JPS58217162A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPS58217162A
JPS58217162A JP9936782A JP9936782A JPS58217162A JP S58217162 A JPS58217162 A JP S58217162A JP 9936782 A JP9936782 A JP 9936782A JP 9936782 A JP9936782 A JP 9936782A JP S58217162 A JPS58217162 A JP S58217162A
Authority
JP
Japan
Prior art keywords
compressor
oil
float valve
heat pump
pump device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9936782A
Other languages
Japanese (ja)
Inventor
秀行 木村
望月 武利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9936782A priority Critical patent/JPS58217162A/en
Publication of JPS58217162A publication Critical patent/JPS58217162A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、吸入圧力レベルの異なる複数台の圧縮機を有
するヒートポンプ装置に係り、特に複数台の圧縮機の油
量を適正量に制御するヒートポンプ装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pump device having a plurality of compressors with different suction pressure levels, and more particularly to a heat pump device that controls the amount of oil in the plurality of compressors to an appropriate amount.

複数台の圧縮機を備えたヒートポンプ装置は、圧力比を
小さくすることにより吐串jス温度の上昇を押え、運転
効率を上げることができる装置として知られているが、
このヒートポンプ装置においては、各圧縮機への油の分
配が悪いと、ある圧縮機は油量過多となって起動時には
なはだしいフォーミング現象やオイルハンマ作用を起こ
し、またある圧縮機は油量過少となって摺動部の・焼付
を起こす等、種々の悪影響が生じる間頌点を有する。
A heat pump device equipped with multiple compressors is known as a device that can suppress the rise in discharge temperature and increase operating efficiency by reducing the pressure ratio.
In this heat pump system, if the distribution of oil to each compressor is poor, one compressor will have too much oil, causing severe forming phenomenon or oil hammer effect at startup, and another compressor will have too little oil. This has the potential to cause various negative effects such as seizure of sliding parts.

次に、圧縮機を2台用いた従来のヒートポンプ装置の一
例を第1図を参照して説明する。図において、1は第1
圧縮機、2は第1凝縮器、3は気液分離器、4は第1減
圧器、5は蒸発器、6は第2圧縮機、7は第2凝縮器、
8は第2減圧器で、上記各機器・は図示の如く配管接続
されて冷媒回路を形成している。第1圧縮機1で高温高
圧となったガス冷媒は、吐出管路9を経て第1凝縮器2
に流入し、ここで冷媒は一部“分凝縮液化し、飽和の気
液二相流の状態で第1凝縮器出口管路10を経て気液分
離器3に至る。ここで、冷媒はガスと液に分離され、飽
和のガス冷媒は第2圧縮機吸入管路13を経て、第2圧
縮機6に吸入され、第1圧縮機1で圧縮されたガス冷媒
よりもさらに高い高圧のガス冷媒となる。この高圧ガス
冷媒は、次いで、第2圧縮機吐出管路14を経て第2凝
縮器7に流入し、ここで冷媒は完全に凝縮液化される。
Next, an example of a conventional heat pump device using two compressors will be described with reference to FIG. In the figure, 1 is the first
A compressor, 2 a first condenser, 3 a gas-liquid separator, 4 a first pressure reducer, 5 an evaporator, 6 a second compressor, 7 a second condenser,
Reference numeral 8 denotes a second pressure reducer, and the above-mentioned devices are connected via piping to form a refrigerant circuit as shown in the figure. The gas refrigerant that has become high temperature and high pressure in the first compressor 1 passes through the discharge pipe 9 to the first condenser 2.
Here, the refrigerant is partially condensed and liquefied, and passes through the first condenser outlet pipe 10 to the gas-liquid separator 3 in a saturated gas-liquid two-phase flow state. The saturated gas refrigerant passes through the second compressor suction line 13 and is sucked into the second compressor 6, where it becomes a high-pressure gas refrigerant that is even higher than the gas refrigerant compressed by the first compressor 1. This high-pressure gas refrigerant then flows into the second condenser 7 via the second compressor discharge line 14, where it is completely condensed and liquefied.

その後、第2凝縮器出口管路15および第2減圧器8を
経て、主冷媒回路の気液分離器3下部の液溜り部と第1
減圧器4間の管路11に接続され、気液分離器3を出た
飽和状態の液と合流する。合流しだ液冷媒は、第1減圧
器4および蒸発器5を経て完全に蒸発し、第1圧縮機の
吸入管路12を経て第1圧縮機1に至る。冷媒は上述の
冷媒回路を連続して循環し、第1凝縮器2、第2饗縮器
7にて加熱作用が行なわれ、両凝縮器2.7を流通する
空気あるいは水・ブライン等を加熱する8 上述の如く構成された装置では、運転中に第1圧縮機1
の油量は増加し、第2圧縮機6の油量は減少する傾向に
あるが側圧縮機の油溜り部の圧力が異なるために、圧力
が等しい圧縮機どうしに採用されているように、圧縮機
の油面を一定に保つ均圧管を単に設けるという手段を採
用することが出来ない。そこで、第1図の冷媒回路にお
いては、第1圧縮機1と第2圧縮機6の各油面が水平面
上で同じ高さになるように各圧縮機を設置し、側圧縮機
の各油溜り下部どうしを制御弁16を介在した細い油戻
り管17で接続してい左。油戻し作用は、第2圧縮機6
を間欠的に停止させて、第2圧縮機6の油溜り部の圧力
を第1圧縮機1の油溜り部の圧力と同等にし、制御弁1
6を開いて第1圧縮機1   ゛に溜まった必要以上の
油を、油戻り管17を介して第2圧縮機6に戻していた
。そして、油面が元の状態に復帰した時点で、制御弁1
6を閉じて第2圧縮機6を再び運転すると、いう繰り返
し操作により、油量の制御を行っていた。
After that, it passes through the second condenser outlet pipe 15 and the second pressure reducer 8, and then connects to the liquid reservoir at the lower part of the gas-liquid separator 3 of the main refrigerant circuit.
It is connected to the pipe line 11 between the pressure reducers 4 and merges with the saturated liquid coming out of the gas-liquid separator 3. The combined liquid refrigerant is completely evaporated through the first pressure reducer 4 and the evaporator 5, and reaches the first compressor 1 through the suction line 12 of the first compressor. The refrigerant continuously circulates through the refrigerant circuit described above, and is heated in the first condenser 2 and second condenser 7, heating the air, water, brine, etc. flowing through both condensers 2.7. 8 In the apparatus configured as described above, the first compressor 1 is
The amount of oil in the second compressor 6 tends to increase, and the amount of oil in the second compressor 6 tends to decrease, but since the pressures in the oil reservoirs of the side compressors are different, as in the case of compressors having the same pressure, It is not possible to simply provide a pressure equalizing pipe to keep the oil level in the compressor constant. Therefore, in the refrigerant circuit shown in Fig. 1, each compressor is installed so that the oil levels of the first compressor 1 and the second compressor 6 are at the same height on a horizontal plane, and The lower parts of the reservoirs are connected by a thin oil return pipe 17 with a control valve 16 interposed therebetween. The oil return action is carried out by the second compressor 6.
The control valve 1 is stopped intermittently to make the pressure in the oil sump of the second compressor 6 equal to the pressure in the oil sump of the first compressor 1.
6 was opened to return excess oil accumulated in the first compressor 1 to the second compressor 6 via an oil return pipe 17. Then, when the oil level returns to its original state, control valve 1
The oil amount was controlled by repeating operations such as closing the second compressor 6 and operating the second compressor 6 again.

しかるに、上記のような油面の制御方式では、第2圧縮
機6を間欠的に停止させる必要があるため、運転効率が
低下する等の問題があった。
However, in the oil level control method as described above, it is necessary to stop the second compressor 6 intermittently, which causes problems such as a decrease in operating efficiency.

本発明は上記の問題点に鑑みて発明されたもので、複数
台の圧縮機の油量を適正に自動的に制御するヒートポン
プ装置を提供することを目的とする。
The present invention was invented in view of the above problems, and an object of the present invention is to provide a heat pump device that appropriately and automatically controls the amount of oil in a plurality of compressors.

上記目的を達成するため本発明は、第1圧縮機の油溜り
を高圧方式に形成し、第2圧縮機の油溜りにフロート弁
室を連設し、該フロート弁室には油面の低下に応じ弁部
が開路するフロート弁を備え、上記第1圧縮機の油溜り
下部と上記フロート弁室の弁部とを細管を介して接続し
、フロート弁室の油面の低下に応じ、第1圧縮機の油溜
りの油がフロート弁室に流入するように構成した特徴を
有する。
In order to achieve the above object, the present invention forms the oil sump of the first compressor in a high-pressure manner, and connects the oil sump of the second compressor with a float valve chamber, and the float valve chamber is provided with a high-pressure oil sump. The lower part of the oil reservoir of the first compressor and the valve part of the float valve chamber are connected via a thin tube, and the valve part opens the circuit in response to a decrease in the oil level in the float valve chamber. It has a feature that the oil in the oil sump of the first compressor flows into the float valve chamber.

以下本発明の一実施例を第2図に基づ尊説明する。1は
第1圧縮機、2は第1凝縮器、3は気液分離器、4は第
1減圧器、5は蒸発器、6は第2圧縮機、7は第2凝縮
器、8は第2減圧器で上記各機器は図示のように配管接
続され、第1図の従来例と同様な冷媒回路が形成されて
いる。但し、第1圧縮機1は油溜り部が高圧側となる高
圧チャンバ方式の圧縮機が用いられる。また、第2圧縮
機6には油溜り部(図示せず)に配管19を介しフロー
ト弁室18を連設している。このフロー弁室18には上
方に弁部18aを配置したフロート弁18aを備え、第
2圧縮機の油溜り部に連通するフロート弁室18の油面
が設定油面より低下するとフロートが下がり弁部18a
が開略し、油面が上昇すれば弁部が18aが閉路する構
造に形成されている。上記第1圧縮機1の油溜り部(図
示せ丁)下部と上記弁部18aとは細管20により接続
ざ才L1 フロート弁室18の油面が下がると弁部18
aが開路し、第1圧縮機1の油溜り部とフロート弁室1
8が連通ずるように形成されている。
An embodiment of the present invention will be explained below based on FIG. 1 is a first compressor, 2 is a first condenser, 3 is a gas-liquid separator, 4 is a first pressure reducer, 5 is an evaporator, 6 is a second compressor, 7 is a second condenser, and 8 is a second compressor. Each of the above-mentioned devices is connected to the two pressure reducers by piping as shown in the figure, forming a refrigerant circuit similar to the conventional example shown in FIG. However, the first compressor 1 is a high-pressure chamber compressor in which the oil reservoir is on the high-pressure side. Further, a float valve chamber 18 is connected to an oil reservoir (not shown) in the second compressor 6 via a pipe 19. This flow valve chamber 18 is equipped with a float valve 18a having a valve portion 18a arranged above, and when the oil level in the float valve chamber 18 communicating with the oil reservoir of the second compressor drops below the set oil level, the float lowers and the valve is opened. Part 18a
The valve portion 18a is formed in such a structure that when the valve 18a opens and the oil level rises, the valve portion 18a closes. The lower part of the oil reservoir (not shown) of the first compressor 1 and the valve part 18a are connected by a thin tube 20.
a is opened, and the oil reservoir part of the first compressor 1 and the float valve chamber 1
8 are formed so as to communicate with each other.

上記構造のヒートポンプ装置は、第2圧縮機6の吸入圧
力は、第1圧縮機1の吐出圧力と比較すると、第1機縮
器2や配管9,10.13の圧力損失があるため低くな
る。また第1圧縮機1の油溜り部は吐出側、第2圧#棲
6の油溜り部は吸入側にあるため、第2圧縮P6の油溜
り部の圧力は第1圧縮機1の油溜り部の圧力よりも低く
なる。
In the heat pump device having the above structure, the suction pressure of the second compressor 6 is lower than the discharge pressure of the first compressor 1 due to pressure loss in the first compressor 2 and the pipes 9, 10, and 13. . Also, since the oil sump of the first compressor 1 is on the discharge side and the oil sump of the second pressure P6 is on the suction side, the pressure of the oil sump of the second compressor P6 is equal to that of the oil sump of the first compressor 1. The pressure will be lower than that of the

次に上記ヒートポンプ装置の作用について説明する。Next, the operation of the heat pump device will be explained.

上記ヒートポンプ装置が運転され、運転中において第2
圧縮機6の油が少なくなると油面が低下し、フロート弁
18のフロート18bが下がシ、上部の弁部18aが開
く。側圧縮機1.6の油溜り部の差圧により、第1圧縮
機1に必要以上溜まった油は細管20および弁部18a
を経てフロート弁室18に流入し、次いで配管19を経
て第2圧縮機6の油溜り部に流入し、該圧縮機6の油面
は適正に保持される。第2圧縮機6に油が戻ることにょ
シフロート弁室18の油面が上昇し、規定の油面になる
と弁部18aが閉じて、第1圧縮機1から第2圧縮機6
への油の流入を置所する。
The heat pump device is operated, and during operation, the second
When the oil level in the compressor 6 decreases, the oil level drops, the float 18b of the float valve 18 is lowered, and the upper valve portion 18a is opened. Due to the differential pressure in the oil reservoir of the side compressor 1.6, oil accumulated in the first compressor 1 more than necessary is removed from the thin tube 20 and the valve part 18a.
The oil flows into the float valve chamber 18 through the pipe 19, and then into the oil reservoir of the second compressor 6, so that the oil level in the compressor 6 is maintained appropriately. As the oil returns to the second compressor 6, the oil level in the shift float valve chamber 18 rises, and when the oil level reaches the specified level, the valve part 18a closes, and
Place the inflow of oil into.

上記のようにこの油量制御は、装置運転中、側圧縮機を
停止させることなく自動的に行うことができ、しかも簡
単に行なえる利点がある。
As mentioned above, this oil amount control can be performed automatically without stopping the side compressor during operation of the apparatus, and has the advantage of being easy to perform.

また、第2圧縮機6を停止させ、第1圧縮機1のみで運
転することがある装置等においては、細管20の中間に
制御弁16を設け、第2圧縮機6の停止中は、油の流入
を停止させるように形成してもよい。
In addition, in devices where the second compressor 6 is stopped and only the first compressor 1 is operated, a control valve 16 is provided in the middle of the thin tube 20, and when the second compressor 6 is stopped, the oil It may be formed so as to stop the inflow of.

以上説明したように本発明によれば、複数台の圧縮機を
使用したヒートポンプ装置において、フロート弁室を介
し各圧縮機の油溜りを接続する簡単な構造の装置によっ
て、各圧縮機内の油量を適正に自動的に制御することが
出来、また、この油量制御方式は圧縮機を停止する必要
がないため、ヒートポンプ装置は効率良い運転が出来る
等の効果を有する。
As explained above, according to the present invention, in a heat pump device using a plurality of compressors, the amount of oil in each compressor can be increased by a device with a simple structure that connects the oil reservoirs of each compressor through a float valve chamber. can be properly and automatically controlled, and since this oil amount control method does not require stopping the compressor, the heat pump device has effects such as being able to operate efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のヒートポンプ装置の冷媒回路図、第2図
は本発明の一実施例を示すヒートポンプ装置の冷媒回路
と油量制御装置の構成図である。 1・・・第1圧縮機、2・・・第1凝縮器、3・・・気
液分離器、4・・・第1減圧器、5・・・蒸発器、6・
・・第2圧縮機、7・・・第2凝縮器、8・・・第2減
圧器、16・・・制御弁、18・・・フロート弁室、1
8a・・・弁部、18b−・・フロート、19・・・配
管、20・・・細管。 代理人 弁理士    秋  本  正  実第1図 0 第2図
FIG. 1 is a refrigerant circuit diagram of a conventional heat pump device, and FIG. 2 is a configuration diagram of a refrigerant circuit and an oil amount control device of a heat pump device showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... First compressor, 2... First condenser, 3... Gas-liquid separator, 4... First pressure reducer, 5... Evaporator, 6...
...Second compressor, 7...Second condenser, 8...Second pressure reducer, 16...Control valve, 18...Float valve chamber, 1
8a... Valve section, 18b... Float, 19... Piping, 20... Thin tube. Agent Patent Attorney Tadashi Akimoto Figure 1 0 Figure 2

Claims (1)

【特許請求の範囲】 1、第1圧縮機、第1凝縮器、気液分離器、第1減圧器
および蒸発器を順次配管接続して主冷媒回路を形成し、
上記気液分離器の上部から冷配管を介して第2圧縮機に
接続し、第2圧縮機から第2凝縮器、第2減圧器を順次
配管接続して、上記気液分離器の液出口側経路に接続し
、第2圧縮機の油溜りにフロート弁室を連設し、フロー
ト弁室には油面の低下に応じ開路するフロート弁を設け
、油溜り部が高圧となる第1圧縮機の油溜り下部と上記
弁部とを細管を介して接続して成り、フロート弁室の油
面に応じフロート弁が開路し、第1圧縮機の油溜りとフ
ロート弁室が連通ずることを゛特徴とするヒートポンプ
装置。 2、 フロート弁室は、弁部がフロートの上方に形成さ
れている特許請求の範囲第1項記載のヒートポンプ装置
。 3、 フロート弁室が、第2圧縮機の機外に添設されて
いる特許請求の範囲第1項記載のヒートポンプ装置。 4、細管には、制御弁が介在されている特許請求の範囲
第1項記載のヒートポンプ装置。
[Claims] 1. A main refrigerant circuit is formed by sequentially connecting a first compressor, a first condenser, a gas-liquid separator, a first pressure reducer, and an evaporator with piping;
The upper part of the gas-liquid separator is connected to a second compressor via a cold pipe, and the second compressor, a second condenser, and a second pressure reducer are sequentially connected to the liquid outlet of the gas-liquid separator. A float valve chamber is connected to the side passage and connected to the oil sump of the second compressor, and the float valve chamber is provided with a float valve that opens in response to a drop in the oil level, and the first compressor has a high pressure in the oil sump. The lower part of the oil sump of the compressor and the above valve part are connected through a thin tube, and the float valve opens depending on the oil level in the float valve chamber, and the oil sump of the first compressor and the float valve chamber communicate with each other.゛Featured heat pump device. 2. The heat pump device according to claim 1, wherein the float valve chamber has a valve portion formed above the float. 3. The heat pump device according to claim 1, wherein the float valve chamber is attached to the outside of the second compressor. 4. The heat pump device according to claim 1, wherein a control valve is interposed in the thin tube.
JP9936782A 1982-06-11 1982-06-11 Heat pump device Pending JPS58217162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9936782A JPS58217162A (en) 1982-06-11 1982-06-11 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9936782A JPS58217162A (en) 1982-06-11 1982-06-11 Heat pump device

Publications (1)

Publication Number Publication Date
JPS58217162A true JPS58217162A (en) 1983-12-17

Family

ID=14245576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9936782A Pending JPS58217162A (en) 1982-06-11 1982-06-11 Heat pump device

Country Status (1)

Country Link
JP (1) JPS58217162A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041682A1 (en) * 2004-10-06 2006-04-20 Hallowell International, Llc Oil balance system and method for compressors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041682A1 (en) * 2004-10-06 2006-04-20 Hallowell International, Llc Oil balance system and method for compressors
US7651322B2 (en) 2004-10-06 2010-01-26 Hallowell International, Llc Oil balance system and method for compressors connected in series
US7712329B2 (en) 2004-10-06 2010-05-11 David Shaw Oil balance system and method for compressors
US8075283B2 (en) 2004-10-06 2011-12-13 Hallowell International, Llc Oil balance system and method for compressors connected in series

Similar Documents

Publication Publication Date Title
US4918944A (en) Falling film evaporator
KR890000348B1 (en) Refrigeration apparatus
JPS57131883A (en) Parallel compression type refrigerator
US2463881A (en) Heat pump
JPH04371759A (en) Freezing cycle of two-stage compression and two-stage expansion
GB1375429A (en)
JPS58217162A (en) Heat pump device
US320307A (en) Method of and apparatus for purifying and liquefying gases and producing
JPH02133758A (en) Refrigerating machine
US1916197A (en) Refrigerating apparatus
JPS5877183A (en) Parallel compression system refrigerating device
KR100357108B1 (en) air conditioner having two compressor
CN114739036B (en) Air-conditioning refrigeration system
JPS59170656A (en) Refrigerator
JPS6340760Y2 (en)
JPS59191856A (en) Heat pump device
JPH02287058A (en) Screw type refrigerator
JP2508811B2 (en) Air conditioner
US2188370A (en) Cooling apparatus
JPS5896955A (en) Oil return device for refrigerator
JPS59147959A (en) Controller for refrigerant for plurality of rotary type compressor
US1413844A (en) Refrigeration apparatus
JPH02227570A (en) Refrigerating device
US2199463A (en) Refrigerating apparatus
SU1241040A1 (en) Refrigerating unit