JPS6011298A - Method and device for producing compound single crystal with high dissociation pressure - Google Patents

Method and device for producing compound single crystal with high dissociation pressure

Info

Publication number
JPS6011298A
JPS6011298A JP58113881A JP11388183A JPS6011298A JP S6011298 A JPS6011298 A JP S6011298A JP 58113881 A JP58113881 A JP 58113881A JP 11388183 A JP11388183 A JP 11388183A JP S6011298 A JPS6011298 A JP S6011298A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
compound
melt
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58113881A
Other languages
Japanese (ja)
Inventor
Katsumi Azuma
我妻 勝美
Takashi Kijima
木島 孝
Shoichi Ozawa
小沢 章一
Yuzo Kashiyanagi
柏柳 雄三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP58113881A priority Critical patent/JPS6011298A/en
Publication of JPS6011298A publication Critical patent/JPS6011298A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To suppress thermal decomposition on the surface of a III-V group compd. single crystal and to prevent generation of a defect in production of said single crystal by a melt-pulling up method by maintaining the vapor atmosphere of a volatile element (V group element) in the sealing space above the liquid sealing bath of a crucible. CONSTITUTION:A quartz cover 16 provided with a sealing tray 14d via a tubular part 15 at the top is fitted to the crucible 3 in a pressure vessel 1 and the inside of the vessel 1 is held at 2-60atm by an inert gas. The crucible 3 is heated by a heater 4 to melt the material charged preliminarily therein to form a gallium arsenide melt 9 and a liquid sealing bath 10 consisting of boron oxide. On the other hand, the upper part of the cover 16 and the tray 14 are heated to 400- 700 deg.C by auxiliary heaters 4a, 4b to form a liquid sealing bath 20 and at the same time the arsenic vapor atmosphere of 7Torr-4atm partial pressure is maintained in the sealing space in the cover 16. While the temp. gradient in the bath 10 is kept at <=100 deg.C/cm, a gallium arsenide single crystal is pulled up with the force bar 6 (a symbol 8 is a seed crystal) of a pulling up shaft 5 according to the conventional method.

Description

【発明の詳細な説明】 本発明は砒化ガリウム、砒イヒインジウム、燐化ガリウ
ム、燐化インジウム等の揮発性成分を含む半導体用高解
離圧化合物(以下化合物と略記)単結晶の製造法及び装
置に関するもので、特に単結晶引上げ工程における種子
単結晶及び化合物単結晶の熱分解を防止し、欠陥(転位
)の少ない単結晶の製造を可能にしたものである。
Detailed Description of the Invention The present invention provides a method and apparatus for producing a single crystal of a high dissociation pressure compound (hereinafter abbreviated as compound) for semiconductors containing volatile components such as gallium arsenide, indium arsenide, gallium phosphide, and indium phosphide. In particular, it prevents the thermal decomposition of seed single crystals and compound single crystals during the single crystal pulling process, making it possible to produce single crystals with fewer defects (dislocations).

一般に化合物単結晶は第1図に示すように圧力容器(1
)内に黒鉛製ルツボ保持台(2)を設けて5iOz又は
BN製ルツボ(3)を取付け、その外側にヒーター(4
)を配置し、圧力容器(1)の上壁よりルツボ(3)内
に向けて上下自在で回転する引上軸(5)と該軸(5)
の中心を貫通するフォースバー(6)を設け、フォース
バー(6)の下端に種子単結晶(8)を取付ける支持具
(7)を設けた装置を用い、次のようにして製造してい
る。即ち支持具(7)に種子単結晶(8)を取付け、ル
ツボ(2)内に化合物原料と液封浴用酸化ホウ素を装入
し、圧力容器(1)内を不活性ガス、例えばNZ 、A
r 、 He等により3〜60気圧に満たし、ヒーター
(4)により化合物原料と酸化ホウ素を加熱溶融し、化
合物融液(9)を酸化物ホウ素からなる液封浴(10)
で封止した後、通常の引止法と同様にして種子単結晶(
8)を化合物融液(9)と接触させ、回転させながら引
上げて化合物単結晶(11)を製造している。
Generally, a compound single crystal is stored in a pressure vessel (1
), a graphite crucible holder (2) is installed, a 5iOz or BN crucible (3) is installed, and a heater (4) is installed outside of it.
), and a pulling shaft (5) that rotates freely up and down from the upper wall of the pressure vessel (1) toward the inside of the crucible (3).
It is manufactured in the following manner using a device equipped with a force bar (6) passing through the center of the seed single crystal (6) and a support (7) for attaching the seed single crystal (8) to the lower end of the force bar (6). . That is, the seed single crystal (8) is attached to the support (7), the compound raw material and boron oxide for liquid sealing bath are charged into the crucible (2), and the inside of the pressure vessel (1) is filled with an inert gas such as NZ, A, etc.
The tank is filled with 3 to 60 atmospheres of pressure using He, etc., and the compound raw material and boron oxide are heated and melted using a heater (4), and the compound melt (9) is poured into a liquid sealing bath (10) made of boron oxide.
Seed single crystal (
8) is brought into contact with the compound melt (9) and pulled up while rotating to produce a compound single crystal (11).

尚図において(12)は断熱材、(13)はツルボ保持
台(2)の回転軸を示し、該回転軸(13)は必要に応
じてルツボ(3)を回転させるためのものである。
In the figure, (12) indicates a heat insulating material, and (13) indicates a rotating shaft of a crucible holding table (2), and the rotating shaft (13) is used to rotate the crucible (3) as required.

このような化合物単結晶の製造法により得られる単結晶
の欠陥(転位)は、引上工程における単結晶の固液界面
における温度勾配に依存することが知られている。例え
ば液封浴中の温度勾配を100°C/ cm以下とする
ことにより低欠陥の化合物単結′晶が得られる。しかし
ながら温度環境を改善して液封浴中の温度勾配を100
℃/ cm以下にすると、厚さ20s#後の液封浴の表
面温度は1100℃以上となり、液封浴直上の種子単結
晶及び化合物単結晶の表面から熱分解によりv FA元
素が蒸発散逸し、種子単結晶が徐々に細くなって引上中
又は引上後の化合物単結晶の重量に耐えきれずに折損し
、引上げが不可能となるばかりか、引上げた単結晶の落
下事故を起す欠点があり、更に引上げた単結晶内には■
族元素が残り、双晶等の欠陥発生の原因となる欠点があ
った。
It is known that defects (dislocations) in the single crystal obtained by such a compound single crystal production method depend on the temperature gradient at the solid-liquid interface of the single crystal in the pulling process. For example, by setting the temperature gradient in the liquid sealing bath to 100°C/cm or less, a compound single crystal with low defects can be obtained. However, by improving the temperature environment, the temperature gradient in the liquid sealing bath can be reduced by 100%.
℃/cm or less, the surface temperature of the liquid sealing bath after 20 seconds of thickness will be 1100℃ or more, and the vFA element will evaporate and dissipate from the surface of the seed single crystal and compound single crystal directly above the liquid sealing bath due to thermal decomposition. The drawback is that the seed single crystal gradually becomes thinner and cannot withstand the weight of the compound single crystal during or after pulling and breaks, making pulling not only impossible but also causing an accident of the pulled single crystal falling. , and inside the pulled single crystal there is ■
This has the disadvantage that group elements remain, causing defects such as twins.

本発明はこれに鑑み種々検討の結果、ルツボの液封浴上
に密閉空間を設けて、該空間内を揮発性元素である■族
元素の蒸気雰囲気とすることにより単結晶表面の熱分解
を抑制し得ることを知見し、更に検討の結果低温度勾配
により低欠陥単結晶の引上げが可能な化合物単結晶の製
造法とその装置を開発したものである。
In view of this, as a result of various studies, the present invention has been developed by providing a sealed space above the liquid sealing bath of the crucible and creating a vapor atmosphere of Group Ⅰ elements, which are volatile elements, in the space to prevent thermal decomposition of the single crystal surface. As a result of further investigation, we developed a method and apparatus for producing compound single crystals that can pull low-defect single crystals using a low temperature gradient.

本発明製造法としては、不活性ガスにより2〜60気圧
とした圧力容器内で、ルツボにより化合物融液を酸化ホ
ウ素融液により液封保持し、回転軸のフォースバー下端
に取付けた種子単結晶を化合物融液面より引上げる化合
物単結晶の製造において、ルツボ上に石英製蓋を取付け
て、その下端をルツボ内の液封浴中に保持し、蓋上部に
フォースバーを通すシール1■を上端に有する管状部を
形成し、シール■に酸化ホウ素融液を装入してシールし
、蓋上部とシール皿を400〜700℃の温度に加熱し
て蓋内部を7Torr〜4気圧の分圧の揮発性元素蒸気
雰囲気とし、液封浴中の温度勾配を100℃/cm以下
として化合物単結晶を引上げることを特徴とするもので
ある。
In the production method of the present invention, a compound melt is held in a crucible as a liquid seal with a boron oxide melt in a pressure vessel with an inert gas pressure of 2 to 60 atmospheres, and a seed single crystal is attached to the lower end of a force bar of a rotating shaft. In the production of compound single crystals that are pulled up from the surface of the compound melt, a quartz lid is attached to the crucible, its lower end is held in the liquid sealing bath inside the crucible, and a seal 1 is inserted through the force bar through the top of the lid. Form a tubular part at the upper end, charge the boron oxide melt into the seal (2) and seal it, heat the upper part of the lid and the sealing plate to a temperature of 400 to 700°C, and create a partial pressure inside the lid of 7 Torr to 4 atm. The method is characterized in that the compound single crystal is pulled in a volatile element vapor atmosphere with a temperature gradient of 100° C./cm or less in the liquid sealing bath.

また本発明装置は不活性ガスにより2〜60気圧とした
圧力容器内でルツボにより化合物融液を酸花ホウ素融点
液により液封保持し、゛回転軸のフォースバー下端に取
付けた種子単結晶を化合物融点液面より引上げる化合物
単結晶の製造装置において、ルツボ上に石英製蓋を取付
けてその下端をルツボ内の液封浴中に保持し、蓋上部に
フォースバーを通すシール皿を上端に有する管状部を形
成し、蓋上部とシール皿の外側に補助ヒーターを設け、
シール皿内で酸化ホウ素を溶融してシールし、蓋内部を
7Torr〜4気圧の分圧の揮発性元素蒸気雰囲気とし
たことを特徴とするものである。
In addition, the device of the present invention holds a compound melt in a crucible in a pressure vessel maintained at 2 to 60 atmospheres with an inert gas, and a seed single crystal attached to the lower end of a force bar of a rotating shaft. Compound melting point In a compound single crystal production device that is pulled from the liquid level, a quartz lid is attached to the crucible, its lower end is held in a liquid sealing bath inside the crucible, and a sealing plate is placed at the upper end, through which a force bar is passed through the top of the lid. forming a tubular part with a auxiliary heater on the top of the lid and outside of the sealing plate;
It is characterized in that boron oxide is melted and sealed in the sealing dish, and the inside of the lid is made into a volatile element vapor atmosphere with a partial pressure of 7 Torr to 4 atmospheres.

即ち本発明は第2図に示すように圧力容器(1)内に黒
鉛製ルツボ保持台(2)を設けてルツボ(3)を取付け
、その外側にヒーター(4)を配置し、ルツボ(3〉内
に化合物融液(9)を形成する化合物原料と液封浴(1
0)を形成する酸化ホウ素を装入する。圧力容器(1)
の土壁よりルツボ(3)内に向けて上下自在で回転する
引上軸(5)と、該軸(5)の中心を貫通ずるフォース
バー(6)を設け、ルツボ(3)上に」一端にフォース
バー(6)を通すシール冊(14)を有する管状部(1
5)を設けた石英¥A蓋〈16)を取付け、該M(16
)内のフォースバー(6)下端に支持具(7)を設けて
種子単結晶(8)を取付け、蓋(16)内に揮発性元素
を1〜100g挿入し、!(16)下端をルツボ(3)
内の液封浴(10)中に保持する。
That is, as shown in FIG. 2, the present invention provides a graphite crucible holder (2) in a pressure vessel (1), attaches a crucible (3), and arranges a heater (4) outside of the crucible (3). A compound raw material and a liquid sealing bath (1) to form a compound melt (9) in
Charge boron oxide to form 0). Pressure vessel (1)
A pulling shaft (5) that rotates freely up and down toward the inside of the crucible (3) from the earthen wall, and a force bar (6) passing through the center of the shaft (5) are provided, and a force bar (6) is installed on the crucible (3). A tubular part (1) having a seal book (14) at one end through which a force bar (6) is passed.
5) Attach the quartz ¥ A lid <16) and
), install a support (7) at the lower end of the force bar (6), attach the seed single crystal (8), insert 1 to 100 g of volatile element into the lid (16), and! (16) Place the lower end in the crucible (3)
It is kept in a liquid sealing bath (10) inside.

このとぎ図に示すj:うに化合物融液(9)の深さ[m
と1(16)下端の高さtpがtρ>tmの関係にあり
、かつ第3図に示すように化合物単結晶(11)引上終
了時の液封浴(10)の深ざしbと!(16)下端の高
さ1pがtb> tpの関係を満足するように酸化ホウ
素の量と蓋(16)下端の高さを定め、M(16)下端
と化合物融液(9)の接触によるs1汚染を防止すると
共に、′ri(1G)下端より揮発性元素蒸気のリーク
を防止する。
j shown in this diagram: depth of sea urchin compound melt (9) [m
and 1(16), the lower end height tp is in the relationship tρ>tm, and as shown in FIG. 3, the depth b of the liquid sealing bath (10) at the end of pulling the compound single crystal (11)! (16) The amount of boron oxide and the height of the lower end of the lid (16) are determined so that the height 1p of the lower end satisfies the relationship tb>tp, and the lower end of M (16) is brought into contact with the compound melt (9). In addition to preventing s1 contamination, leakage of volatile element vapor from the lower end of 'ri (1G) is also prevented.

!(16)の保持には図に示すようにルツボ〈3)内に
上端が化合物融点液(9)表面より液封浴(10)中に
突出する高純BN製筒(17)を設置づて蓋(16)の
下端を保持するか又は圧力容器(1)の内壁にアーム(
18)を設けてR1(16)を固定する。!(16)の
上部及びシール皿(14)の外側には補助ヒーター(4
a)、(4h)を配置し、シーIL、III(14)内
ニシール浴(20> ヲ形k ”J ルQ9 化ホウ素
を装入する。
! To hold (16), as shown in the figure, a high-purity BN cylinder (17) whose upper end protrudes into the liquid sealing bath (10) from the surface of the compound melting point liquid (9) is installed in the crucible (3). Hold the lower end of the lid (16) or attach the arm (
18) to fix R1 (16). ! (16) and outside the sealing pan (14) are auxiliary heaters (4).
A), (4h) is placed, and a sea IIL, III (14) Inside Nicir bath (20> ヲ -shaped K "Jul Q9

このようにして圧力容器(1)内をわ1気管(23)に
より減圧した後1、ガス導入管(22)より不活性ガス
を導入し、容器(1)内を2〜60気圧とし、蓋(16
)1部とシール皿(14)を補助ヒーター(4a)、(
4b)1.mよす400〜700℃ニアJ[I iQ 
j、、シール冊(14)内の酸化ホウ素を溶融してシー
ル浴(20)を形成すると共に、ta(1G)上部に凝
結する揮発性元素(21)を再蒸発させる。次にルツボ
(3)をヒーター(4)により加熱して化合物原料と酸
化ホウ素を溶融して化合物融′a(9)を液封浴(10
)で液封する。このとき!(16)内に挿入した揮発性
元素は蒸発し、!(16)内にシール+111(14)
内のシール浴(20)が溶融する前に導入された2〜6
0気圧の不活性ガスと7Torr〜4気圧の分圧の揮発
性元素蒸気雰囲気となり、化合物融点液(9)からの揮
発性元素の蒸発を防止すると共に、種子単結晶及び引上
げた化合物単結晶(11)の熱分解を防止し、更にヒー
ター(4)の温度環境を調整して液封浴(10)中の湿
度勾配を100℃/ cm以下に制御し、フォースバー
(6)下端の種子単結晶(8)を化合物融点液(9)面
に接触させ、回転させながら引上げて化合物単結晶を製
造するものである。
After reducing the pressure inside the pressure vessel (1) through the trachea (23) in this way, inert gas is introduced through the gas introduction pipe (22) to bring the inside of the vessel (1) to 2 to 60 atmospheres, and the lid is closed. (16
) and the sealing plate (14) with the auxiliary heater (4a), (
4b)1. myosu 400~700℃ near J [I iQ
j. Melt the boron oxide in the seal book (14) to form a seal bath (20), and re-evaporate the volatile element (21) condensed on the upper part of ta (1G). Next, the crucible (3) is heated by the heater (4) to melt the compound raw material and boron oxide, and the compound melt'a (9) is heated in the liquid sealing bath (10).
) to liquid seal. At this time! The volatile element inserted in (16) evaporates, and! (16) Seal inside +111 (14)
2 to 6 introduced before the sealing bath (20) in
A volatile element vapor atmosphere with an inert gas of 0 atm and a partial pressure of 7 Torr to 4 atm is created, which prevents the evaporation of volatile elements from the compound melting point liquid (9), and also prevents the seed single crystal and the pulled compound single crystal ( 11), the temperature environment of the heater (4) is adjusted to control the humidity gradient in the liquid sealing bath (10) to 100°C/cm or less, and the seed unit at the lower end of the force bar (6) is A compound single crystal is produced by bringing the crystal (8) into contact with the surface of the compound melting point liquid (9) and pulling it up while rotating.

シール皿(14)内のシール浴(20)は管状部(15
)とフォースバー(6)の間隙を重力によって流下する
が、実際には酸化ホウ素からなるシール浴(20)は粘
性が大きく、またフォースバー(6)を9〜20mm/
hrの速度で引上げるため、はとんど流下せず、化合物
単結晶の引上げ中完全なシール効果が得られる。
The sealing bath (20) in the sealing dish (14) is connected to the tubular part (15).
) and the force bar (6) by gravity, but in reality, the seal bath (20) made of boron oxide has a high viscosity, and the force bar (6) is
Since it is pulled at a speed of hr, it hardly flows down and a perfect sealing effect is obtained during pulling of the compound single crystal.

面図において(13)はルツボ保持台(2)に設けた回
転軸を示し、必要に応じてルツボ(3)を回転させるた
めのものである。また(19)は引」−げた化合物中結
晶の重さを検知する重量センサーを示す。
In the top view, (13) indicates a rotating shaft provided on the crucible holding table (2), which is used to rotate the crucible (3) as necessary. Further, (19) shows a weight sensor that detects the weight of crystals in the pulled compound.

以下本発明を実施例について説明づる。The present invention will be explained below with reference to examples.

第2図に示す装置を用い、直径100 mmの熱分解B
Nルツボを用い、砒化ガリウム多結晶体を1.000(
]と液液封用として酸化ホウ素200gを装入し、シー
ル冊にシール浴用として酸化ホウ素を500装入し、フ
ォースバー下端に種子単結晶を取付け、蓋内に砒素を5
部入れて蓋下端をルツボ内に挿入した熱分解BN製簡に
より化合物融液面より2 mm高い液封浴中に保持した
Using the apparatus shown in Figure 2, pyrolysis B with a diameter of 100 mm was used.
Using an N crucible, 1.000 (
] and 200g of boron oxide for liquid sealing, 500g of boron oxide for sealing bath in a seal book, a seed single crystal attached to the lower end of the force bar, and 5g of arsenic in the lid.
The lower end of the lid was inserted into the crucible, and the crucible was held in a liquid-sealed bath at a height of 2 mm higher than the level of the compound melt.

このようにして圧力容器内を減圧した後アルゴンガスを
導入して3気圧とし、蓋上部とシール冊を補助ヒーター
により 580°Cに加熱し、シール皿内の酸化ホウ素
を溶融してシール浴を形成した。
After reducing the pressure inside the pressure vessel in this way, argon gas was introduced to bring the pressure to 3 atmospheres, and the upper part of the lid and seal book were heated to 580°C using an auxiliary heater to melt the boron oxide in the seal pan and create a seal bath. Formed.

次にルツボをヒータにより加熱して化合物多結晶と酸化
ホウ素を溶融し、化合物融液を液封用で液封した。この
とき蓋内に入れた砒素は全て蒸発し、蓋内壁上部に凝結
し低温部の温度580℃′に相当する砒素蒸気分圧0.
52気圧を形成した。
Next, the crucible was heated with a heater to melt the compound polycrystal and boron oxide, and the compound melt was liquid-sealed. At this time, all of the arsenic put into the lid evaporates and condenses on the upper part of the inner wall of the lid, where the partial pressure of arsenic vapor is 0.0, which corresponds to the temperature of the low temperature part of 580°C.
A pressure of 52 atmospheres was created.

次に種子単結晶を砒化ガリウム融液面に接触させて引上
げた。砒化ガリウムの融点は1238℃であり、液封浴
中の温度勾配を50℃/ cmとすると液封用の厚さが
約16#で、その表面温度は1158℃になる。このよ
うな条件で砒化ガリウム単結晶を製造したところ、種子
単結晶及び砒化ガリウム単結晶の熱分解は完全に防止さ
れ、金属光沢のある単結晶が得られた。同様にして液封
浴中の温度勾配を30℃/mmとして砒化ガリウム単結
晶を製造した。
Next, the seed single crystal was brought into contact with the surface of the gallium arsenide melt and pulled up. The melting point of gallium arsenide is 1238°C, and if the temperature gradient in the liquid sealing bath is 50°C/cm, the thickness of the liquid sealing bath is about 16# and its surface temperature is 1158°C. When a gallium arsenide single crystal was produced under these conditions, thermal decomposition of the seed single crystal and gallium arsenide single crystal was completely prevented, and a single crystal with metallic luster was obtained. Similarly, a gallium arsenide single crystal was produced with a temperature gradient of 30° C./mm in the liquid sealing bath.

この場合も種子単結晶及び砒素化ガリウム単結晶の熱分
解は完全に防1にすることができた。
In this case as well, thermal decomposition of the seed single crystal and gallium arsenide single crystal could be completely prevented.

比較のため第1図に示す従来装置により同様の条件で砒
化ガリウム単結晶を製造した。その結果、種子単結晶の
表面から熱分解により砒素が蒸発し、種子単結晶が折損
したり、得られた単結晶は表面から砒素が蒸発し、残存
したガリウムが内部に侵入して双晶等の欠陥が発生し、
高品質の単結晶が得られなかった。
For comparison, a gallium arsenide single crystal was produced using the conventional apparatus shown in FIG. 1 under similar conditions. As a result, arsenic evaporates from the surface of the seed single crystal due to thermal decomposition, causing the seed single crystal to break, or arsenic evaporates from the surface of the resulting single crystal, and the remaining gallium enters the interior, causing twin crystals and the like. defects occur,
High quality single crystals could not be obtained.

尚直径40mmの砒化ガリウム単結晶の転位密度は従来
法でW形分布が認められるのに対し、本発明法ではW形
分布は全く認められず転位密度は5000個/ cM以
下であり、直径55酬の単結晶でも10,000個/ 
tri以下であった。また単結晶中のシリコン濃度は0
.O1ppm以下であり、石英製蓋からのシリコン汚染
の問題は全くないことが確認された。更に本発明法は従
来法と同様単結晶の重量を測定しながら結晶直径を制御
することができる。
Note that the dislocation density of a gallium arsenide single crystal with a diameter of 40 mm shows a W-shaped distribution in the conventional method, whereas in the method of the present invention, no W-shaped distribution is observed at all, the dislocation density is less than 5000 pieces/cM, and the diameter is 55 mm. 10,000 single crystals of reward/
It was less than tri. Also, the silicon concentration in the single crystal is 0
.. It was confirmed that the O concentration was 1 ppm or less, and there was no problem of silicon contamination from the quartz lid. Furthermore, in the method of the present invention, the crystal diameter can be controlled while measuring the weight of the single crystal, similar to the conventional method.

以上砒化ガリウム単結晶の製造について説明したがこれ
に限るものではなく、砒化インジウム、燐化ガリウム、
燐化インジウム等の高解離圧化合物の単結晶の製造にも
適用できるものである。
Although we have explained the production of gallium arsenide single crystals above, the production is not limited to this, but includes indium arsenide, gallium phosphide,
It can also be applied to the production of single crystals of high dissociation pressure compounds such as indium phosphide.

このように本発明によれば単結晶引上げ工程における種
子単結晶及び化合物単結晶の熱分解による揮発性元素の
蒸発を防止し、種子単結晶の折損や化合物単結晶の転位
密度を低減し得るもので、工業上顕著な効果を奏すもの
である。
As described above, according to the present invention, it is possible to prevent the evaporation of volatile elements due to thermal decomposition of the seed single crystal and the compound single crystal in the single crystal pulling process, and to reduce the breakage of the seed single crystal and the dislocation density of the compound single crystal. This has a significant industrial effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の化合物単結晶製造法の一例を示す説明図
、第2図は本発明の化合物単結晶製造法の一実施例を示
す説明図、第3図は同製造法における化合物単結晶の引
上げ終了時を示す説明図である。 1、 圧力容器 2、 ルツボ保持台 3、 ル ツ ボ 4、 ヒーター 4a 、 4b 補助ヒーター 5、 引 上 軸 6、 フォースバー 7、 支 持 具 8、 種子単結晶 9、 化合物融液 10、 W制用 11、 化合物単結晶 14、 シール朋 15、 管 状 部 16、 石英製蓋 17、B N [筒 20、 シール浴
Fig. 1 is an explanatory diagram showing an example of a conventional compound single crystal production method, Fig. 2 is an explanatory diagram showing an example of the compound single crystal production method of the present invention, and Fig. 3 is a compound single crystal production method in the same production method. It is an explanatory view showing the end of pulling. 1, Pressure vessel 2, Crucible holder 3, Crucible 4, Heaters 4a, 4b, Auxiliary heater 5, Pull shaft 6, Force bar 7, Support 8, Seed single crystal 9, Compound melt 10, W system 11, Compound single crystal 14, Seal 15, Tubular part 16, Quartz lid 17, BN [Cylinder 20, Seal bath

Claims (2)

【特許請求の範囲】[Claims] (1)不活性ガスにより2〜60気圧とした圧力容器内
で、ルツボにより高解離圧化合物融液を酸化ホウ素融液
により、液封保持し、回転引上軸のフォースバー下端に
取付けた種子単結晶を化合物融液面より引上げる化合物
単結晶の製造において、ルツボ上に石英製蓋を取付けて
、その下端をルツボ内の液封浴中に保持し、蓋上部にフ
ォースバーを通すシール冊を十端に有する管状部を形成
し、シール冊に酸化ホウ素融液を装入してシールし、蓋
上部とシール冊を400〜700℃の温度に加熱して蓋
内部を7Torr〜4気圧の分圧の揮発性元素蒸気雰囲
気とし、液封浴中の温度勾配を100°C/ cm以下
として化合物単結晶を引上げることを特徴とする高fi
!離圧化合物単結晶の製造法。
(1) In a pressure vessel maintained at 2 to 60 atmospheres with an inert gas, the high dissociation pressure compound melt is held in a crucible by the boron oxide melt, and the seeds are attached to the lower end of the force bar of the rotating pulling shaft. In the production of compound single crystals in which the single crystal is pulled up from the surface of the compound melt, a quartz lid is attached to the crucible, its lower end is held in the liquid sealing bath inside the crucible, and a seal book is used to pass a force bar through the top of the lid. Form a tubular part having a molten boron oxide at the ten ends, charge the seal booklet with boron oxide melt, seal it, heat the upper part of the lid and the seal book to a temperature of 400 to 700°C, and heat the inside of the lid to a pressure of 7 Torr to 4 atm. A high-fi method characterized by pulling a compound single crystal in a volatile element vapor atmosphere with a partial pressure and with a temperature gradient of 100°C/cm or less in a liquid sealing bath.
! Method for producing decompression compound single crystals.
(2)不活性ガスにより2〜60気圧どした圧力容器内
で、ルツボにより高解離圧化合物融液を酸化ホウ素融液
により液封保持し、回転引上軸のフォースバー下端に取
付けた種子単結晶を化合物融液面より引上げる化合物単
結晶の製造において、ルツボ上に石英?jmを取付けて
、その下端をルツボ内の液封浴中に保持し、蓋上部にフ
ォースバーを通すシール皿を上端に有する管状部を形成
して、蓋上部とシール冊の外側に補助シータ−を設け、
シール皿内で酸化ホウ素を溶融してシールし、蓋内部を
7Torr〜4気圧の分圧の揮発性元素蒸気雰囲気とし
たことを特徴とする高解離圧化合物単結晶の”A造装置
。 く3)ルツボ内に化合物融液面より突出する高純BN筒
を設けて蓋下端を液11浴中に支持する特許請求の範囲
第2項記載の高解離圧化合物単結 。 品の製造装置。
(2) In a pressure vessel heated to 2 to 60 atmospheres with inert gas, the melt of the high dissociation pressure compound is held in a crucible by the boron oxide melt, and the seed unit is attached to the lower end of the force bar of the rotating pulling shaft. Is quartz placed on the crucible in the production of compound single crystals in which the crystal is pulled from the surface of the compound melt? jm is attached, its lower end is held in a liquid sealing bath in the crucible, a tubular part is formed at the upper end with a sealing plate through which a force bar is passed through the upper part of the lid, and an auxiliary seater is attached to the upper part of the lid and outside of the seal book. established,
An apparatus for producing a single crystal of a high dissociation pressure compound "A", which is characterized by melting and sealing boron oxide in a sealing dish and creating a volatile element vapor atmosphere with a partial pressure of 7 Torr to 4 atm inside the lid. ) A high dissociation pressure compound single crystal manufacturing apparatus according to claim 2, wherein a high purity BN cylinder protruding from the surface of the compound melt is provided in the crucible and the lower end of the lid is supported in the liquid 11 bath.
JP58113881A 1983-06-24 1983-06-24 Method and device for producing compound single crystal with high dissociation pressure Pending JPS6011298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58113881A JPS6011298A (en) 1983-06-24 1983-06-24 Method and device for producing compound single crystal with high dissociation pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58113881A JPS6011298A (en) 1983-06-24 1983-06-24 Method and device for producing compound single crystal with high dissociation pressure

Publications (1)

Publication Number Publication Date
JPS6011298A true JPS6011298A (en) 1985-01-21

Family

ID=14623456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58113881A Pending JPS6011298A (en) 1983-06-24 1983-06-24 Method and device for producing compound single crystal with high dissociation pressure

Country Status (1)

Country Link
JP (1) JPS6011298A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020118999A1 (en) * 2018-12-14 2020-06-18 中国电子科技集团公司第十三研究所 Quartz tube and device for crystal growth by vb/vgf method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020118999A1 (en) * 2018-12-14 2020-06-18 中国电子科技集团公司第十三研究所 Quartz tube and device for crystal growth by vb/vgf method

Similar Documents

Publication Publication Date Title
US3716345A (en) Czochralski crystallization of gallium arsenide using a boron oxide sealed device
JP2001519752A (en) Crucible and its manufacturing method
US3353914A (en) Method of seed-pulling beta silicon carbide crystals from a melt containing silver and the product thereof
JPS6011298A (en) Method and device for producing compound single crystal with high dissociation pressure
JPH0567599B2 (en)
JPH0365593A (en) Single crystal growing apparatus
JPS6018638B2 (en) Silicon single crystal pulling equipment
JP2800713B2 (en) Method for manufacturing compound semiconductor single crystal
JPS6011299A (en) Method and device for producing compound single crystal with high dissociation pressure
JPS63274691A (en) Method and device for growing single crystal
JPS6036397A (en) Apparatus for growing compound single crystal
Talyzin et al. The Preparation and Properties of Indium Phosphide
JPS6217496Y2 (en)
JPS6041037B2 (en) Manufacturing equipment for high dissociation pressure compound single crystal for semiconductors
JPS59131597A (en) Production of high-quality gallium arsenide single crystal
JP2734813B2 (en) Method for manufacturing compound semiconductor single crystal
JPH11189499A (en) Production of compound semiconductor single crystal
JPS6111920B2 (en)
JPH0416591A (en) Single crystal pulling up device for compound semiconductor
JPS6168394A (en) Production of groups iii-v polycrystal body
JPS6395194A (en) Production of compound single crystal
JPH0558772A (en) Production of compound semiconductor single crystal
JPS6065794A (en) Production of high-quality gallium arsenide single crystal
JPH03247582A (en) Production device of compound semiconductor crystal
JPH0222200A (en) Production of semiconductor single crystal of iii-v compound