JPS60116125A - Film forming method - Google Patents

Film forming method

Info

Publication number
JPS60116125A
JPS60116125A JP22331283A JP22331283A JPS60116125A JP S60116125 A JPS60116125 A JP S60116125A JP 22331283 A JP22331283 A JP 22331283A JP 22331283 A JP22331283 A JP 22331283A JP S60116125 A JPS60116125 A JP S60116125A
Authority
JP
Japan
Prior art keywords
conductive substrate
substrate
electrode
plasma
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22331283A
Other languages
Japanese (ja)
Other versions
JPH0523050B2 (en
Inventor
Zenko Hirose
広瀬 全孝
Takeshi Ueno
毅 上野
Katsumi Suzuki
克己 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22331283A priority Critical patent/JPS60116125A/en
Publication of JPS60116125A publication Critical patent/JPS60116125A/en
Publication of JPH0523050B2 publication Critical patent/JPH0523050B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To concentrate a plasma on a substrate to enhance the density of an atomic film and to accelerate the film forming velocity by opposing a cylindrical conductive substrate and an electrode in a reaction chamber reduced in pressure, connecting them with an AC power source, generating a plasma in stock gas presented in the chamber, and connecting the substrate through an inductance element with the power source when forming the atomic film contained in gas on the surface of the substrate, thereby concentrating the plasma on the substrate. CONSTITUTION:A stock gas filling tube 2 is connected through a valve 7 with one end of a reaction chamber 1, an exhaust tube 3 is provided through a valve 4 at the other end, and an electrode 5 and a support base 12 for placing a conductive substrate 6 are opposed in the chamber 1, and the substrate 6 is heated by a heater 13 provided on the lower surface of the base 12. The end projected from the lower surface of the base 12 is grounded through an inductance element 16, and the electrode 5 is connected with a high frequency power source 10 grounded through a matching box 11. Thus, a current directed to the side wall 8 of the current directed to the substrate 5 from the substrate 6 is reduced to concentrate the plasma to the substrate 6.

Description

【発明の詳細な説明】 [発明の技術分野1 本発明はジ1−晶rt I+4j等の薄膜を成膜ηる成
膜)j法に関づる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention 1] The present invention relates to a method for forming a thin film of di-1-crystalline rt I+4j or the like.

[発明の技術的青用どぞの問題I+’ ]非晶質膜、例
えば非晶質珪素膜を5y根らしり(,1円筒状の導電性
Jil板の表面に成n9りる方法ど1)Cは、グ1]−
放電により珪素を含む原料ガスを分解して成膜を行なう
方法が知られている、1これは例えば第゛1図に示りよ
うな成膜装置を利6 111するものである。りなわち、10 ゛1旧゛1゛
程疫に減圧された反応室1内に、SZ++%(シラン)
等の珪素を含む原料ガスを′導入管2を介t、ra人し
、次いで排気管3のバルブ4をWJ整して反応室l内を
0.1へ□5l−orrの反応圧力に設定し、反応室1
内に対向配置された電極5と尊重11基板6との間に高
同波電力を印加して、プラズマを発生さu1非晶質11
素膜を成膜している。
[Technical problems of the invention I+'] How to form an amorphous film, such as an amorphous silicon film, on the surface of a cylindrical conductive JIl plate. )C is G1]-
A method is known in which a film is formed by decomposing a source gas containing silicon by electric discharge.1 This method utilizes, for example, a film forming apparatus as shown in FIG. In other words, SZ++% (silane) is placed in the reaction chamber 1, which has been depressurized to about 10%.
A raw material gas containing silicon, such as and reaction chamber 1
Plasma is generated by applying high frequency power between the electrode 5 and the substrate 6 that are arranged opposite to each other in the amorphous layer 11.
An elementary film is formed.

な【13.7は導入管2から反応室1内へ導入する原料
ガスの流Mを調整づるためのバルブ、8は反応室1の側
壁、9は電極5をこの側壁8から電気的に絶縁した状態
で支持する絶縁体、10は電極5及び導電性基板6に高
i波電ノ〕を供給づるための^周波電源、11はこの^
周波電源10からの高周波ミノjが効率良く印加される
ように整合を行なうマツチングボックス、12は導電性
基板6支持づる支持台、13は導電性基板6を反応温石
(150℃〜300℃)に加熱Jるヒータである。
[13.7 is a valve for adjusting the flow M of the raw material gas introduced into the reaction chamber 1 from the introduction pipe 2, 8 is a side wall of the reaction chamber 1, and 9 is a valve that electrically insulates the electrode 5 from this side wall 8. 10 is a frequency power supply for supplying high i-wave electricity to the electrode 5 and the conductive substrate 6; 11 is this
A matching box is used to perform matching so that the high frequency signal from the frequency power supply 10 is efficiently applied, 12 is a support stand for supporting the conductive substrate 6, and 13 is a matching box for supporting the conductive substrate 6 with a reaction hot stone (150°C to 300°C). It is a heater that heats up.

また、高周波電源10の一端は接地され、他端はマツチ
ングボックス11に接続−されている。
Further, one end of the high frequency power source 10 is grounded, and the other end is connected to a matching box 11.

さらに、尊重1(1基板6は支持台12を介して側壁8
どともに接地されている。
Furthermore, the respect 1 (1 substrate 6 is connected to the side wall 8 via the support stand 12).
Both are grounded.

さく、このような成膜方法では、第1図て1(5414
で承りように、電極55と導電性基板6との間にプラズ
マが5F、生【〕成膜が行なわれるが、このとき電極5
から導11塁板6へ向う放電電流1aの他に、電極5か
ら側壁8に向う放電電流1wt)流れプラズマ′14が
拡散づる。
However, in such a film formation method, 1 (5414
As mentioned above, plasma is generated at 5F between the electrode 55 and the conductive substrate 6, and raw film formation is performed.
In addition to the discharge current 1a flowing from the conductor 11 toward the base plate 6, a discharge current 1wt) flows from the electrode 5 toward the side wall 8, and plasma '14 is diffused.

づ4「わら、成膜を行なうために^周波71?源10に
J、って印加される高周波電力の一部がm !!Ii!
3と側壁8との間の成型のために消費され(しまい、成
膜効率が著しく悪化するという欠点があった。
4. In order to form a film, part of the high frequency power applied to the frequency 71? source 10 is m!!Ii!
3 and the side wall 8, which has the disadvantage that the film forming efficiency is significantly deteriorated.

この従来の成膜り法では、たとえは“高周波電源10と
して、i 3.56Ml−1z i OOW出力のもの
を用い、反応室1内の圧力を0 、4 T orrに設
定し j7p人管2を介しく導入される原料ガスとして
シランガスを180SCCMの流mC導入して成膜を(
1なつ/j場合に、成膜速度は゛1時間当たり6μm程
度C・あった。
In this conventional film-forming method, for example, "a high-frequency power source 10 with an output of 3.56 Ml-1z i OOW is used, and the pressure in the reaction chamber 1 is set at 0.4 Torr. Film formation was performed by introducing silane gas as a raw material gas at a flow rate of 180 SCCM (mC).
In the case of 1/j, the film formation rate was about 6 μm per hour.

従つC1このにうな成膜方法では、たとえば電子写真感
光体のように20μm程度の膜厚の非晶質珪素膜を成膜
する場合には成股時聞を多く閥し、工業的な製造には不
適当であった。
Therefore, in this film formation method, for example, when forming an amorphous silicon film with a thickness of about 20 μm as in an electrophotographic photoreceptor, a long time is required for the formation, and it is difficult to manufacture it industrially. It was inappropriate for

[発明の目的1 本ブを明は−L述した事情に鑑み−(なされIL: ’
t>ので、高速成膜が可能な成膜方法を提供づることを
目的どする。
[Objective of the Invention 1 This article was made in view of the circumstances mentioned above.
t>, an object of the present invention is to provide a film formation method that allows high-speed film formation.

[発明の概要1 本発明は、高周波電源等の交流電源とS電性す板との間
にインダクタンス素子を介在さけることにより原料ガス
のプラズマを膜が形成される導電性基板の部位に集中さ
せかつその密度を高めて成膜効率を向上させ、これによ
って1!!、S速成膜が可能となる成膜方法である。
[Summary of the Invention 1] The present invention focuses the plasma of the raw material gas on the part of the conductive substrate on which the film is to be formed, by avoiding the interposition of an inductance element between the AC power source such as a high frequency power source and the S conductive plate. Moreover, by increasing the density and improving the film-forming efficiency, 1! ! This is a film formation method that enables S-speed film formation.

し発明の実施例] 以下、本発明を図示した実施例に基づいC説明づる。Examples of the invention] The present invention will be explained below based on illustrated embodiments.

りなわら、第2図は本発明による成膜方法を実現するk
めの成膜装置の構成を示ず説明図である。
However, FIG. 2 shows a diagram for realizing the film forming method according to the present invention.
FIG. 2 is an explanatory diagram that does not show the configuration of the first film forming apparatus.

この第2図において、第1図に示した従来の成n’A装
置と同一部分には同一符号を4=Jシて訂悄な説明を省
略づるっ り4「わl)、支1ずI台゛12にはヒータ13が 体
向に1lJLJられ、この支持台12は、側壁8に対し
て電気的に絶縁した状rfM C゛絶縁体15)にJ:
っ(保持され(いる。支持台12は可変インダクタンス
素子16を介して接地され、側壁8は直接接地されてい
る。
In this Fig. 2, parts that are the same as those in the conventional construction device shown in Fig. A heater 13 is mounted on the I stand 12 in the direction of the body, and this support stand 12 is electrically insulated from the side wall 8 by using an rfMC insulator 15).
The support base 12 is grounded via the variable inductance element 16, and the side wall 8 is directly grounded.

この部分1メ外は、第1図に示した従来の成膜装置と1
「11様の構成となっている。
The parts other than this part are the same as the conventional film forming apparatus shown in Figure 1.
“It is made up of 11 people.

しかして、この第2図に示した成膜]々pi’(Q)昌
周波等筒回路を示づと第3図のようになる。。
3 shows the film forming circuit shown in FIG. .

g:A83図にJ3い−C1電極5には7ツブーングボ
ツクス′11を介しC高周波電源10の一端が接続され
、高周波電源の他端は接地されている0、マッヂングボ
ックス11は2−(ル及びコンデンサを相合せたL C
1iil路てあ)(、高周波電源10の出力インピータ
ンスの整合をとって、高周波電力の1云送効率を向lさ
Vる役割を持っている。
g: One end of the C high-frequency power supply 10 is connected to the J3-C1 electrode 5 via the 7-tube box '11, and the other end of the high-frequency power supply is grounded. -(LC combined with capacitor and
It has the role of matching the output impedance of the high frequency power supply 10 and improving the transmission efficiency of the high frequency power.

電極5とラク電性基板6どの間に高周波電力が印加され
ることにより、両者の間にり11−放電を生じ原料ガス
のプラズマが発生する。
By applying high frequency power between the electrode 5 and the easily conductive substrate 6, a discharge 11- is generated between the two, and plasma of the raw material gas is generated.

このとさ、プラス゛マは、電極5、導電性基1fii 
6、及び側壁8の近傍において暗部となり、中央部分に
−3いて明部となる。そこで、この暗部を@価的にコン
デ′ンリで置換えると、電極5側に」ンγンザCc、導
電性基板6側にコンデンサOa (導電性基板6とプラ
ズマ陽光柱との間に形成されるシースによるキャパシタ
ンス)、側壁E(側にmlンシラザCwをぞれぞれ接続
しICものとみなせる。
In this case, the plasma is the electrode 5, the conductive group 1fii
6 and near the side wall 8 are dark areas, and -3 is a bright area in the center. Therefore, when this dark part is replaced with a condenser, a capacitor Cc is formed on the electrode 5 side, and a capacitor Oa is formed on the conductive substrate 6 side (formed between the conductive substrate 6 and the plasma positive column). It can be considered as an IC by connecting the capacitance due to the sheath) and the side wall E (the capacitance due to the sheath) and the side wall E (side).

l ンi”ンザQc 、Ca 、 CWはぞれぞtl、
 j交電インピーダンスZを介して相互に接続され(い
る。
l'n'nza Qc, Ca, and CW are respectively tl,
j are mutually connected via alternating current impedance Z.

=1ンrン゛リーCWの他端は側壁8を介して設置され
ている。
The other end of the = 1-line CW is installed via the side wall 8.

さらに、導電性基板6はインダクタンス素子16を介し
−(接地されている。
Furthermore, the conductive substrate 6 is grounded via an inductance element 16.

従って、に1周波電源10から高周波電力を印加づると
、電極5の部分において放電電流1Gが流れ、側壁80
部分において放電電流1wが流れ、導電性基板6の部分
において放電電流1aが流れる3゜ 七デル的にはl fニー1 a十しVとなる1、ここで
電流1wの11「lが大きいと、/iI!電の!、:め
電力が111.と/、と側壁8 ijE傍にJJLノる
プラス゛%′発生のIこめ(、二)肖されてしj:い、
ンク電11基板63斤1方(゛のブラスマ発牛が少なく
なる。
Therefore, when high frequency power is applied from the single frequency power supply 10 to the electrode 5, a discharge current of 1 G flows through the side wall 80.
The discharge current 1w flows in the part of the conductive substrate 6, and the discharge current 1a flows in the part of the conductive substrate 6. In terms of 3 degrees, it becomes l f knee 1 a + V, where 11 of the current 1w is large. , /iI!Electricity!,: The electric power is 111. And /, and the JJL + %' generation is shown on the side wall 8 ijE.
11 PCBs 63 lbs 1 (2000) Blasma output will be reduced.

この1=め、導電性基板6への成膜効率が11(士!す
る。
This 1=me, the film formation efficiency on the conductive substrate 6 is 11 (!).

そこ(、可変のインダクタンス毒イ10を調整し、rン
ダクタンス素子1Gの値1−が、=lンシラ→]Oaど
の間C」(振・)るような値となる。1、うにRjト定
4る。
Then, by adjusting the variable inductance A10, the value 1- of the r inductance element 1G becomes a value such that = lnshira→]Oa between C' (shape).1. 4 Ru.

ぞしく、このJI−1!条1′1を満足し・た場合;−
(よ、第3図に示1)1.:等価回路IaXおいて、電
極5側から児て、導電性基板6を含む回路のインピータ
ンスは最小とイより、側壁ξ3側のインピータンスI;
L Ii3人となる。
I love this JI-1! If Article 1'1 is satisfied;-
(Yo, shown in Figure 3 1) 1. : In the equivalent circuit IaX, starting from the electrode 5 side, the impedance of the circuit including the conductive substrate 6 is minimum A, so the impedance I on the side wall ξ3 side;
L Ii will be 3 people.

これにJ:す、電流IWはほとんど無視しうる稈磨とな
り、実質的t=lc−1aの状態になる。。
In addition, the current IW becomes almost negligible, and the state becomes substantially t=lc-1a. .

従・)(、ブラズ7は導電性基板6の近傍に集中するの
で、この基板6の近傍に1!3りる原料ガスの分解効率
が乞しく高まり、成膜速1良が上押する。
Since the plasma 7 is concentrated in the vicinity of the conductive substrate 6, the decomposition efficiency of the raw material gas present in the vicinity of the substrate 6 is greatly increased, and the film formation rate is increased.

さて、次にこのような第2図に示り成膜装置を利用した
成膜方法の一実施例を説明Jる。
Next, an embodiment of a film forming method using the film forming apparatus shown in FIG. 2 will be described.

(1)反応室内の1」力が10=6−r旧゛1゛となる
まで、排気管3に接続されている排気装置(図示しない
)を作動さUる(このときパルプ4は全開状態である)
(1) Operate the exhaust device (not shown) connected to the exhaust pipe 3 until the 1'' force in the reaction chamber becomes 10 = 6-r old (1) (at this time, the pulp 4 is fully open). )
.

(2)次いでヒータ13をfr動させ、導電性基板6を
、′150℃〜300℃の間の温度に加熱づる。
(2) Next, the heater 13 is operated to heat the conductive substrate 6 to a temperature between 150°C and 300°C.

この場合、導電性基板6は、アルミニウlX製の平板で
、支持台12によって支持されている。
In this case, the conductive substrate 6 is a flat plate made of aluminum 1X, and is supported by a support stand 12.

(3)次いCバルブ7を間放し、導入管2を介して原料
ガスを反応室1内に導入する。原料ガスとしCはシラン
ガスを用い、での流mを1808CCMとした。
(3) Next, the C valve 7 is released, and the raw material gas is introduced into the reaction chamber 1 via the introduction pipe 2. Silane gas was used as the source gas C, and the flow m was 1808 CCM.

なお、原IIガスとしては、シランガスの伯に、ジシラ
ン等の高次シランを単独又は混合して用い(もよいし、
さらに膜中に添加物を添加させる場合にはこの添加物を
含むガスを同時に導入してbよい。
In addition, as the raw II gas, higher-order silane such as disilane may be used alone or in combination with silane gas.
Furthermore, when adding additives to the film, a gas containing the additives may be introduced at the same time.

たどえば、成l:、lされる非晶賀珪素股の1lIli
電子制■ 御を行なうために、周!11J率表第 4P a族又は
第Va族元毒を含、むガスを同時導入し、また比11(
抗の制御を行なうために、ll!I素、炭素もしくは窒
素を含むガスを同時に29人し、−c”bよい。
If you trace it to the beginning, the non-crystalline silicone crotch that will be formed.
■ To perform electronic control, Zhou! 11J rate table 4P A or Va group gas is introduced at the same time, and ratio 11 (
To control the resistance, ll! 29 gases containing I element, carbon or nitrogen at the same time, -c"b is good.

〈/I)次いで、バルブ4の開度を調整しく反応室1内
のl]コニカ0 、41 orrに設定づる。
〈/I) Next, the opening degree of the valve 4 is adjusted and set to 0 and 41 orr in the reaction chamber 1.

(5)さらに、高周波電源10を動作さj4 ’U 、
電極5と導電性基板6どの間“に高周波電力をl’l加
りる、。
(5) Furthermore, operate the high frequency power supply 10 j4'U,
High frequency power is applied between the electrode 5 and the conductive substrate 6.

この場合、11J加すζ)高周波電力は、周波WQ ’
+ 3 。
In this case, the high frequency power (11J plus ζ) is equal to the frequency WQ'
+3.

561vl tl Zて電力’+ 00 Wぐあった。There was 561vl tl Z power '+00W.

ごのとき、OJ変インダクタンス索r10をt#!整す
ると前述の一!(振条件が成1ンし、ブラズンが導電性
基板6の31i傍に2号、(−広がつ(光生りる。
When the OJ variable inductance line r10 is set to t#! When adjusted, the above one! (When the vibration conditions are met, the flame spreads out near 31i of the conductive substrate 6 (-light is generated).

(6)このよう(2状態で、反応容器1内の阪応j十力
、■(電性塞板6の渇1!11、原fit万スの流mを
所定値に保持しながら、高周波電源10の作動を継続り
ると、ンか電性L(板6の表向には、非晶質11木牧が
Jlを拍される。
(6) In this way (2 conditions), the high-frequency When the power supply 10 continues to operate, the electric current L (on the surface of the board 6, the amorphous 11 Kimaki Jl is activated).

この場合には、成膜速度が1時間当たり16μm程麿と
むつ、従来の成膜方法に比較して約2゜7 (rs程度
の高速成膜が可能となった。
In this case, the film formation rate was about 16 μm per hour, which made it possible to form a film at a speed of about 2°7 (rs) compared to the conventional film formation method.

次に、第4図を参照して導電性基板6として円筒状のb
のを用いた例を説明づる。
Next, referring to FIG. 4, a cylindrical b is used as the conductive substrate 6.
I will explain an example using .

反応室1は、基台17上に設置されCいる9、ここの反
応室1内には支持台12が設(ノられ(いる。
The reaction chamber 1 is installed on a base 17, and a support stand 12 is installed inside the reaction chamber 1.

この支持台′12はシャツl〜18を介してギア19に
連結さIIでいる。ギア19はモータ2oに取(=Jけ
られたギア21と噛合している。
This support base '12 is connected to the gear 19 via the shirts I-18. The gear 19 meshes with a gear 21 attached to the motor 2o.

従って、七−タ20の回転によっ°C、シトフl−′1
8を介して支持台12は一定31!痕で回転4るように
なっ−4いる。シVフト18は絶縁体22にJ:り電気
的に絶縁されているとともに、可変−rングクタンス素
F16を介して接地されCいる。一方、支持台12には
ヒータ13が立設され(いて、このヒータ13を囲繞り
るJ:うに、円筒状の導電性基板6が支持台12の上部
に嵌合している。
Therefore, due to the rotation of the rotor 20, the rotation of the rotor 20 causes
The support base 12 is constant 31 through 8! The mark allows it to rotate by -4. The shift shaft 18 is electrically insulated by an insulator 22, and is grounded via a variable -r resistance element F16. On the other hand, a heater 13 is provided upright on the support base 12, and a cylindrical conductive substrate 6 is fitted onto the top of the support base 12, surrounding the heater 13.

そして、導電性基板6と同軸に、反応室1内には電4^
5が設()られCいる。この電極56円筒状であっ−(
、その内面側に複数の孔23を持っている。
Coaxially with the conductive substrate 6, an electric current 4^ is placed inside the reaction chamber 1.
5 is established () and C is present. This electrode 56 is cylindrical (
, has a plurality of holes 23 on its inner surface.

側壁8の一側に1よりス導入ロ2/I、他側にはガス排
出口25が設りられ、バルブ7庖介しく 39人管2、
バルブ4を介し′C+11気管3にそれそ゛れ接続され
ている。この場合、導入口24及びIJI +Ii I
−125は絶縁体26.27によって側壁8に対して電
気的に絶縁されている。
A gas introduction port 2/I is provided on one side of the side wall 8, and a gas discharge port 25 is provided on the other side, and a valve 7 is provided.
Each of them is connected to the trachea 3 via a valve 4. In this case, the inlet 24 and IJI +Ii I
-125 is electrically insulated from the side wall 8 by insulators 26,27.

さらに、高周波7G源’I Oはマッヂングボックス1
1を介して導入口2/Iに接続され、これl二J:つて
電気的には、電極5とン9電性基板6との間にと五周波
電力が印加されるアン)に接続され(いる。
Furthermore, the high frequency 7G source'IO is connected to the mating box 1.
1 to the inlet 2/I, which is electrically connected to the electrode 5 and the conductive substrate 6 to which five-frequency power is applied. (There is.

また、電I!i5は孔23を右し、かつ導入II 2 
/1及びIJI’ fl、f !J 25と連通してい
るのC,電極どしくの機能に加えて、反応室1内へ原1
1ガスを噴出し、まIこ反応室1外l\1京料ガスを排
出する機「iしも持っている。この電1!j5は、絶縁
リンク28.29によっ(、側壁8に刻して電気的に絶
縁されIこ状態で保持されるにうになっ゛(いる。
Also, Den I! i5 is to the right of hole 23, and introduction II 2
/1 and IJI' fl, f! In addition to the function of electrodes, C is in communication with J25.
``I also have a machine that blows out 1 gas and exhausts the gas outside the reaction chamber 1. It is designed to be electrically insulated and held in this state.

さらに、円筒状の導電性基板6の十り及び下りには、第
5図に示り゛ような、円盤状の遮蔽体;30.31が段
1]られている。この遮蔽体ζ30.3 ’l Let
中央に開口32を持つ板体で、電極5と導電1’l町G
板6どが対向する面の上端及びト端IJ存在りる空間を
遮蔽Jるように、配設されてぃC,電気的に接地されて
いる。
Further, at the top and bottom of the cylindrical conductive substrate 6, there are provided disc-shaped shields (30, 31) as shown in FIG. This shield ζ30.3 'l Let
It is a plate with an opening 32 in the center, and the electrode 5 and the conductor 1'l are connected to each other.
The plates 6 are arranged so as to cover the space where the upper and lower ends of the opposing surfaces exist, and are electrically grounded.

さらに、この遮蔽体30.31は電極5の上端及び下端
に対して間隙dl、d2をもって離間づる状態で取f=
J tJられているので、原料ガスの流れに影響を与え
ることはない。この間隙dl、(12は、プラズマ中の
電子の平均自由1j稈よりも小さい距−1に設定されて
いるので、この領域で異常放電を起こJことはない。
Further, the shielding bodies 30 and 31 are installed in a state where they are spaced apart from the upper and lower ends of the electrodes 5 with gaps dl and d2.
J tJ, so it does not affect the flow of raw material gas. Since this gap dl (12) is set to a distance -1 smaller than the mean free 1j of electrons in the plasma, no abnormal discharge occurs in this region.

従って、第4図及び第5図に示した成膜装「rを用いた
成If!! 、7’j法にJ:れば、インダクタンス素
子゛16を調整し一’COil述の共振条件を満足させ
れば、プラズマが導電性塞板6の近傍に集中するととも
に、)す^散体30.3゛1により、プラズマが反応室
1の上部及び下部へ拡散するのを防ぐことができる。
Therefore, if the deposition method using the film deposition apparatus "r" shown in FIG. 4 and FIG. If satisfied, the plasma will be concentrated in the vicinity of the conductive closing plate 6, and the diffuser 30.3'1 can prevent the plasma from diffusing to the upper and lower parts of the reaction chamber 1.

なお、上記説明にiljいで、第2図に示し・た実施例
と101−の機能を右する部分については、同一符号を
(−I L ’i(gY細な説明を省略りる。
In the above description, the same reference numerals are used for the functions of the embodiment shown in FIG. 2 and 101-.

しかして、この第4図及び第5図に示した成膜装買を用
いた成膜プj法の一例を説明りる。
An example of a film forming method using the film forming equipment shown in FIGS. 4 and 5 will now be described.

4 (1)反応室1内の圧力が10 ’l−orrとなるま
で、パル14を聞1i!lL/ −(’ 、排気管3か
らtn気を行なう。
4 (1) Listen to the pulse 14 until the pressure inside the reaction chamber 1 reaches 10'l-orr! lL/-(', perform tn air from the exhaust pipe 3.

(2)次いぐ、ヒータ′13を作動さμ、円+li状の
S電111.!ii板6を150℃〜300℃の範囲の
潔痘に加熱りる。
(2) Next, the heater '13 is activated.μ, circle+li shaped S current 111. ! ii. Heat the plate 6 to a temperature in the range of 150°C to 300°C.

導電性基板6は、ll!、径130+nuのアルミニウ
ム製ドラムを用い1.:、。
The conductive substrate 6 is ll! 1. Using an aluminum drum with a diameter of 130+nu. :,.

(3)次いで、パルノア4聞欣し−(原料カスを0人し
、電極5の孔23から噴出させる。この場合、原11刀
スとしCシンン刀スを用い、その)Lmを300 S 
CCMとした1、 (4)そし〔、バルブ4の1li1疫を調整し、反1i
i5掌′1内の圧力を0.81−o口゛に設定する。
(3) Next, use the Parnoa 4 test and make the raw material waste eject from the hole 23 of the electrode 5. In this case, use the original 11 sword and the C thin sword, and set the Lm to 300 S.
1 as CCM, (4) then [, adjust the 1li1 epidemic of valve 4, anti-1i
i5 Set the pressure in the palm'1 to 0.81-o.

(5)さらに、^周波電源10をWet作さ1!(、電
極5と導電性塞板6との間に高周波電力を印加りる。印
加電力は、周波数13.56MLlzで電力200 W
であつIこ。このとき、前述と同様にインダクタンス素
子′16をwI整し、前述の共振条イ9を満足さUる。
(5) Furthermore, we made 10 frequency power supplies! (High-frequency power is applied between the electrode 5 and the conductive blocking plate 6. The applied power is 200 W at a frequency of 13.56 MLlz.
Deatsu Iko. At this time, the inductance element '16 is adjusted to satisfy the above-mentioned resonance line 9 in the same manner as described above.

(6)口のようにして成膜を行なったどころ、プラズマ
が拡散づることなく、導電性基板6の近1方に集中した
状態r成膜が行なわれた。そして、この場合の成膜速度
は1時間当たり22μmであつlこ 。
(6) Although the film was formed in a similar manner, the film was formed in a state where the plasma did not diffuse and was concentrated on one side near the conductive substrate 6. The film formation rate in this case was 22 μm per hour.

このようにして、非晶質珪素膜が成膜されたbのを電子
写真感光体として使用し/jところ、Jぐれた感光特性
が1!1られた。
When the amorphous silicon film on which the amorphous silicon film was formed was used as an electrophotographic photoreceptor, the photosensitive characteristics were inferior by 1:1.

すなわら、−6K Vの電圧が印加されlζ二][1プ
hk電器により、表面を帯電さVると、膜の表面電位が
一250Vどなり、2l−uxのタンゲスアンランプに
よる黒用の場合に0 、6 Lux−3ccの高い感麿
が得られた。
In other words, when a voltage of -6K V is applied and the surface is charged with a lζ2][1phk electric device, the surface potential of the membrane becomes 250 V, and the black color by a 2 l-ux tangent lamp is In this case, a high sensitivity of 0.6 Lux-3cc was obtained.

なお、遮蔽体30,31を取外した状態で−1:紀と同
様に成膜を行なったところ、成膜速石はIII¥間当た
り20μmとなった。従っC、インダクタンス索子゛1
Gによる共振効果に加えて、鴻iIi、’<休30 、
3 Nによるプラズマの閉込め効果にJす、高速成!I
llが可能となることが立証された。
In addition, when the film was formed in the same manner as in the -1: period with the shields 30 and 31 removed, the film formation speed was 20 μm per III period. Therefore, C, inductance cable 1
In addition to the resonance effect due to G,
3 High-speed formation due to the plasma confinement effect due to N! I
It has been proven that ll is possible.

なお、1述の例CシL、成IQ中は支持台12が1;i
In addition, during the example C-L and IQ described in 1, the support stand 12 is 1;
.

時回転しCいるので、成膜ぎれる膜の均 1’lが得ら
れる。
Since it rotates at the same time, it is possible to obtain a uniform thickness of 1'l of film to be deposited.

ところ′(、ヒ=−913としては一般に1、ノシース
ヒータが用いられるが、このシーズヒータ(,1発熱体
を=1イル状に巻回し−Cいるの−C1高周波的には、
インダクタンス分を持ら、さらに支持台゛12に対して
容量結合しくいる。
Tokoro'(, H = -913, 1, no sheath heater is generally used, but this sheathed heater (, 1 heating element is wound in a = 1 Ill shape -C) -C1 In terms of high frequency,
It has an inductance and is further capacitively coupled to the support base 12.

従って、放電にJ:っで流れる高周波電流の 部がヒー
タ133を含む回路に流れこみ、前1jliの共振条件
を乱1恐れがある。
Therefore, a part of the high frequency current flowing in the discharge flows into the circuit including the heater 133, and there is a possibility that the resonance condition in front of the heater 133 may be disturbed.

そこで、?J56図に示づ例では、このJ:う4f不都
合を解消している。
Therefore,? In the example shown in Figure J56, this J:4f inconvenience is resolved.

すなわら、第6図においては、ヒータ13と、このじ−
タ13に電力を印加りる電源3ζ3との間に可変インダ
クタンス素子34.35を介在さμたbのである。
That is, in FIG. 6, the heater 13 and this
Variable inductance elements 34 and 35 are interposed between the power source 3ζ3 that applies power to the motor 13.

ヒータ13は、発熱f本部会36とり一シング部分37
とが距I!l1ld3を以て、配こりされているが、こ
の部分で支持台−12に対して容ffi結合している。
The heater 13 has a heat generating part 36 and a single part 37.
Toga distance I! 11ld3, and is receptively connected to the support base 12 at this portion.

これを等価回路で示すと、第7図のようになる。This is shown in an equivalent circuit as shown in FIG.

第7図に(1]い−(,5?i熱体部分36は、二1ン
デンリ−C1、インダクタンスLi、抵抗Riの直列回
路(i==1.2・・・・・・)が多数並列的に接続さ
れたものとして等価的に表され、図では便宜的に1−9
C9[<の直列回路で示され、またヒータ1こ3の持つ
ストレー:1ヤパシテイが02で表されている。
In FIG. 7, (1) (,5?i) The heating body portion 36 has a large number of series circuits (i = = 1.2...) consisting of a 21-inductor C1, an inductance Li, and a resistor Ri. They are equivalently represented as connected in parallel, and in the figure, 1-9 are shown for convenience.
It is shown as a series circuit of C9[<, and the stray:1 power of heaters 1 and 3 is shown as 02.

従って、この等価回路におい゛(、電極5側の成型電流
ICは、側壁8に向う電流IW及び青電性基板6に向う
電流、ヒータ13を含む回路に向う電流11+に分かれ
る。従って、ヒータ13へのもれ電流1hを最小にしな
番〕れば、ブラズY′のiL中化という効果が低下づる
Therefore, in this equivalent circuit, the molding current IC on the electrode 5 side is divided into a current IW directed toward the side wall 8, a current directed toward the cyanogenic substrate 6, and a current 11+ directed toward the circuit including the heater 13. If the leakage current 1h to the current 1h is minimized, the effect of neutralizing the iL of Blaz Y' will decrease.

てこで、第6図に示1ように、インダクタンス索子34
.35を酸1ノることにより、しれ電流1’ ヲl’J
I JL ’J Z> J: ウニ、ヒータ13を含む
回Fitの?゛♂周波−インピーダンスを上げることが
できる。1号なわら、インダクタンス阻止16をト1°
11:にしく共振状f1ことづることにより、IWき0
の条1’L ヲ+IQたし、かつO) l−II > 
’:’Ic>’:なるようしC:ノタクタンス素子34
 、35を調整Jることに、ノ、す、ヒータ′13を含
む回シ“11へのられ電流が最小どなる。
With the lever, as shown in FIG.
.. By adding 1 acid to 35, the shear current becomes 1'
I JL 'J Z> J: Sea urchin, is it Fit's time including Heater 13?゛♂Frequency-impedance can be increased. 1, the inductance blocker 16 is set to 1°.
11: By writing the resonant form f1, IW k0
Article 1'L wo + IQ and O) l-II >
':'Ic>': C: Notactance element 34
, 35, the current applied to the circuit 11, which includes the heater 13, reaches a minimum level.

従っC1第7図にJ3いて、電流1w、111が11ン
小と4Tす、プラス腎・がうり電竹駐板6の近傍に集中
することににす、成膜効率が向上する。
Therefore, at J3 in C1 FIG. 7, the current 1W, 111 is 11 N and 4T, and is concentrated in the vicinity of the electric bamboo parking board 6, which improves the film forming efficiency.

なJ3、第6図及び第7図に示し・た例で4311、第
2図及び第3図に示しlこ例と同一部分には同一符号を
f−1シ説明を省Fitりる。
In the example shown in FIGS. 6 and 7, the same parts as 4311 and the example shown in FIGS.

しかして、この第6図及び第7図に示した成膜装置を用
い(、第2図及び第3図に示しIこ例と同一の成I19
条1′1及び成膜手順で成膜を行なっIこところ、成膜
速度どして、1時間当たり18μmの膜厚とづることが
でさた。
Therefore, using the film forming apparatus shown in FIGS. 6 and 7 (and the same method as shown in FIGS. 2 and 3),
The film was formed using the film formation procedure 1'1 and the film formation rate was increased to a film thickness of 18 μm per hour.

ところで、第6図におい”CS電極5とテ〃電性基板6
との間には、成膜時プラズマが発生づるが、この電極5
及び導電性基板6間のポテンシャル分子lyを示づと第
8図のJ:うになる。’!J”eEゎI)、プラズマは
導電性基板6側まで拡がっている。
By the way, in FIG.
During film formation, plasma is generated between the electrodes 5 and 5.
The potential molecule ly between the conductive substrate 6 and the conductive substrate 6 is shown as J in FIG. '! J''eEゎI), the plasma has spread to the conductive substrate 6 side.

さらに、成膜速度を上げるには、第9図に示゛すJ:う
な導電性基板6側の電位を負極性側となるにうにし、導
電性基板6側のプラズマ密度を^めればよい。これは、
例えば、第10図に示4成膜装置によって達成される。
Furthermore, in order to increase the film formation rate, the potential on the conductive substrate 6 side should be set to negative polarity as shown in FIG. 9, and the plasma density on the conductive substrate 6 side should be increased. good. this is,
For example, this can be achieved by the 4 film forming apparatus shown in FIG.

づなわち、第10図に示した成膜装置は、第2図に示し
たものに対して、インダクタンス索子゛16をコンデン
サ37を介して接地したものである、。
That is, the film forming apparatus shown in FIG. 10 is different from that shown in FIG. 2 in that the inductance cable 16 is grounded via a capacitor 37.

これを等価回路で示すと、第11図に承りようになる。If this is shown as an equivalent circuit, it can be seen in FIG.

す4「わち、インダクタンス素子16を含む回路に、」
シランザ37を直接接続することにより、]ンシラザ3
7のfRcbに応じ°cI%のバイアス電圧が発生づる
S4: “In other words, in the circuit including the inductance element 16.”
By directly connecting Siranza 37,]
According to fRcb of 7, a bias voltage of °cI% is generated.

このパイj′ス電圧は、:菖シランザ37の両端の交流
電圧のうちの自流分によつ−C勺−リ゛る自己バイアス
電圧である。従つ(、この負のバイノ7ス宙圧ににっく
、陽光柱14を導電性X、i仮12側に引寄せることが
でき、成膜速度が向上づる。
This bias voltage is a self-bias voltage caused by the self-current portion of the alternating current voltage across the iris silanza 37. Accordingly, the positive column 14 can be drawn to the conductive X, i temporary 12 side by this negative binocular pressure, and the film formation rate can be improved.

なJ3、第10図及び第1′1図に(13いては、第2
図及び第3図に示した同一部分につい’Cl1il −
iv弓を(J L、 C説明を省略りる。ここて、]ン
チアン4J−3としくは、最適のバイアス電l■を冑る
1−1的で、調整用Ill二な司変:1−ヤパシタンス
拳子であることが望ましい。
J3, Figure 10 and Figure 1'1 (13, 2nd
Regarding the same parts shown in Figures and Figure 3, 'Cl1il -
iv bow (J L, C explanation omitted.Here,) 4J-3 is a 1-1 type that has an optimal bias voltage, and has two different types for adjustment: 1 - Preferably a yapacitance fist.

さく、この第10図及び第11図に示)ノた成膜装置を
用い−C,第2図及び第3図に示し!、例にd3ける戒
膜条「I−及び成IIIJ手順と向−の態様(成llつ
)を行な−)たところ、18.5μm/時間の成膜速1
哀が観1られIこ。
10 and 11) using the film forming apparatus shown in FIGS. 2 and 3. , for example, when performing the procedure ``I and Formation IIIJ'' in d3, a film formation rate of 18.5 μm/hour was obtained.
I can't see the sadness.

な、1ヌ、さら(、ニブラス゛7の密度を^める千Bl
とし・で、舶゛)2図及び第′13図に示?J J: 
ウ+’l、IJI !# n生手段を利用りることかで
きる。
Na, 1, Sara
So, the ship is shown in Figure 2 and Figure '13? JJ:
U+'l, IJI! # It is possible to use means of production.

この第゛12図及び第13図に示しに例(、L、第4図
に示し・k例と比較しく、次のy急が相違り、 Tいて
その伯の部分は同一である。
In comparison with the example shown in Figures 12 and 13 (L, and the example K shown in Figure 4), the following y steepness is different, and the square part of T is the same.

ジなわら、まず、導入口24は、反応室1の上端部の側
壁E3に段重プられ、ここに々入営2がバルブ7を介し
−C接続されている。
First, the inlet 24 is installed in a step on the side wall E3 at the upper end of the reaction chamber 1, and the inlet 2 is connected to the inlet 2 through the valve 7.

また、IJI IJI」25は基台17に段番)られ、
バルブ4を介して排気管3に接続されている。
In addition, "IJI IJI" 25 is placed on the base 17,
It is connected to the exhaust pipe 3 via a valve 4.

さらに、ヒータ13としては、第13図の平面図から明
らかなように棒状のランプヒータを用いている。このラ
ンプヒータ13は円筒状の導電性基板6の内面側に離間
して4本支持台121 +−二立接されCいる。なお、
図示し−Cいないが、ランプ校 ヒータ13に対向して騨物紳状の反用面をしつりフレフ
タも4本立設されている。さらに、この各ランプヒータ
′13の相互対向面間に、磁IiV発り一手段としC−
永久Ill ′Or′、i 38を配段し−Cいる。こ
の永久lit1石38は棒状のものであって、隣接する
同志が異極性となる如く相互に離間した状態で支持台1
2十に4本立接されている。
Furthermore, as the heater 13, a rod-shaped lamp heater is used, as is clear from the plan view of FIG. Four lamp heaters 13 are mounted vertically on the inner surface of the cylindrical conductive substrate 6 at a distance from each other. In addition,
Although not shown in the figure, four flapers are also erected facing the lamp heater 13 by hanging the opposite side of the starch. Further, between the mutually opposing surfaces of each lamp heater '13, a magnetic IiV is generated as a means of C-
Permanent Ill 'Or', i 38 -C. This permanent lit 1 stone 38 is a rod-shaped one, and is placed on the support stand 1 while being spaced apart from each other so that adjacent comrades have different polarities.
Four of them are on standby every 20 years.

従っ(、この永久磁石38にJ:っ(、第13図におい
”C示されるように磁界が発生りる。これによって、プ
ラズマ中の電子がm稈に沿つ(螺旋運動を行なうことに
なり、円筒状の導電性基板6の表面)j[傍でのプラズ
マ発生効率が^より、結T的に隅光t1の発光強度が強
くなる。
Therefore, a magnetic field is generated in this permanent magnet 38 as shown in FIG. , the surface of the cylindrical conductive substrate 6) j[The emission intensity of the corner light t1 becomes stronger as a result of the plasma generation efficiency near the surface T.

従−)(、成膜速1σが若しく向上する。-) (The film formation rate 1σ is slightly improved.

なfI3、第′12図及び第13図に示した例r li
t:、第4図及び第5図に示した例と1]一部ヅ)に同
一符号をf;1シて説明を1ケl118りる。
fI3, the example shown in Figures '12 and 13
The same reference numerals as those in the examples shown in FIGS. 4 and 5 will be used for 1) and 1) for explanations.

しか1ノー(−1この例L−;I3い−(、第4図及び
第5図に示した例にお(プる成膜方法と同一の成++:
q条1′1、成膜手順C′成膜を1−7なつlこところ
、25μm/”’ I+;’i間の成膜速度が冑Iうれ
た。
However, 1 no (-1 in this example L-;
During the film formation process 1-7, the film formation rate of 25 .mu.m/''I+;'i was achieved.

[発明の効果] 以1.述べたJ:う(、二、本発明によれは′、)I)
(別カスのブラズンを膜が形成されるラフ電性基板のi
li l方に集中さUかつそのfl?麿を^めることが
(さるの−(、成膜効率が向、トシ、凸速成股がiJ能
になる、。
[Effects of the invention] Below 1. Said J: (,2,according to the present invention',)I)
(i of the rough conductive substrate on which the film is formed)
Concentrate on one side and that fl? It is possible to improve the film formation efficiency, increase the speed of convex growth, and increase the efficiency of film formation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(4従来の成膜方法を説明りるための成1(!装
置の概略構成を承り説明図、第2図は本5e明の一実施
例を説明りるための成膜装置の概略構成を示1説明図、
第3図は第2図に示した成ll!装冒のへ周波W価回路
図、第4図は本発明の他の実施例を説明りるための成膜
装置の概略it所面図、第5図は第4図に示した成膜装
置の要部を承り平面図、第6図は本発明のさらに他の実
施例を説明するlこめの成II!! 4% 直の概略構
成を承り説明図、第7図は第6図に示した成膜装置の高
周波哲価回路図、第8図及び第9図は従来の成膜方法の
欠点を説明りるための説明図、第10図は本発明のさら
に他の丈IAカ例を説明りるための成膜装μの概略構成
を示1説明図、第11図は第10図に示し/j成膜装置
の高周波等11111回路図、第12図は本発明のさら
に他の実施例を説明するための成膜装Uを示り概略縦断
面図、第′13図は第12図に示り成膜装置の要部を示
す平面図である。 1・・・反応室、5・・・電極、6・・・導電性基板、
10・・・高周波電源、13・・・ヒータ、16・・・
−rンダクタンス素子、30.31・・・連散体、33
・・・ヒータ用電源、37・・・コンデンサ、38・・
・磁冑光イ[下段。 第 峨i 図 第7図 第 1〕 図 第 101欠1 第11図
Figure 1 (4) is an explanatory diagram showing the schematic configuration of the apparatus, and Figure 2 is an explanatory diagram of the film forming apparatus for explaining an embodiment of this 5e method. 1 explanatory diagram showing the schematic configuration,
Figure 3 shows the results shown in Figure 2! FIG. 4 is a schematic diagram of a film forming apparatus for explaining another embodiment of the present invention, and FIG. 5 is a schematic diagram of the film forming apparatus shown in FIG. 4. FIG. 6 is a plan view of the main part of the present invention, and FIG. ! Figure 7 is a high frequency circuit diagram of the film forming apparatus shown in Figure 6, and Figures 8 and 9 explain the shortcomings of the conventional film forming method. FIG. 10 is an explanatory diagram showing a schematic configuration of a film forming apparatus μ for explaining still another example of the length IA function of the present invention. 11111 circuit diagram of high frequency etc. of the film apparatus, FIG. 12 shows a schematic longitudinal sectional view of a film forming apparatus U for explaining still another embodiment of the present invention, and FIG. FIG. 2 is a plan view showing the main parts of the membrane device. 1... Reaction chamber, 5... Electrode, 6... Conductive substrate,
10...High frequency power supply, 13...Heater, 16...
-r inductance element, 30.31... continuous body, 33
...Power supply for heater, 37...Capacitor, 38...
・Magnetic helmet light [lower row. Fig. 7 Fig. 1] Fig. 101 Missing 1 Fig. 11

Claims (1)

【特許請求の範囲】 (1)減圧状態の反応案内に、導電性基板と電1鼾とを
ヌ・1向して配直し、この導電性基板と電極との間に交
流電源を接続し、前記反応案内に?’r在づる原石カス
のフ′ラズマを発生させることにより、前記導電性基板
の表面に前記原料ガスに含まれる原子を含む膜を成膜ツ
る方法において、前記Q電性基板をインダクタンス素子
を介し′CC前文交流電源接続リ−ることを特徴とする
成膜方法。 (2)インダクタンス素子は、シ9電性基板とプラズマ
間光社とのrgIに形成されるシースによるキVパシタ
ンスと」1振りるようなlfiに調整可能であることを
1゛1徴どりる特WF 請求の範囲第1項記載の成ll
焚 方 ン人 。 (3)反応室内に存tIJる原石カスは珪素を含むガス
であり、これによって導電性基板の表面に非晶質11素
n’Aを成膜りる特許請求の範囲第11n又は第2 J
n記載の成膜方法。 (4)減圧状態の反応室内に、導電性基板と電極とを対
向して配置し、この¥j m +9− M板と711f
jとの間に交流電源を接続し、前記反応室内に在合づる
原わ1ガスのプラス“マを発生さIることにより、前記
導電11基板の表面に前記原料ガスに含まれる原子を含
む膜を成膜Jる方法において、前記導電性基板をインダ
クタンス素子を介して前記交流電源に接続し、かつ前記
導電性基板と前記電極との対向面端部近傍にプラズマの
拡散を防止づるlこめの連敲体を配置することを特徴と
りる成膜方法。 (5)導電性基板は円筒状の基板であり、電極はこの円
筒状の基板と同軸でかつこれを囲繞りる円筒状の電極で
、遮蔽体が円筒状の基板の軸方向に沿って端部に設()
られでいることを特徴とする特W[請求の範囲第4項記
載の成膜方法。 (6) 電極と遮蔽体とを、プラズマ中の電子の平均自
由行程にりも小さい距離をもって離間することを特徴と
する特許請求の範囲第4項又は第511i記載の成膜方
法。 (7)減り一状態の反応室内に、導電性基板と電極とを
列内して配げ()1、この導電性基板と電極との間に交
流電源を接続しかつ前記導電性基板をヒータ用電源に接
続されたヒータによって加熱しつつ、前記反応室内に存
在づる原才;1刀スの1ラス゛マを光り1−りることに
より、前記lIi′i判ガスに含まれる原子を含む膜を
成膜りる方法にa3いc1前記導電性基板を第゛1のイ
ンダクタンス素子を/i シT前記交流7R源に接続り
るどとbに、前記ヒータを第2のインダクタンス素子を
介して前記ヒータ用電源に接続4ることを1−]徴とり
る成膜方法。 (8)第′1のインダクタンス素子は導電11基板とプ
ラズマ陽光柱との間に形成されるシースにょるキt・バ
シタンスを含む直列回路のインピーダンスを最小とりる
よう4f餡に調整可能てあり、かつ第2のインピーダン
ス禿rはヒータを含む回1゛aのインピータンスを最大
とりるような1〆1に調整用Oしであることを特徴とす
る特許請求の範囲第71Fi記載の成n9方法。 (9)減圧状態の反応室内に、導電性基板と電極とを対
向して配直し、この導電性基板と電極との間に交流電源
を接続し、前記反応室内に在合Jる1乗料ガスのブラズ
7を発生さけることにより、前記脣電fl:基板の表面
に前記原料ガスに含まれる原子を含む膜を成膜りる方法
に置いて、前記導電性基板をインダクタンス素子および
コンデンリを介して前記交流″”?Ui源に接続づるこ
とを特徴と(る成膜方法。 (10) ]ンシランは、導電性基板にバイアス電位を
与えるためにその値を調整可能であることを特徴とJる
待¥1請求の範囲第91fl記載の成膜方法。 (11)減1十状態の反応室内に、導電性基板と電極と
を対向し一’CFli!買し、この導電性基板と電極と
の間に交流電源を接続し、前記反応室内に在合ηる原j
3+ガスのプラズマを発生さぜることにJ7す、前記導
電性基板の表面に前記原料ガスに含まれる原子を含む膜
を成膜する方法におい゛(、前記導電性基板をインダク
タンス素子を介して前記交流電源に接続し、かつ前記導
電性基板を間に挾んで前記電極と対向して磁界発生手段
を配設することを特徴とりる成膜方法。 (’+ 2 ) iり電(’l基板は円筒状の基板であ
り、電極はこの円筒状の基板を囲繞4る円筒状の電4〜
で、141!1Ii1発生手段をこの円筒状の基板の内
面側に複数配置FI したことを特徴とりるQh ¥r
請求の範111ド1111項記載の成膜方法。 (13)磁界発生手段は永久磁右で(bること@特徴と
−4る特許請求の範囲第ij+fi又は第’+ 2項記
載の成膜り法。
[Claims] (1) Rearranging the conductive substrate and the electrode so that they face each other in a reduced pressure state, and connecting an AC power source between the conductive substrate and the electrode, In the reaction guide mentioned above? In the method of forming a film containing atoms contained in the raw material gas on the surface of the conductive substrate by generating a plasma of existing raw ore scum, A film forming method characterized by connecting an alternating current power supply through a CC preamble. (2) The inductance element is capable of adjusting the V passitance and lfi of the sheath formed at the rgI between the conductive substrate and the plasma beam. Particular WF The composition set forth in claim 1
How to burn people. (3) The raw stone dregs existing in the reaction chamber is a gas containing silicon, thereby forming an amorphous 11-element n'A film on the surface of the conductive substrate.
The film forming method described in n. (4) A conductive substrate and an electrode are placed facing each other in a reaction chamber under reduced pressure, and this
By connecting an AC power source between the conductive substrate 11 and the source gas and generating plasma of the raw material gas present in the reaction chamber, the surface of the conductive substrate 11 contains atoms contained in the source gas. In the method of forming a film, the conductive substrate is connected to the alternating current power source via an inductance element, and the conductive substrate is connected to the alternating current power source through an inductance element, and a method is provided to prevent plasma diffusion near the end of the opposing surface of the conductive substrate and the electrode. (5) The conductive substrate is a cylindrical substrate, and the electrode is a cylindrical electrode coaxial with and surrounding the cylindrical substrate. In this case, a shield is installed at the end of the cylindrical substrate along the axial direction ().
[The film forming method according to claim 4]. (6) The film forming method according to claim 4 or 511i, characterized in that the electrode and the shield are separated by a distance smaller than the mean free path of electrons in the plasma. (7) Arrange conductive substrates and electrodes in a row in a reaction chamber in one state (1), connect an AC power source between the conductive substrates and the electrodes, and heat the conductive substrates. While heating with a heater connected to a commercial power supply, a film containing atoms contained in the IIi'i-sized gas is formed by irradiating one laser beam of one laser beam existing in the reaction chamber with light. The film forming method includes a3 c1 connecting the conductive substrate to the AC 7R source, connecting the conductive substrate to the first inductance element, and b connecting the heater to the second inductance element. A film forming method that requires 1-] connection to a power source for a heater. (8) The '1st inductance element can be adjusted to 4f so as to minimize the impedance of the series circuit including the sheath capacitance formed between the conductive substrate and the plasma positive column, and the second impedance r is adjusted to a value such that the impedance of the circuit 1a including the heater is maximized. . (9) A conductive substrate and an electrode are rearranged to face each other in a reaction chamber under reduced pressure, and an AC power source is connected between the conductive substrate and the electrode. By avoiding the generation of the gas plasma 7, the conductive substrate is connected to the conductive substrate via an inductance element and a condenser. What about the exchange? (10) The silane is connected to a Ui source, the value of which can be adjusted in order to provide a bias potential to the conductive substrate. The film forming method described in 91fl. (11) A conductive substrate and an electrode are placed facing each other in a reaction chamber in a reduced state, and an AC power source is connected between the conductive substrate and the electrode. , the source η present in the reaction chamber
In a method for forming a film containing atoms contained in the raw material gas on the surface of the conductive substrate, the method includes generating a plasma of 3+ gas. A film forming method characterized by connecting to the alternating current power supply and arranging a magnetic field generating means facing the electrode with the conductive substrate interposed therebetween. The substrate is a cylindrical substrate, and the electrodes are cylindrical electrodes surrounding the cylindrical substrate.
Qh ¥r is characterized in that a plurality of 141!1Ii1 generation means are arranged on the inner surface of this cylindrical substrate.
A film forming method according to claims 111 and 1111. (13) The film forming method according to claim ij+fi or '+2, wherein the magnetic field generating means is a permanent magnet.
JP22331283A 1983-11-29 1983-11-29 Film forming method Granted JPS60116125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22331283A JPS60116125A (en) 1983-11-29 1983-11-29 Film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22331283A JPS60116125A (en) 1983-11-29 1983-11-29 Film forming method

Publications (2)

Publication Number Publication Date
JPS60116125A true JPS60116125A (en) 1985-06-22
JPH0523050B2 JPH0523050B2 (en) 1993-03-31

Family

ID=16796172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22331283A Granted JPS60116125A (en) 1983-11-29 1983-11-29 Film forming method

Country Status (1)

Country Link
JP (1) JPS60116125A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919077A (en) * 1986-12-27 1990-04-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor producing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130466A (en) * 1980-03-17 1981-10-13 Canon Inc Film forming method
JPS58158929A (en) * 1982-03-17 1983-09-21 Kokusai Electric Co Ltd Plasma generator
JPS58163434A (en) * 1982-03-25 1983-09-28 Semiconductor Energy Lab Co Ltd Plasma gas phase reaction method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130466A (en) * 1980-03-17 1981-10-13 Canon Inc Film forming method
JPS58158929A (en) * 1982-03-17 1983-09-21 Kokusai Electric Co Ltd Plasma generator
JPS58163434A (en) * 1982-03-25 1983-09-28 Semiconductor Energy Lab Co Ltd Plasma gas phase reaction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919077A (en) * 1986-12-27 1990-04-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor producing apparatus

Also Published As

Publication number Publication date
JPH0523050B2 (en) 1993-03-31

Similar Documents

Publication Publication Date Title
CN103098559B (en) High-frequency power supply device, plasma processing device and method for producing thin film
CN102112657B (en) Process and installation for depositing films onto a substrate
JPS5870833A (en) Apparatus for fusing thin layer in reaction vapor phase
JP2004006885A (en) High-frequency type plasma-reinforced chemical vapor deposition reactor, and method using the same
KR920008122B1 (en) Thin film forming apparatus
WO2010058560A1 (en) Plasma processing apparatus
JPS60116125A (en) Film forming method
JPS62203328A (en) Plasma cvd apparatus
JP2008171888A (en) Plasma cvd apparatus and thin-film formation method
JPS6369981A (en) Method and apparatus for forming layer by plasma chemical treatment
JPS6331110A (en) Manufacture of semiconductor device
JP3144165B2 (en) Thin film generator
JPH0769790A (en) Thin film-preparing device
JP2765788B2 (en) Plasma CVD equipment
JPH041730Y2 (en)
JPS58161764A (en) Vacuum deposition process of boron
JPH0891987A (en) Apparatus for plasma chemical vapor deposition
JP2920637B2 (en) Glow discharge decomposition equipment
KR100995634B1 (en) Apparatus for Depositting Chamical Vapor and Method for Manufacturing the same
JPS6277465A (en) Formation of amorphous silicon film
JP2012104559A (en) Device and method for plasma deposition
JPH0639708B2 (en) Thin film manufacturing method and thin film manufacturing apparatus
JPH0441675A (en) Microwave plasma device
JPS63274126A (en) High frequency wave application electrode constituent body
Kaneko et al. Production of VHF excited H2 Plasma by New Method of Superposing the Standing Waves