JPS60114659A - Turbo refrigerator - Google Patents

Turbo refrigerator

Info

Publication number
JPS60114659A
JPS60114659A JP22267783A JP22267783A JPS60114659A JP S60114659 A JPS60114659 A JP S60114659A JP 22267783 A JP22267783 A JP 22267783A JP 22267783 A JP22267783 A JP 22267783A JP S60114659 A JPS60114659 A JP S60114659A
Authority
JP
Japan
Prior art keywords
pressure
oil
chamber
path
pressure equalization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22267783A
Other languages
Japanese (ja)
Inventor
辻 清春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22267783A priority Critical patent/JPS60114659A/en
Publication of JPS60114659A publication Critical patent/JPS60114659A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明はターボ冷凍装置の油上がシを防止する装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a device for preventing oil leakage in a turbo refrigeration system.

〔従来技術〕[Prior art]

第1図によって従来の油上がシを防止する装置の一例を
説明する。
An example of a conventional device for preventing oil leakage will be explained with reference to FIG.

第1図中、1は遠心式圧縮機、2は凝縮器。In Figure 1, 1 is a centrifugal compressor and 2 is a condenser.

3は蒸発器、4は膨張弁、5は圧縮機lに潤滑油5a’
z供給するための油タンク、6はモータ室、7はギヤ室
、8は圧縮室、9は均圧室、10は吸込口、11はベー
ン、12は油ポンプ、13は油のミストと冷媒ガスとを
分離する遠、各式の分離器、14はギヤ室7と油タンク
5とを連通する油戻路、15は均圧室9と分離器13と
を連通ずる均圧路、 16はモータ室6と蒸発器3とを
連通ずるモータを冷却した冷媒の冷媒戻路、17はモー
タ室6と凝縮器2とを連通ずる液冷媒をモータ室6へ導
くモータ冷却冷媒路、18はギヤ室7と油ポンプ12と
を連通ずる給油路、19は蒸発器3と吸込口10とを連
通する吸込路、20は凝縮器2と圧縮室8とを連通ずる
吐出路で、以上によってターボ冷凍装置が構成され、特
に圧縮機1.凝縮器2.蒸発器3.膨張弁4.吸込路1
9.吐出路加によって冷凍サイクルが構成されている。
3 is an evaporator, 4 is an expansion valve, and 5 is lubricating oil 5a' for the compressor l.
z Oil tank for supply, 6 is motor room, 7 is gear room, 8 is compression chamber, 9 is pressure equalization chamber, 10 is suction port, 11 is vane, 12 is oil pump, 13 is oil mist and refrigerant 14 is an oil return path that communicates between the gear chamber 7 and the oil tank 5; 15 is a pressure equalization path that communicates between the pressure equalization chamber 9 and the separator 13; 16 is an oil return path that communicates with the oil tank 5; A refrigerant return path for the refrigerant that cools the motor communicates between the motor chamber 6 and the evaporator 3; 17 is a motor cooling refrigerant path that communicates the motor chamber 6 and the condenser 2 and guides liquid refrigerant to the motor chamber 6; 18 is a gear The oil supply path 19 communicates the chamber 7 and the oil pump 12, the suction path 20 communicates the evaporator 3 and the suction port 10, and the discharge path 20 communicates the condenser 2 and the compression chamber 8. The apparatus is constructed, in particular a compressor 1. Condenser 2. Evaporator 3. Expansion valve 4. Suction path 1
9. A refrigeration cycle is constructed by applying the discharge path.

次に油上がシを防止する動作について説明する。Next, the operation for preventing oil spillage will be explained.

第1図において、冷凍装置の中で最も圧力の低い均圧室
9とギヤ室7の圧力を均圧にして、モータ室6および圧
縮室8の圧力よシも低い圧力に保つ。これによってモー
タ室6.圧縮室8゜均圧室9の各室を貫通する軸部から
第1図の矢示の向きに冷媒ガスがギヤ室7に流入し、油
戻路14ヲ介してギヤ室7と均圧にした油タンク5へ流
入する。しかし、油戻路14には液溜による潤滑油5a
とギヤ室7からの冷媒ガスとが混合して流れ、油タンク
5内に油ミストが混入して油上がシが生ずる。従って混
入した油ミストと冷媒ガスとを分離器13によって分離
し、冷媒ガスのみを均圧路15を介して均圧室9へ供給
し油上がシを防止していた。以上のように遠心分離器1
3によって分離することが、現行の最も有効なものであ
った。
In FIG. 1, the pressures in the pressure equalization chamber 9 and the gear chamber 7, which are the lowest pressures in the refrigeration system, are equalized and the pressures in the motor chamber 6 and compression chamber 8 are also maintained at a low pressure. As a result, the motor chamber 6. Refrigerant gas flows into the gear chamber 7 in the direction of the arrow in FIG. 1 from the shaft that passes through each chamber of the compression chamber 8 and the pressure equalization chamber 9, and is equalized in pressure with the gear chamber 7 through the oil return path 14. The oil flows into the oil tank 5. However, in the oil return path 14, lubricating oil 5a is formed by a liquid reservoir.
The refrigerant gas from the gear chamber 7 mixes and flows, and oil mist is mixed into the oil tank 5, causing an oil leak. Therefore, the mixed oil mist and refrigerant gas are separated by the separator 13, and only the refrigerant gas is supplied to the pressure equalization chamber 9 via the pressure equalization path 15 to prevent oil from rising. Centrifuge 1 as above
Separation by 3 was currently the most effective method.

上述のように構成された従来の装置では定常運転時にお
いては一応油上がシは防止されるが。
In the conventional device configured as described above, oil leakage is prevented to some extent during steady operation.

特、に起動時の潤滑油5aに多量の冷媒が溶は込んでい
て、急激に油タンクの圧力(以下これをTPと称する)
が低下して起こるフォーミング、あるいは均圧室9の圧
力(以下これをspと称する)が装置の蒸発圧力(以下
これをLPと称する)よシ非常に低くなるベーンを閉じ
た運転の際(いずれもベーン開度A帯;後述)に、油戻
路14を介して油ミストの混、大した冷媒ガスが多量に
流れ、分離器13によって油分を完全に分離することが
できず油上がシが生ずるという欠点があった。
In particular, when a large amount of refrigerant is dissolved in the lubricating oil 5a at startup, the pressure in the oil tank (hereinafter referred to as TP) suddenly increases.
Forming occurs due to a decrease in the pressure, or during operation with the vanes closed (sometimes Also, in the vane opening range A (described later), a large amount of refrigerant gas mixed with oil mist flows through the oil return path 14, and the oil cannot be completely separated by the separator 13, causing the upper oil to be shrunk. There was a drawback that this occurred.

〔発明の概要〕[Summary of the invention]

この発明は上述のような従来の欠点を除去するためにな
されたもので、均圧路および吸込路に均圧調整弁を設け
て均圧路を介して流れる冷媒ガスの流量を、蒸発圧力(
LP)と油タンクの圧力(TP)との差に応じて調節し
、常に分することを目的とする。
This invention was made in order to eliminate the above-mentioned drawbacks of the conventional art. A pressure equalization valve is provided in the pressure equalization path and the suction path to adjust the flow rate of refrigerant gas flowing through the pressure equalization path to the evaporation pressure (
The purpose is to adjust the pressure according to the difference between the pressure (LP) and the oil tank pressure (TP) and always divide the pressure.

〔発明の実施例〕[Embodiments of the invention]

以下“この発明の一実施例を図によって説明するO 第2図は均圧路および吸込路に均圧調整弁を設けた構成
図、第3図は均圧調整弁の詳細な縦断面図、第4図、第
5図は均圧調整弁の動作状態を示す縦断面図である。こ
れらの図中、第1図と同一符号は同−又は相当部分を示
し、第3図中、21は均圧調整弁の本体で、22は左右
の圧力差とバネの弾力で動作するプランジャー、るは低
圧側の蒸発圧力(LP)側バネ、冴は油タンク5側のタ
ンク内圧(TP)側バネ、5は均圧室と連通ずる接続口
、部は油タンクと連通ずる接続口であシ、差圧(LP−
TP)に応じてプランジャー3が移行し、油タンク接続
口あから均圧室接続口5への流路面積が変化するように
構成されている。第6図は圧縮機ベーンの開度(横軸)
と、均圧室の圧力(SP)と蒸発圧力(LP)との差圧
(LP−8FX縦軸)の関係を示す曲線である。圧縮機
ベーンの制御に従がって差圧(i、p−5p)が大きく
変化する。すなわち。
Hereinafter, an embodiment of the present invention will be explained using figures. Fig. 2 is a configuration diagram in which a pressure equalizing valve is provided in a pressure equalizing passage and a suction passage, and Fig. 3 is a detailed longitudinal sectional view of the pressure equalizing valve. 4 and 5 are longitudinal cross-sectional views showing the operating state of the pressure equalizing valve. In these figures, the same reference numerals as in FIG. 1 indicate the same or corresponding parts, and in FIG. In the main body of the pressure equalization valve, 22 is a plunger that operates using the pressure difference between the left and right sides and the elasticity of the spring, Ru is the evaporation pressure (LP) side spring on the low pressure side, and Sae is the tank internal pressure (TP) side on the oil tank 5 side. 5 is a connection port communicating with the pressure equalization chamber, and 5 is a connection port communicating with the oil tank.
The plunger 3 is moved in accordance with the pressure (TP), and the flow path area from the oil tank connection port to the pressure equalization chamber connection port 5 changes. Figure 6 is the opening degree of the compressor vane (horizontal axis)
It is a curve showing the relationship between the pressure (SP) of the pressure equalization chamber and the differential pressure (LP-8FX vertical axis) between the pressure (SP) and the evaporation pressure (LP). The differential pressure (i, p-5p) changes greatly according to the control of the compressor vanes. Namely.

差圧が大きい状態(LP>SP)をベーン開度A帯と呼
ばれ、ベーンが閉じている状態である。差圧が通常の状
態(LP>SP)をベーン開度B帯と呼ばれ、差圧が非
常に小さい状態(LpzsP)’eベーン開度C帯と呼
ばれる。第7図は起動時の蒸発圧力(LP、)と凝縮圧
力(以下HPと称する)との関係を示す曲線で、横軸は
時間、縦軸は圧力である。上記均圧調整弁21は、油タ
ンク5との接続口部に加わる圧力(TP)と蒸発器3と
の接続口nに加わる圧力(LP)との差圧(LP−TP
)K応じて、プランジャーnが左右に移行することによ
シ油タンク接続口26から均圧室接続口元への流路面積
、すなわち流量を調節する。プランジャー22の両側の
バネ23j24は差圧の程度に応じてプランジャーnの
位置を加減するために組み込まれたものである。
A state where the differential pressure is large (LP>SP) is called the vane opening degree A band, and is a state where the vane is closed. The state where the differential pressure is normal (LP>SP) is called the vane opening degree B band, and the state where the differential pressure is very small (LpzsP)'e is called the vane opening degree C band. FIG. 7 is a curve showing the relationship between evaporation pressure (LP) and condensation pressure (hereinafter referred to as HP) at startup, where the horizontal axis is time and the vertical axis is pressure. The pressure equalization regulating valve 21 is configured to adjust the pressure difference (LP-TP) between the pressure (TP) applied to the connection port with the oil tank 5 and the pressure (LP) applied to the connection port n with the evaporator 3.
)K, the plunger n moves from side to side to adjust the flow area, ie, the flow rate, from the oil tank connection port 26 to the pressure equalization chamber connection port. The springs 23j24 on both sides of the plunger 22 are incorporated to adjust the position of the plunger n depending on the degree of differential pressure.

次にこの発明の動作について説明する。Next, the operation of this invention will be explained.

ベーン11が閉じている状態のベーン開度A帯の流量制
御時あるいは起動時にあっては差圧(LP−TP)が大
きい。従がって、プランジャー22はこの差圧に応じて
油タンク5から均圧室9への流量が減る方向(第2図、
第5図)に移行し。
The differential pressure (LP-TP) is large during flow rate control or startup in the vane opening A band when the vane 11 is closed. Therefore, the plunger 22 moves in a direction in which the flow rate from the oil tank 5 to the pressure equalization chamber 9 decreases according to this differential pressure (see FIG.
Figure 5).

均圧調整弁21は均圧路15を塞ぐように動作する。The pressure equalization regulating valve 21 operates to close the pressure equalization path 15.

これによって流量制御時には均圧路15を介して均圧室
9へ流入する冷媒ガス量が抑制され、冷媒ガスと共に流
入した油ミストが完全に分離される。また起動時には第
7図に示すように停止状態の圧力に装置全体が置かれ、
油タンク5の圧力(TP)、蒸発圧力(LP)も急激に
低下し、油タンク5に多量の冷媒が溶けてこの圧力低下
で潤滑油はフォーミンクを生ずるのであるから、第5図
に示すように均圧室9の圧力(sp)よシも油タンク5
の圧力(TP)を高く保ち(TP>5P)−フォーミン
グを押えるように均圧調整弁21は動作する。このよう
な流量制御によシペーン開度A帯の時でも均圧室9の圧
力(sp )は低くなシ、油タンク5の圧力(TP)は
均圧室9の圧力(sp)よシも高く、蒸発圧力(LP)
よシも低い(LP>TP>SP)という理想的な圧力関
係が得られる。またベーン開度C帯では差圧(LP−T
P )が非常に小さい状態である。従がって第3図に示
すようにプランジャーηはバネる。
As a result, during flow rate control, the amount of refrigerant gas flowing into the pressure equalization chamber 9 via the pressure equalization path 15 is suppressed, and the oil mist that has flowed in together with the refrigerant gas is completely separated. Also, at startup, the entire device is placed at the pressure of the stopped state, as shown in Figure 7.
The pressure (TP) and evaporation pressure (LP) of the oil tank 5 also drop rapidly, and a large amount of refrigerant dissolves in the oil tank 5, and this pressure drop causes the lubricating oil to form, as shown in Figure 5. The pressure (sp) of the pressure equalization chamber 9 is also the same as that of the oil tank 5.
The pressure equalizing valve 21 operates to keep the pressure (TP) high (TP>5P) and suppress forming. Due to such flow rate control, the pressure (sp) in the pressure equalizing chamber 9 is low even when the pipe opening is in the A band, and the pressure (TP) in the oil tank 5 is lower than the pressure (sp) in the pressure equalizing chamber 9. High evaporation pressure (LP)
An ideal pressure relationship can be obtained that is extremely low (LP>TP>SP). Also, in the vane opening C band, the differential pressure (LP-T
P ) is very small. Therefore, the plunger η springs as shown in FIG.

列によって油タンク5かも均圧室9への流量が増加する
方向に移行し、均圧調整弁21は流路を全開するように
動作する。そしてベーン開度B帯にあっては差圧(LP
−TP)が通常の状態であるからプランジャー22は第
4図の位置で均圧調整弁21は動作する。このように構
造が単純で安価な均圧調整弁によシ大量の油上がシが防
止でき、例えば熱伝達率の低下など、装置への悪影響を
防ぐことができる。
Depending on the row, the oil tank 5 also moves in a direction in which the flow rate to the pressure equalization chamber 9 increases, and the pressure equalization regulating valve 21 operates to fully open the flow path. And in the vane opening B band, the differential pressure (LP
-TP) is in the normal state, the plunger 22 is in the position shown in FIG. 4, and the pressure equalizing valve 21 operates. In this way, the pressure equalizing valve, which has a simple structure and is inexpensive, can prevent a large amount of oil from spilling out, and can prevent adverse effects on the equipment, such as a decrease in heat transfer coefficient, for example.

なお、上記実施例においては、均圧調整弁はプランジャ
一式のものを用いたが、このような形式によらなくても
油タンク5と均圧調整弁21の接続口26に加わる圧力
(TP)と、蒸発器と均圧調整弁21の接続口部に加わ
る圧力(L P )との差圧(LP−TP)K応じて油
タンク5との接続口26から均圧室接続口あへの流路面
積、すなわち流量を調整できるように構成した均圧調整
弁であれば同様な効果を得られることは言うまでもない
In the above embodiment, a plunger set is used as the pressure equalizing valve, but the pressure (TP) applied to the connection port 26 between the oil tank 5 and the pressure equalizing valve 21 does not have to be of this type. and the pressure (LP) applied to the connection port of the evaporator and the pressure equalization regulating valve 21 (LP-TP). It goes without saying that a similar effect can be obtained with a pressure equalizing valve configured to adjust the flow path area, that is, the flow rate.

〔発明の効果〕〔Effect of the invention〕

(LP−TP)に応じて均圧路を流れる冷媒ガスの流量
を調節する均圧調整弁を均圧路に設けたので、常時分離
器によって完全に油ミストが分離され油上がシを防止で
きるターボ冷凍装置にすることができるという優れた効
果がある。
Since a pressure equalization valve is installed in the pressure equalization path to adjust the flow rate of refrigerant gas flowing through the pressure equalization path according to (LP-TP), the oil mist is completely separated by the separator at all times, preventing oil buildup. This has an excellent effect in that it can be used as a turbo refrigeration system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のターボ冷凍装置を示す構成図、第2図は
この発明の一実施例によるターボ冷凍装置を示す構成図
、第3図は均圧調整弁の詳細な縦断面図、第4図、第5
図は均圧調整弁の動作状態を示す縦断面図、第6図は蒸
発圧力と均圧室圧力との差圧とベーン開度の関係を示す
曲線図、第7図は起動時の蒸発圧力と凝縮圧力との関係
を示す曲線図である。 1・・・圧縮機、3・・・蒸発器、5a・・・潤滑油(
液溜)、7・・・ギヤ室、9・・・均圧室、11・・・
ベーン、15・・・均圧路、21・・・均圧調整弁・な
お、図中同一符号は同−又は相当部分を示す。 代理人 大 岩 増 雄(外2名) 第づ図 第6図 滲 全C〜〉門人〕 r−FJ 間 第7図 事 明
FIG. 1 is a block diagram showing a conventional turbo refrigeration system, FIG. 2 is a block diagram showing a turbo refrigeration system according to an embodiment of the present invention, FIG. 3 is a detailed vertical sectional view of a pressure equalizing valve, and FIG. Figure, 5th
The figure is a longitudinal cross-sectional view showing the operating state of the pressure equalization regulating valve, Figure 6 is a curve diagram showing the relationship between the differential pressure between the evaporation pressure and the pressure equalization chamber and the vane opening, and Figure 7 is the evaporation pressure at startup. It is a curve diagram showing the relationship between and condensation pressure. 1... Compressor, 3... Evaporator, 5a... Lubricating oil (
liquid reservoir), 7... gear chamber, 9... pressure equalization chamber, 11...
Vane, 15...Pressure equalization path, 21...Pressure equalization regulating valve.In addition, the same reference numerals in the drawings indicate the same or equivalent parts. Agent Masuo Oiwa (2 others) Figure 6 Figure 6 All C ~> Pupils] r-FJ Figure 7 Akira

Claims (1)

【特許請求の範囲】[Claims] 圧縮機各部を潤滑す・る潤滑油が潤滑を終えて集まる液
溜を構成するギヤ室と、運転中に装置の中で最も低圧と
なるベーン後部と同圧力の均圧室とを連通する通路が形
成されているターボ冷凍装置において、前記通路に蒸発
圧力と同通路の圧力との差にょシ同通路の流量を調節す
る均圧調整弁を備えたことを特徴とするターボ冷凍装置
A passage that communicates between the gear chamber, which forms a reservoir where the lubricating oil that lubricates each part of the compressor collects after lubrication, and the pressure equalization chamber, which has the same pressure as the rear of the vane, which has the lowest pressure in the equipment during operation. 1. A turbo refrigeration system comprising: a pressure equalizing valve for adjusting a flow rate in the passage according to the difference between the evaporation pressure and the pressure in the passage;
JP22267783A 1983-11-26 1983-11-26 Turbo refrigerator Pending JPS60114659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22267783A JPS60114659A (en) 1983-11-26 1983-11-26 Turbo refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22267783A JPS60114659A (en) 1983-11-26 1983-11-26 Turbo refrigerator

Publications (1)

Publication Number Publication Date
JPS60114659A true JPS60114659A (en) 1985-06-21

Family

ID=16786189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22267783A Pending JPS60114659A (en) 1983-11-26 1983-11-26 Turbo refrigerator

Country Status (1)

Country Link
JP (1) JPS60114659A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186029A (en) * 2008-02-01 2009-08-20 Daikin Ind Ltd Turbo refrigerator
JP2009186030A (en) * 2008-02-01 2009-08-20 Daikin Ind Ltd Turbo refrigerator
WO2018180337A1 (en) * 2017-03-31 2018-10-04 三菱重工サーマルシステムズ株式会社 Refrigeration machine control device, turbo refrigeration machine, refrigeration machine control method, and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186029A (en) * 2008-02-01 2009-08-20 Daikin Ind Ltd Turbo refrigerator
JP2009186030A (en) * 2008-02-01 2009-08-20 Daikin Ind Ltd Turbo refrigerator
WO2018180337A1 (en) * 2017-03-31 2018-10-04 三菱重工サーマルシステムズ株式会社 Refrigeration machine control device, turbo refrigeration machine, refrigeration machine control method, and program

Similar Documents

Publication Publication Date Title
US7674099B2 (en) Compressor with oil bypass
US3938353A (en) Liquid trapping suction accumulator
JPS60105873A (en) Oil cooling device for compressor, particularly, screw type compressor
JPS60114659A (en) Turbo refrigerator
JPH01169278A (en) Bypass for liquid and gas
JPH0379959A (en) Refrigeration apparatus
JPS62276368A (en) Oil return mechanism in air conditioner
US2918210A (en) Compressor with crankcase oil surge tank
JP2518455B2 (en) Compressor for cryogenic refrigerator
JPS6152906B2 (en)
JP2002039635A (en) Air conditioner
JPH0742065Y2 (en) Compressor unit
JPS6240135Y2 (en)
JPH03168565A (en) Refrigeration cycle
JPH0330632Y2 (en)
JPH02287058A (en) Screw type refrigerator
JPH0794830B2 (en) Oil supply channel of oil-cooled screw compressor
JPS5852958A (en) Refrigerator
JPS6176860A (en) Air conditioner for automobile
JPH10141787A (en) Screw refrigerating machine
JPH0448451Y2 (en)
JPH0124393Y2 (en)
JPS58217162A (en) Heat pump device
JPS61171606A (en) Freezing device for car air conditioning equipment
JPH0195259A (en) Absorption refrigerator