a transparent conductive film, a plurality of separated wiring electrodes extending in a first direction, a hydrogenated amorphous silicon semiconductor film, and a layer formed from the amorphous silicon on one surface of a light-transmitting insulating substrate. A thin film having a small optical forbidden band width and shielding light from entering from the surface opposite to the light-receiving section surface corresponds to each picture element and the first
A plurality of second electrodes facing the electrodes and a plurality of separated back surface wiring electrodes extending in a direction perpendicular to the first direction are sequentially arranged, and between the wiring electrode and the second electrode and between the wiring electrode and the back surface. between the wiring electrodes,
The amorphous silicon semiconductor film and the thin film having an optical bandgap smaller than that of the amorphous silicon are connected to each other by an alloy region formed by selectively diffusing metal, and the other surface of the transparent insulating substrate is A primary device characterized in that individual color filters corresponding to the three primary colors of red, green, and blue are arranged at a position facing the second electrode, and color filters corresponding to the three primary colors are arranged in an overlapping manner in other parts. Original thin film sensor.
JP58225904A 1983-11-30 1983-11-30 One-dimensional thin film sensor Granted JPS60117770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58225904A JPS60117770A (en) 1983-11-30 1983-11-30 One-dimensional thin film sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58225904A JPS60117770A (en) 1983-11-30 1983-11-30 One-dimensional thin film sensor

Publications (2)

Publication Number Publication Date
JPS60117770A JPS60117770A (en) 1985-06-25
JPH0464185B2 true JPH0464185B2 (en) 1992-10-14

Family

ID=16836706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58225904A Granted JPS60117770A (en) 1983-11-30 1983-11-30 One-dimensional thin film sensor

Country Status (1)

Country Link
JP (1) JPS60117770A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687381A (en) * 1979-12-19 1981-07-15 Ricoh Co Ltd Photoelectric conversion element
JPS5853870A (en) * 1981-09-26 1983-03-30 Matsushita Electric Ind Co Ltd Thin film solar battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687381A (en) * 1979-12-19 1981-07-15 Ricoh Co Ltd Photoelectric conversion element
JPS5853870A (en) * 1981-09-26 1983-03-30 Matsushita Electric Ind Co Ltd Thin film solar battery

Also Published As

Publication number Publication date
JPS60117770A (en) 1985-06-25

Similar Documents

Publication Publication Date Title
US4517403A (en) Series connected solar cells and method of formation
US5123968A (en) Tandem photovoltaic solar cell with III-V diffused junction booster cell
US5091018A (en) Tandem photovoltaic solar cell with III-V diffused junction booster cell
US5034068A (en) Photovoltaic cell having structurally supporting open conductive back electrode structure, and method of fabricating the cell
JPH0481353B2 (en)
DE2632987A1 (en) SEMICONDUCTOR COMPONENT
JPS63503266A (en) Graded gap inversion layer photodiode array
JP2010183080A (en) Solar cell and method for manufacturing the same
US4866499A (en) Photosensitive diode element and array
JPS60161664A (en) Tightly adhered two-dimensional image readout device
JP2001515274A (en) Multi color sensor
US5130775A (en) Amorphous photo-detecting element with spatial filter
JP3236624B2 (en) Photosensitive electronic device, color sensor using the device, and method of manufacturing the device
EP0307484A1 (en) Color sensor
US4698658A (en) Amorphous semiconductor device
US4612410A (en) Contact system for thin film solar cells
JP3616824B2 (en) Pin type photoelectric conversion element and manufacturing method
US4570332A (en) Method of forming contact to thin film semiconductor device
JPS6154756A (en) Contact type image sensor
JPH0464185B2 (en)
US3806779A (en) Semiconductor device and method of making same
JPS5825283A (en) Photodetector
JP2000164903A (en) Solar battery
JPS6357952B2 (en)
JPH01216581A (en) Semiconductor device