JPS60115171A - Liquid fuel cell - Google Patents

Liquid fuel cell

Info

Publication number
JPS60115171A
JPS60115171A JP59139041A JP13904184A JPS60115171A JP S60115171 A JPS60115171 A JP S60115171A JP 59139041 A JP59139041 A JP 59139041A JP 13904184 A JP13904184 A JP 13904184A JP S60115171 A JPS60115171 A JP S60115171A
Authority
JP
Japan
Prior art keywords
negative electrode
fuel
paths
path
arborescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59139041A
Other languages
Japanese (ja)
Other versions
JPS6042589B2 (en
Inventor
Koki Tamura
弘毅 田村
Kazuo Iwamoto
岩本 一男
Hidejiro Kawana
川名 秀治郎
Tatsuo Horiba
達雄 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59139041A priority Critical patent/JPS6042589B2/en
Publication of JPS60115171A publication Critical patent/JPS60115171A/en
Publication of JPS6042589B2 publication Critical patent/JPS6042589B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain a small light liquid-fuel cell having a high output and a high energy density by providing an arborescent fuel path having a primary path and branching paths in the negative electrode and supplying a fuel through the main path. CONSTITUTION:On the upper surface of a negative electrode 3, a fuel inlet 9 is provided from which arborescent paths extend into the negative electrode 3. The arborescent paths consist of a primary path 10, secondary paths 11, branching paths 12 and tertiary-branching paths 13. A liquid fuel supplied through the fuel inlet 9 passes through these paths before being homogeneously supplied over the entire surface of the negative electrode 3. The surface area of the cross section of each path extending from the primary path 10 to the tertiary-branching path 13 may continuously vary. By the means mentioned above, the fuel can be supplied directly into the negative electrode 3 and can easily reach the electrolyte- side surface of the negative electrode 3. Furthermore, the fuel moves toward electrolyte-side surface of the negative electrode 3 in arborescent form and diffuses over the entire surface.

Description

【発明の詳細な説明】 本発明は液体燃料電池に係り、特に、コンノ(クトで高
性能な液体燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to liquid fuel cells, and more particularly to a compact, high-performance liquid fuel cell.

従来の液体燃料電池の断面図を第1図に示す。A cross-sectional view of a conventional liquid fuel cell is shown in FIG.

電解液1をはさんで正極2と負極3が向し)合っており
、正極2の外側には酸化剤室4が、負極3の外側には燃
料室5がある。酸化剤室4には酸化剤供給口6、及び酸
化剤排出ロアが設置され、燃料室5には燃料供給口8が
設置されて(する。正極2および負極3は共に、電子伝
導性を有する材料力1らなる多孔質体である。
A positive electrode 2 and a negative electrode 3 face each other with an electrolytic solution 1 in between, and an oxidizer chamber 4 is located outside the positive electrode 2, and a fuel chamber 5 is located outside the negative electrode 3. An oxidant supply port 6 and an oxidant discharge lower are installed in the oxidizer chamber 4, and a fuel supply port 8 is installed in the fuel chamber 5. Both the positive electrode 2 and the negative electrode 3 have electron conductivity. It is a porous body with material strength of 1.

液体燃料電池にはポータプル電源としての用途が期待さ
れており、そのためにはなるべく小型軽量でなければな
らない。即ち、出力Wについて云うとW / kg e
 W / di” s W h / kg + W h
 / dm” 値が大でなければならない。しかし従来
の液体燃料電池では、液体燃料を負極全面に迅速、かつ
均一に供給するために、燃料室を充分に広くとらなけれ
ばならず、電池全体の重量、体積が大になり、そのため
に上記W / kg e W / dIla* W h
 / kg *Wh/dm”値が大きく、本格的な実用
化が阻害されていた。
Liquid fuel cells are expected to be used as portable power sources, and for this purpose they must be as small and lightweight as possible. In other words, regarding the output W, W/kg e
W/di”s W h/kg + W h
/ dm" value must be large. However, in conventional liquid fuel cells, in order to quickly and evenly supply liquid fuel to the entire surface of the negative electrode, the fuel chamber must be sufficiently wide, and the The weight and volume increase, so the above W / kg e W / dIla * W h
/ kg *Wh/dm" value was large, which hindered full-scale practical application.

また、燃料電池の負極番3おける反応は、負極の電解液
側の面、すなわち正極に近い面で進行するが、従来の負
極では、燃料が負極の燃料室側の面から侵入して多孔質
である負極の内部を横切って反応が進行しやすい面まで
到達しなければならなかった。そのために、反応面への
燃料供給の不充分な個所ができやすく、電流密度、すな
わちとり出された電流値を見掛けの電極面積で割った値
も小さかった。
In addition, the reaction in the negative electrode No. 3 of a fuel cell proceeds on the surface of the negative electrode on the electrolyte side, that is, the surface close to the positive electrode, but in conventional negative electrodes, fuel enters from the surface of the negative electrode on the fuel chamber side and becomes porous. It was necessary to cross the inside of the negative electrode to reach the surface where the reaction easily progresses. For this reason, insufficient fuel supply to the reaction surface was likely to occur, and the current density, that is, the value of the extracted current divided by the apparent electrode area, was also small.

本発明の目的は、負極の電解液側の面に燃料を到達させ
やすくし、小型軽量、高出力、高エネルギー密度の液体
燃料電池を提供するにある。
An object of the present invention is to provide a small, lightweight, high output, and high energy density liquid fuel cell that allows fuel to easily reach the surface of the negative electrode on the electrolyte side.

本発明の要点は、負極内に液体燃料供給用の通路を設け
たことにある。すなわち主幹路と枝幹路を有する樹枝状
燃料通路を負極内に設け、主幹路を通して燃料を供給す
ることにある。
The key point of the present invention is that a liquid fuel supply passage is provided within the negative electrode. That is, a dendritic fuel passage having a main path and branch paths is provided in the negative electrode, and fuel is supplied through the main path.

以下、図面に従って本発明をさらに詳しく説明する。第
2図は本発明になる液体燃料電池に用いる負極3の縦断
面図、すなわち負極3の面に平行な方向の断面図、第3
図は負極3のA−A断面図、すなわち負極3の面に垂直
な方向の断面図である。
Hereinafter, the present invention will be explained in more detail with reference to the drawings. FIG. 2 is a longitudinal cross-sectional view of the negative electrode 3 used in the liquid fuel cell according to the present invention, that is, a cross-sectional view in a direction parallel to the surface of the negative electrode 3;
The figure is a cross-sectional view taken along the line AA of the negative electrode 3, that is, a cross-sectional view taken in a direction perpendicular to the surface of the negative electrode 3.

負極3の上面に燃料人口9があり、それを基点にして、
負極3内に樹枝状の通路が設けら汎ている。
There is a fuel population 9 on the top surface of the negative electrode 3, and from that point,
A dendritic passage is provided in the negative electrode 3 and extends therethrough.

樹枝状通路は主幹路10、増生幹路11、枝幹路12、
細路13からなり、燃料人口9から供給された液体燃料
はこれらを通って負極の全面に均一に供給される。もち
ろん主幹路10から細路13までの通路断面積が連続的
に変化していてもよい。
The dendritic passages include a main trunk passage 10, a growing trunk passage 11, a branch trunk passage 12,
It consists of narrow passages 13, through which the liquid fuel supplied from the fuel port 9 is uniformly supplied over the entire surface of the negative electrode. Of course, the passage cross-sectional area from the main passage 10 to the narrow passage 13 may change continuously.

液体燃料としてはメタノールやヒドラジン、あるいはこ
れに他の液体燃料を混合したものが用いられる。このよ
うにすることにより、燃料を直接負極内に供給すること
ができ、電解液側の面へ到達しやすくなる。しかも燃料
は負極の電解液側面へ向って樹枝状に進行し、面金域に
行きわたる。
The liquid fuel used is methanol, hydrazine, or a mixture of these and other liquid fuels. By doing so, the fuel can be directly supplied into the negative electrode, making it easier to reach the surface on the electrolyte side. Moreover, the fuel progresses in a dendritic manner toward the electrolyte side of the negative electrode and spreads over the metal surface area.

以下、本発明の詳細な説明する。白金触媒を添加した炭
素粉末とポリテトラフルオロエチレン微粉末を混合して
多孔性炭素基板に塗布して作った正極と、電解液として
の硫酸を含浸させたイオン交換膜と、内部に樹枝状通路
を有する多孔質炭素板の負極を組み合わせて電池を組立
て、正極には空気を、負極には燃料としてのメタノール
と硫酸の混合液を供給して、メタノール、空気燃料電池
として作動させた。負極にも触媒として白金を分散、添
加した。電極寸法を10cmX l 5cmにしたとき
、空気室の幅が3.0 mm、空気極の厚さが0.3 
ll1m、電解液を含浸させたイオン交換膜の厚さが0
.2 mm、負極の厚さが2.0 mm、燃料室の厚さ
がOIであった。したがって単位電池1個の厚さは5.
5 amで、周辺の枠等を無視するとすれば、体積は8
2.5cm3である。同様に周辺の枠等を除くと、この
ときの重量は90.7gであった。
The present invention will be explained in detail below. A positive electrode made by mixing carbon powder added with a platinum catalyst and polytetrafluoroethylene fine powder and coating it on a porous carbon substrate, an ion exchange membrane impregnated with sulfuric acid as an electrolyte, and a dendritic passageway inside. A battery was assembled by combining a negative electrode made of a porous carbon plate with a negative electrode, and the positive electrode was supplied with air, and the negative electrode was supplied with a mixture of methanol and sulfuric acid as fuel to operate as a methanol-air fuel cell. Platinum was also dispersed and added to the negative electrode as a catalyst. When the electrode dimensions are 10 cm x l 5 cm, the width of the air chamber is 3.0 mm, and the thickness of the air electrode is 0.3 mm.
ll1m, the thickness of the ion exchange membrane impregnated with electrolyte is 0
.. The thickness of the negative electrode was 2.0 mm, and the thickness of the fuel chamber was OI. Therefore, the thickness of one unit battery is 5.
5 am, and if we ignore the surrounding frames, the volume is 8
It is 2.5 cm3. Similarly, excluding the surrounding frame, etc., the weight at this time was 90.7 g.

この単位電池からは、放電電圧0.40Vで18Aの電
流が得られた。電流密度にして120mA/Cn12で
ある。したがって、この単位電池の出方は7.2Wであ
り、単位体積当りの出力は87.3W/β、単位重量当
りの出力は79,4W/kgとなる。このように本発明
においては燃料室が不要であり、単位体積或は単位重量
当りの出方も増加する。
A current of 18 A was obtained from this unit cell at a discharge voltage of 0.40 V. The current density is 120 mA/Cn12. Therefore, the output power of this unit battery is 7.2 W, the output per unit volume is 87.3 W/β, and the output per unit weight is 79.4 W/kg. In this way, the present invention does not require a fuel chamber, and the output per unit volume or unit weight also increases.

一方、従来の構造の電池では、電極寸法を上記本発明の
実施例と同じ10cmX 15cmにしたとき、空気室
の幅が3.、Omm、空気極の厚さが0.3 mm、電
解液を含浸させたイオン交換膜の厚さが0.2 mm、
負極の厚さが2.0 mmと変らないが、燃料室として
幅3.0 mmの空間をとらなければならず、単位電池
の厚さは8.5 n+mとなり、周辺の枠などを無視し
たときの単位電池の体積は127.5 cm”である。
On the other hand, in a battery with a conventional structure, when the electrode dimensions are set to 10 cm x 15 cm, which is the same as in the embodiment of the present invention, the width of the air chamber is 3.5 cm. , Omm, the thickness of the air electrode is 0.3 mm, the thickness of the ion exchange membrane impregnated with electrolyte is 0.2 mm,
Although the thickness of the negative electrode remains the same at 2.0 mm, a space of 3.0 mm width must be reserved for the fuel chamber, and the thickness of the unit cell is 8.5 nm+m, ignoring the surrounding frame etc. The volume of the unit battery at this time is 127.5 cm''.

このときの重量は145gである。この単位電池がらは
放電電圧0.40Vで15Aの電流が得られた。電流密
度にして100mA/cm”である。したがって、従来
の方式をとるこの単位電池の出力は6.OWであり、単
位体積当りの出力は47.OW/Q、単位重量当りの出
力は41.4W/kgである。
The weight at this time is 145g. With this unit battery, a current of 15 A was obtained at a discharge voltage of 0.40 V. The current density is 100mA/cm''. Therefore, the output of this unit cell using the conventional method is 6.OW, the output per unit volume is 47.OW/Q, and the output per unit weight is 41.OW. It is 4W/kg.

本発明の電池と従来の電池を比較すると、本発明の電池
の方が、単位体積当りの出力において1.86倍、単位
重量当りの出力において1.92倍になっている。
Comparing the battery of the present invention with a conventional battery, the battery of the present invention has 1.86 times higher output per unit volume and 1.92 times higher output per unit weight.

以上述べたように本発明によれば、燃料室スペースの削
減と、電池性能の向上により、単位体積当りの出力、及
び単位重量当りの出方が、従来の液体燃料電池に比べて
大幅に増加する。
As described above, according to the present invention, by reducing the fuel chamber space and improving cell performance, the output per unit volume and output per unit weight are significantly increased compared to conventional liquid fuel cells. do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の液体燃料電池を示す断面図、第2図は本
発明の一実施例の断面図、第3図は第2図のA−A断面
図である。 1・・・電解液、2・・・正極、7・・・負極、4・・
・酸化剤室、訃・・燃料室、6・・・酸化剤供給口、7
・・・酸化剤排出口、8・・・燃料供給口。 第1 目 第 2 図
FIG. 1 is a sectional view showing a conventional liquid fuel cell, FIG. 2 is a sectional view of an embodiment of the present invention, and FIG. 3 is a sectional view taken along line AA in FIG. 1... Electrolyte, 2... Positive electrode, 7... Negative electrode, 4...
・Oxidizer chamber, butt...Fuel chamber, 6...Oxidizer supply port, 7
... Oxidizer discharge port, 8... Fuel supply port. 1st item 2nd figure

Claims (1)

【特許請求の範囲】[Claims] ■、対向する正極と負極、前記正負極間に介在する電解
液および前記正極の外側に位置する酸化剤け、前記主幹
路を通して燃料を供給するようにしたことを特徴とする
液体燃料電池。
(2) A liquid fuel cell characterized in that fuel is supplied through the opposing positive and negative electrodes, an electrolytic solution interposed between the positive and negative electrodes, an oxidizer reservoir located outside the positive electrode, and the main path.
JP59139041A 1984-07-06 1984-07-06 liquid fuel cell Expired JPS6042589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59139041A JPS6042589B2 (en) 1984-07-06 1984-07-06 liquid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59139041A JPS6042589B2 (en) 1984-07-06 1984-07-06 liquid fuel cell

Publications (2)

Publication Number Publication Date
JPS60115171A true JPS60115171A (en) 1985-06-21
JPS6042589B2 JPS6042589B2 (en) 1985-09-24

Family

ID=15236073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59139041A Expired JPS6042589B2 (en) 1984-07-06 1984-07-06 liquid fuel cell

Country Status (1)

Country Link
JP (1) JPS6042589B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038198A1 (en) * 2007-09-19 2009-03-26 Kabushiki Kaisha Toshiba Fuel cell
JP2009164127A (en) * 2007-12-28 2009-07-23 Samsung Sdi Co Ltd Fuel diffuser plate, fuel supply device, and fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038198A1 (en) * 2007-09-19 2009-03-26 Kabushiki Kaisha Toshiba Fuel cell
JP2009164127A (en) * 2007-12-28 2009-07-23 Samsung Sdi Co Ltd Fuel diffuser plate, fuel supply device, and fuel cell

Also Published As

Publication number Publication date
JPS6042589B2 (en) 1985-09-24

Similar Documents

Publication Publication Date Title
US5686199A (en) Flow field plate for use in a proton exchange membrane fuel cell
CN103053057B (en) Fuel cell
JPH06267564A (en) Solid high polymer electrolyte fuel cell
JPS6130385B2 (en)
EP1265303A4 (en) Polymer electrolyte fuel cell and method of manufacturing the same
JP2003346869A (en) Fuel cell stack
JP2007234543A (en) Fuel cell
FI61775B (en) CELL FOER STROEMALSTRING OCH ELEKTROLYS
WO2004109830A3 (en) Fuel cell
US6926982B2 (en) Fuel cell
JP2003229144A (en) Fuel cell
CN102292860A (en) Fuel cell
JPH1012260A (en) Redox flow battery
JPH06196182A (en) Diaphragm humidifying structure for solid high polymer electrolyte electrochemical cell and manufacture thereof
CN108598543B (en) Flow battery
JP3509180B2 (en) Fuel cell
JP2003092129A (en) Fuel cell stack and method of supplying reaction gas
JPS60115171A (en) Liquid fuel cell
JPS63119166A (en) Fuel battery
JPS6321752A (en) Gas diffusion electrode
CN101593840A (en) Proton exchange model fuel cell unit, mea and gaseous diffusion layer structure
JPH06267562A (en) Solid high polymer electrolyte fuel cell
JPS57124864A (en) Gas diffusion electrode of fuel cell
JPS628904B2 (en)
US20030170528A1 (en) Moldable separator plate for electrochemical devices and cells