JPS6011299A - Method and device for producing compound single crystal with high dissociation pressure - Google Patents

Method and device for producing compound single crystal with high dissociation pressure

Info

Publication number
JPS6011299A
JPS6011299A JP58115717A JP11571783A JPS6011299A JP S6011299 A JPS6011299 A JP S6011299A JP 58115717 A JP58115717 A JP 58115717A JP 11571783 A JP11571783 A JP 11571783A JP S6011299 A JPS6011299 A JP S6011299A
Authority
JP
Japan
Prior art keywords
single crystal
lid
crucible
pressure
force bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58115717A
Other languages
Japanese (ja)
Inventor
Katsumi Azuma
我妻 勝美
Shoichi Ozawa
小沢 章一
Takashi Kijima
木島 孝
Yuzo Kashiyanagi
柏柳 雄三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP58115717A priority Critical patent/JPS6011299A/en
Publication of JPS6011299A publication Critical patent/JPS6011299A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To suppress thermal decomposition on the surface of III-V group compd. single crystal and to prevent generation of a defect in a process for producing said single crystal by a melt-pulling up method by maintaining the vapor atmosphere of a volatile element (V group element) in the sealing space above the liquid sealing bath of a crucible. CONSTITUTION:A quartz cover 14 provided with a tubular opening 15 at the top is fitted to the crucible 3 in a pressure vessel 1 and the inside of the vessel 1 is maintained under 3-60atm, by an inert gas. The upper part of the cover 14 is heated to 400-700 deg.C by auxiliary heaters 4a, 4b and the crucible 3 is heated by the heater 4 to melt the raw material charged preliminarily therein and to form a gallium aresenide melt 9 and a liquid sealing bath 10 consisting of boron oxide. The sealing space in the cover 14 is maintained in the arsenic vapor atmosphere under 7Torr-4atm. partial pressure. While the temp. gradient in the bath 10 is kept at <=100 deg.C/cm, a gallium arsenide single crystal is pulled up with the force bar (a symbol 6 is a seed crystal) of a pulling up shaft 5 according to the conventional method.

Description

【発明の詳細な説明】 本発明は砒化ガリウム、砒化インジウム、燐化ガリウム
、燐化インジウム等の半導体用高解離圧化合物(以下単
に化合物と略記)の単結晶製造法及び製造装置に関する
もので、特に単結晶引上げ工程における種子単結晶及び
化合物単結晶の熱分解を防止し、欠陥(転位〉の少ない
単結晶の製造を可能にしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for producing single crystals of high dissociation pressure compounds for semiconductors (hereinafter simply referred to as compounds) such as gallium arsenide, indium arsenide, gallium phosphide, and indium phosphide. In particular, it prevents thermal decomposition of seed single crystals and compound single crystals in the single crystal pulling process, making it possible to produce single crystals with fewer defects (dislocations).

一般に化合物単結晶は第1図に示すように圧力容器(1
)内に黒鉛製ルツボ保持台(2)を設けて5iOz又は
BN製ルツボ(3〉を取付け、その外側に黒鉛製ヒータ
ー(4)を配置し、圧力容器(1)の土壁よりルツボ(
3)内に向りて上下自在で回転する引上軸(5)と、該
軸(5)の中芯を貫通するフォースバー(6)を設け、
フォースバー(6)の下端に種子単結晶(8)を取付け
る支持具(7)を設けた装置を用い、次の様にして製造
している。即ち支持具(7)に種子単結晶(8)を取付
け、ルツボ(3)内に化合物原料と、加熱により溶融し
て化合物融液(9)上に浮上し、化合物融液(9)中の
V族元素の蒸発を防止する物質、例えば酸化ホウ素を装
入する。次に圧力容器(1)内を化合物の融点における
分解圧力より高い圧力の不活性ガス、例えばN2、Δr
、He等を3〜60気圧に満し、ヒーター(4)により
化合物を加熱溶融して化合物融液(9)上に液封用(1
0)を形成した後、通常の引上法と同様にして種子単結
晶(8)を化合物融液と接触させ、回転させながら引上
げ化合物単結晶(11)を製造している。
Generally, a compound single crystal is stored in a pressure vessel (1
A graphite crucible holder (2) is installed inside the pressure vessel (1), a 5iOz or BN crucible (3) is attached, and a graphite heater (4) is placed outside of the crucible (2).
3) A pulling shaft (5) that rotates inward and can freely move up and down, and a force bar (6) that passes through the center of the shaft (5) are provided,
It is manufactured in the following manner using an apparatus provided with a support (7) for attaching the seed single crystal (8) to the lower end of the force bar (6). That is, a seed single crystal (8) is attached to a support (7), and a compound raw material is placed in a crucible (3), which is melted by heating and floats on top of the compound melt (9). A substance that prevents the evaporation of group V elements, such as boron oxide, is charged. Next, the inside of the pressure vessel (1) is filled with an inert gas at a pressure higher than the decomposition pressure at the melting point of the compound, such as N2, Δr.
, He, etc. to a pressure of 3 to 60 atmospheres, heat the compound with a heater (4), melt it, and place it on the compound melt (9) for liquid sealing (1).
After forming 0), the seed single crystal (8) is brought into contact with the compound melt in the same manner as in the usual pulling method, and pulled while being rotated to produce a pulled compound single crystal (11).

面図において(12)は断熱材、(13)はルツボ保持
台(2)の回転軸を示し、該回転軸(13)は必要に応
じてルツボ(3)を回転させるだめのものである。
In the plan view, (12) indicates a heat insulating material, and (13) indicates a rotation shaft of a crucible holding table (2), and the rotation shaft (13) is used to rotate the crucible (3) as required.

このような化合物単結晶の製造法により得られる単結晶
の欠陥(転位)は引上工程における単結晶の固液界面に
おける温度勾配に依存することが知られている。例えば
液封浴中の温度勾配が100℃/cm以上の場合には転
位密度は数万/ cm以上となる事が知られており、温
度勾配を100℃/ cm以下とすることにより低欠陥
化が期待できる。しかしながら温度環境を改善して液封
浴中の温度勾配を100℃/ cm以下にすると厚さ2
0mm前後の液封用の表面温度は1100℃以上となり
、液封用直上の種子単結晶及び化合物の単結晶の表面か
ら熱分解によりV族元素が蒸発散逸し、種子単結晶が徐
々に細くなって引上中又は引上後の化合物単結晶の重量
に耐えきれず折損し、引上げ不可能となるばかりか、引
上げた単結晶の落下事故を起す欠点があり、更に引上げ
た単結晶内には■族元素が残り、双晶等の欠陥発生の原
因となる欠点があった。
It is known that defects (dislocations) in a single crystal obtained by such a compound single crystal production method depend on the temperature gradient at the solid-liquid interface of the single crystal during the pulling process. For example, it is known that when the temperature gradient in a liquid sealing bath is 100°C/cm or more, the dislocation density becomes tens of thousands/cm or more, and by setting the temperature gradient to 100°C/cm or less, defects can be reduced. can be expected. However, if you improve the temperature environment and reduce the temperature gradient in the liquid sealing bath to 100℃/cm or less, the thickness will decrease to 2.
The surface temperature for liquid sealing around 0 mm reaches 1100℃ or higher, and group V elements evaporate and dissipate from the surface of the seed single crystal and compound single crystal directly above liquid sealing due to thermal decomposition, and the seed single crystal gradually becomes thinner. During or after pulling, the compound single crystal cannot withstand the weight of the single crystal and breaks, making it impossible to pull it up.There is also the drawback that the pulled single crystal may fall. There was a drawback that group (Ⅰ) elements remained, causing defects such as twins.

本発明はこれに鑑み種々検討の結果、液封浴上に半閉鎖
状空間を設けて揮発元素であるV族元素の蒸気雰囲気と
することにより、単結晶表面の熱分解を抑制し得ること
を知見し、更に検討の結果低温度勾配での低拠陥単結晶
の引上げ可能な化合物単結晶の製造法とその装置を開発
したものである。
In view of this, as a result of various studies, the present invention has found that thermal decomposition of the single crystal surface can be suppressed by providing a semi-closed space above the liquid sealing bath and creating a vapor atmosphere of group V elements, which are volatile elements. As a result of this knowledge and further investigation, we have developed a method and apparatus for producing compound single crystals that can be pulled into low-defect single crystals at low temperature gradients.

本発明製造法としては不活性ガスにより3〜60気圧と
した圧力容器内で、ルツボにより化合物融液を液封保持
し、回転引上軸のフォースバー下端に取付けた種子単結
晶を化合物融液面より回転させながら引上げる単結晶の
製造法において、ルツボ上にフォースバーを通す管状開
口部を上部に設けた石英製蓋を取付けてその下端を液封
浴中に保持し、蓋上部を400〜700℃の温度に加熱
すると共に、蓋内に揮発性元素を保持して蒸発させる受
け皿を設け、蓋内部を7Torr〜4気圧の分圧の揮発
性元素蒸気雰囲気とし、液封浴中の温度勾配を100℃
/ cm以下として単結晶を引上げることを特徴とする
ものである。
In the production method of the present invention, a compound melt is kept in a liquid seal in a crucible in a pressure vessel maintained at 3 to 60 atmospheres with an inert gas, and a seed single crystal attached to the lower end of a force bar of a rotating pulling shaft is placed in a pressure vessel with an inert gas pressure of 3 to 60 atmospheres. In the manufacturing method of single crystals, which are pulled from a surface while being rotated, a quartz lid with a tubular opening at the top through which a force bar is passed is attached to the crucible, the lower end of which is held in a liquid sealing bath, and the upper part of the lid is In addition to heating to a temperature of ~700°C, a saucer is provided in the lid to hold and evaporate volatile elements, creating a volatile element vapor atmosphere with a partial pressure of 7 Torr ~ 4 atm inside the lid, and reducing the temperature in the liquid sealed bath. gradient to 100℃
This method is characterized by pulling a single crystal with a thickness of less than / cm.

また本発明装置は不活性ガスにより3〜60気圧とした
圧力容器内で、ルツボにより化合物融液を液封保持し、
回転引上軸のフォースバー下端に取付けた種子単結晶を
化合物融液面より回転させながら引上げる単結晶の製造
装置において、ルツボ上にフォースバーを通す管状開口
部を上部に設けた石英製蓋を取付けてその下端を液封浴
中に保持し、蓋上部の外側に補助ヒーターを設け、蓋内
部のフォースバー下部に揮発性元素の受け皿を設けて揮
発性元素を蒸発せしめ、蓋内部を7Torr〜4気圧の
揮発性元素蒸気雰囲気としたことを特徴とするものであ
る。
In addition, the device of the present invention holds the compound melt in a liquid seal in a crucible in a pressure vessel with an inert gas pressure of 3 to 60 atmospheres,
A quartz lid with a tubular opening at the top for passing the force bar over the crucible is used in single crystal production equipment in which a seed single crystal attached to the lower end of a force bar on a rotating pulling shaft is pulled from the compound melt surface while rotating. Attach the cap and hold its lower end in a liquid bath, install an auxiliary heater on the outside of the top of the lid, install a tray for volatile elements at the bottom of the force bar inside the lid to evaporate the volatile elements, and heat the inside of the lid to 7 Torr. It is characterized by a volatile element vapor atmosphere of ~4 atm.

即ち本発明は第2図に示すように不活性ガスにより3〜
60気圧とした圧力容器(1)内にルツボ保持台(2)
を設けてルツボ(3)を取付け、その外側にヒーター(
4)を配置し、圧力容器(1)の上壁よりルツボ(3)
内に向けて上下自在で回転する引上@(5)と該軸(5
)の中心を貫通するフォースバー(6)を設け、ルツボ
(3)上にフォースバー(6)を通す管状開口部(15
)を上部に設けた6芙Wlfi?(14)を取付け、そ
の下端をルツボ(3)内の化合物融液(9)の液封用(
10)中に保持する。石英製!(14)内のフォースバ
ー〈6)下端には種子単結晶(8)の支持具(7)と!
(14)内に揮発性元素の受け皿(16)を設け、W(
14)の上部外側に補助ヒーターを設けた装置を用い、
次のようにして化合物単結晶を製造するものである。
That is, in the present invention, as shown in FIG.
A crucible holding stand (2) is placed in a pressure vessel (1) with a pressure of 60 atmospheres.
A crucible (3) is attached to the crucible, and a heater (
4), place the crucible (3) from the upper wall of the pressure vessel (1).
A pull-up @ (5) that rotates vertically inward and the shaft (5)
) with a force bar (6) passing through the center of the crucible (3) and a tubular opening (15) through which the force bar (6) passes.
) with 6 pieces Wlfi on the top? (14) and its lower end for sealing the compound melt (9) in the crucible (3) (
10) Hold inside. Made of quartz! The force bar inside (14) (6) has a support (7) for the seed single crystal (8) at the lower end!
A volatile element receptacle (16) is provided inside (14), and W(
14) Using a device equipped with an auxiliary heater on the outside of the upper part,
A compound single crystal is produced in the following manner.

面図において(12)は断熱材、(13)はルツボ(3
)を必要に応じて上下動及び回転させるための回転軸、
(18)は蓋(14)を断熱材(12)に固定するアー
ム、(19)は!(14)内に凝結した揮発性元素、(
20)は受け冊(16)内に保持したJi発性元素、(
21)は!(14)上部の温度を検知する熱雷対、(2
2)は観察用窓、〈23)は不活性ガスの導入口、(2
4)は不活性ガスの排出口を示す。
In the plan view, (12) is the heat insulating material, (13) is the crucible (3
) to move up and down and rotate as necessary,
(18) is the arm that fixes the lid (14) to the insulation material (12), and (19) is! (14) Volatile elements condensed in (
20) is the Ji-emitting element held in the receiving booklet (16), (
21) Ha! (14) Thermal lightning pair that detects the temperature of the upper part, (2
2) is the observation window, <23) is the inert gas inlet, and (2) is the inert gas inlet.
4) indicates the inert gas outlet.

先ず従来と同様にしてフォースバー下端の支持具に種子
単結晶を取付1−J1ルツボ内に化合物原料と、加熱に
より溶融して化合物融液上に浮上し、化合物融液中のV
 b’に元素の蒸発を防止する物質、例えば醇化ホウ素
を装入する。次に圧力容器内を不活性ガスにより3〜6
0気圧に満し、蓋上部の温度を熱雷対により測定しなが
ら補助ヒーターにより400〜700℃に加熱すると共
にルツボをヒーターにより化合物を加熱溶融して液封し
、蓋内を7T orr〜4気圧の分圧の揮発性元素蒸気
雰囲気とし、必要があれば揮発性元素の受け1川内に予
め揮発性元素を入れておく。また蓋下端は常に液封浴中
にあって化合物融液には触れないように、液封用の厚さ
を十分厚くし、更に必要があればルツボ保持台の回転軸
を上下動又は回転させて蓋下端が化合物融液と接触しな
いようにする。
First, in the same manner as before, a seed single crystal is attached to the support at the lower end of the force bar, and the compound raw material is placed in the crucible 1-J1.The seed single crystal is melted by heating and floats on the compound melt, and V in the compound melt.
b' is charged with a substance that prevents the evaporation of elements, such as boron liquefied. Next, the inside of the pressure vessel is heated with inert gas for 3 to 6 hours.
The pressure was filled to 0 atm, and the temperature at the top of the lid was measured with a thermal lightning pair, and the crucible was heated to 400 to 700°C with an auxiliary heater, and the crucible was heated and melted with a heater to seal the compound, and the inside of the lid was heated to 7 T orr to 4 A volatile element vapor atmosphere with a partial pressure of atmospheric pressure is created, and if necessary, a volatile element is placed in advance in a volatile element receiver. In addition, the bottom end of the lid is always in the liquid sealing bath and does not touch the compound melt, so the thickness for the liquid sealing is made sufficiently thick, and if necessary, the rotating shaft of the crucible holder can be moved up and down or rotated. to prevent the bottom edge of the lid from coming into contact with the compound melt.

このようにしてヒーターの温度環境を調整し、液封浴中
の温度勾配を100℃以下に制御し、フォースバー下端
の単結晶を化合物融液と接触させ、回転させながら引−
Lげて化合物単結晶を製造するものである。
In this way, the temperature environment of the heater is adjusted, the temperature gradient in the liquid seal bath is controlled to 100°C or less, the single crystal at the lower end of the force bar is brought into contact with the compound melt, and the single crystal is pulled while rotating.
A single crystal of a compound is produced by this method.

このJ:うに本発明によれば蓋上部を400〜700℃
の温度に加熱することにより、蓋上部に付着した揮発性
元素を加熱ヒーターを用いて再蒸発させることにより蓋
内での不活性ガス中の分圧を7T orr〜4気圧に制
御し、引上げ工程での種子単結晶及び化合物単結晶の熱
分解を有効に抑制したものである。
According to the present invention, the upper part of the lid is heated to 400 to 700°C.
By heating to a temperature of This effectively suppresses thermal decomposition of seed single crystals and compound single crystals.

また本発明において蓋内の圧力は揮発性元素の分圧と、
不活性ガスの圧力によって構成されており、揮発性元素
の流出は管状開口部を通して拡散により起る。これを有
効に防止するためには、第3図に示すように管状間口部
(15)内に繊維状障壁材(25)を介在させ、その外
側に補助ヒーター(17)、(17a)、< 17 b
 ) ト渇K mu 定用?、 ’Fl 対(21a 
) 、(21’b )、(21c ) ヲ設け、管状開
口部(15)の出口側を揮発性元素が凝結しない様に十
分な高温度とし、蓋側をヒーター(17)により加熱し
て蒸気雰囲気形成の蒸発源とし、フォースバー(6)の
作動及び結晶重量の測定に支障を生ずることがないよう
にするとよい。
In addition, in the present invention, the pressure inside the lid is the partial pressure of volatile elements,
Consisting of an inert gas pressure, the escape of volatile elements occurs by diffusion through the tubular opening. In order to effectively prevent this, a fibrous barrier material (25) is interposed within the tubular opening (15) as shown in FIG. 17b
) To thirst K mu regular use? , 'Fl vs. (21a
), (21'b), and (21c) are provided, the outlet side of the tubular opening (15) is heated to a sufficiently high temperature to prevent volatile elements from condensing, and the lid side is heated with a heater (17) to generate steam. It is preferable to use it as an evaporation source to form an atmosphere so that it does not interfere with the operation of the force bar (6) and the measurement of crystal weight.

以下本発明を実施例について説明ゴーる。The present invention will now be described with reference to embodiments.

第2図に示す装置を用い直径100mmの熱分解BNル
ツボを用い、砒化ガリウム多結晶を1.0009と液封
浴用として酸化ホウ素を2009装入し、加熱溶融時に
蓋下端が液月浴の表面から2 mmの位置に来るように
し、受は皿に砒素を59入れた。このようにしてフォー
スバー下端に種子単結晶を取付け、圧力容器内にアルゴ
ンガスを3気圧曽入し、ヒーターにより加熱して砒化ガ
リウムと酸化ホウ素を溶融し、砒化ガリウム融液を醇化
ホウ素融液で液封した。この過程で受け皿−ヒの砒素は
全−C蒸発し、蓋上部の620℃以下の低温部に固体の
砒素としてイq@した。
Using the apparatus shown in Figure 2, a pyrolytic BN crucible with a diameter of 100 mm was charged with 1.0009 g of gallium arsenide polycrystal and 2009 g of boron oxide for a liquid sealing bath, and when heated and melted, the lower end of the lid was on the surface of the liquid moon bath. Uke placed 59 ounces of arsenic in the dish so that it was 2 mm from the center. In this way, a seed single crystal is attached to the lower end of the force bar, argon gas is injected into the pressure vessel at 3 atm, and gallium arsenide and boron oxide are melted by heating with a heater. It was sealed with liquid. During this process, all the arsenic in the saucer was evaporated, and solid arsenic was evaporated into the low-temperature part below 620° C. in the upper part of the lid.

次に補助ヒーターで蓋上部を580 ’Cに加熱しなが
ら種子単結晶を矢印方向に回転させて降下し、砒化ガリ
ウム融液に接シ:ll!さぜ、砒化ガリウム単結晶を引
上げた。この過程で蓋上部に付着した砒素は蒸発を開始
し蓋内に砒素蒸気分圧が0.52気圧の雰囲気を形成し
た。砒化ガリウムの融点を1238℃とすると、酸化ホ
ウ素融液中の温度勾配は50℃/cm 、酸化ホウ素融
液の厚さは約16姻であるため、その表面温度は約11
60℃となる。このような条件で砒化ガリウム単結晶を
引上げたところ、該単結晶の熱分解は完全に抑制され、
金属光沢の良い結晶が得られた。同様にして酸化ホウ素
液中の温度勾配を30℃/ cmとして砒化ガリウム単
結晶を引上げた。この場合も高温にさらされた単結晶の
表面の熱分解を完全に抑制することができた。尚ルツボ
(9)を回転軸(13)により矢印方向に回転させた。
Next, while heating the upper part of the lid to 580'C with an auxiliary heater, the seed single crystal is rotated in the direction of the arrow and lowered into contact with the gallium arsenide melt. Now, we pulled a gallium arsenide single crystal. During this process, the arsenic adhering to the upper part of the lid started to evaporate, forming an atmosphere with an arsenic vapor partial pressure of 0.52 atm inside the lid. Assuming that the melting point of gallium arsenide is 1238°C, the temperature gradient in the boron oxide melt is 50°C/cm2, and the thickness of the boron oxide melt is approximately 16 mm, so the surface temperature is approximately 11 cm2.
It becomes 60℃. When a gallium arsenide single crystal was pulled under these conditions, thermal decomposition of the single crystal was completely suppressed.
Crystals with good metallic luster were obtained. In the same manner, a gallium arsenide single crystal was pulled up with a temperature gradient of 30° C./cm in the boron oxide solution. In this case as well, thermal decomposition of the single crystal surface exposed to high temperatures could be completely suppressed. Note that the crucible (9) was rotated in the direction of the arrow by the rotating shaft (13).

比較のため第1図に示J従来装置により、同様の条件で
砒化ガリウム単結晶の引−Fげを行なったが、種子単結
晶の表面から熱分解により砒素が蒸発し、種子単結晶が
折損したり、得られた単結晶は表面から砒素が蒸発し、
残存したガリウムが内部に侵入して双晶等の欠陥が発生
し、高品質の単結晶が得られなかった。
For comparison, a conventional device shown in Figure 1 was used to pull-F a gallium arsenide single crystal under similar conditions, but arsenic evaporated from the surface of the seed single crystal due to thermal decomposition and the seed single crystal broke. Arsenic evaporates from the surface of the single crystal obtained,
The remaining gallium invaded the interior, causing defects such as twins, making it impossible to obtain a high-quality single crystal.

尚直径40#の砒化ガリウム単結晶の転位密度は従来法
ではW形弁布が認められるのに対し、本発明法ではW形
弁布が全く認められず、転位密度分布は5000個/ 
ci以下、直径55mmの単結晶でもio、ooo個/
 ci以下であった。また単結晶中のシリフン濃度は0
.01ppm以下で、石英製蓋からのシリコン汚染の問
題は全くないことが確認された。更に本発明法において
も従来法と同様単結晶の重量を測定しながら結晶直径を
制御することが可能であった。
Regarding the dislocation density of a gallium arsenide single crystal with a diameter of 40 #, a W-shaped valve cloth is observed in the conventional method, whereas no W-shaped valve cloth is observed in the method of the present invention, and the dislocation density distribution is 5000 pieces/dislocation density.
Less than ci, even a single crystal with a diameter of 55 mm can produce io, ooo pieces/
It was less than ci. Also, the concentration of silicone in the single crystal is 0.
.. It was confirmed that at 0.01 ppm or less, there was no problem of silicon contamination from the quartz lid. Furthermore, in the method of the present invention as well as in the conventional method, it was possible to control the crystal diameter while measuring the weight of the single crystal.

以上砒化ガリウム単結晶の製造について説明しだがこれ
に限るものではなく砒化インジウム、燐化ガリウム、燐
化インジウム等の高解離圧化合物の単結晶の製造にも適
用できることは勿論、砒化ガリウムを直接高圧下でガリ
ウムと砒素から合成して、その後に単結晶を引−ヒげる
場合にも適用することができるものである。
The above explanation is about the production of gallium arsenide single crystals, but it is not limited to this, and it is of course applicable to the production of single crystals of high dissociation pressure compounds such as indium arsenide, gallium phosphide, and indium phosphide. This method can also be applied to the case where a single crystal is synthesized from gallium and arsenic and then a single crystal is pulled.

このように本発明によれば単結晶引上げ工程における種
子単結晶及び化合物単結晶の熱分解による揮発元素の蒸
発を防止し、種子単結晶の折損や ゛化合物単結晶の転
位密度を減少し得る等工業上顕著な効果を奏するもので
ある。
As described above, according to the present invention, it is possible to prevent the evaporation of volatile elements due to thermal decomposition of the seed single crystal and compound single crystal in the single crystal pulling process, thereby reducing the breakage of the seed single crystal and the dislocation density of the compound single crystal. This has a remarkable industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の化合物単結晶製造法の一例を示す説明図
、第2図は本発明化合物単結晶製造法の一実施例を示す
説明図、第3図は本発明化合物単結晶製造法の伯の一例
における要部を示す説明図である。 1、 圧力容器 2、 ルツボ保持台 3、 ル ツ ボ 4、 ヒーター 5、 引 上 軸 6、 フォースバー 7、 取 付 具 8、 種子単結晶 9、 化合物融液 10、 液 封 浴 11、 化合物単結晶 14、 石英製蓋 15、 管状開口部 16、 受 け 皿 17、 補助ヒーター 21、 熟 電 対
FIG. 1 is an explanatory diagram showing an example of a conventional method for producing a single crystal of a compound, FIG. 2 is an explanatory diagram showing an example of a method for producing a single crystal of a compound of the present invention, and FIG. 3 is an explanatory diagram showing an example of a method for producing a single crystal of a compound of the present invention. It is an explanatory view showing the principal part in an example of the square. 1. Pressure vessel 2, crucible holding table 3, crucible 4, heater 5, pulling shaft 6, force bar 7, fixture 8, seed single crystal 9, compound melt 10, liquid sealing bath 11, compound mono Crystal 14, quartz lid 15, tubular opening 16, saucer 17, auxiliary heater 21, power coupler

Claims (2)

【特許請求の範囲】[Claims] (1)不活性ガスにJ、す3〜60気圧とした圧力容器
内で、ルツボにより高解離圧化合物融液を液封保持し、
回転引上軸のフォースバー下端に取付けた種子単結晶を
化合物融液面より回転させながら引上げる単結晶の製造
法において、ルツボ上にフォースバーを通す管状開口部
を上部に設けた石英製蓋を取付けてその下端を液封浴中
に保持し、蓋上部を400〜700℃の温度に加熱する
と共に、蓋内に揮発性元素を保持して蒸発させる受け曲
を設(プ、蓋内部を7 Torr〜4気圧の分圧の揮発
性元素蒸気雰囲気とし、液封浴中の温度勾配を100℃
/ cm Iズ下として単結晶を引上げることを特徴と
する高解離圧化合物単結晶の製造法。
(1) A high dissociation pressure compound melt is held in a liquid seal in a crucible in a pressure vessel with an inert gas atmosphere of 3 to 60 atmospheres,
In a single crystal production method in which a seed single crystal attached to the lower end of a force bar on a rotating pulling shaft is pulled from the compound melt surface while rotating, a quartz lid with a tubular opening at the top for passing a force bar over the crucible is used. Attach the lid and hold its lower end in a liquid bath, heat the upper part of the lid to a temperature of 400 to 700 degrees Celsius, and install a receiving curve inside the lid to retain and evaporate volatile elements. A volatile element vapor atmosphere with a partial pressure of 7 Torr to 4 atm, and a temperature gradient of 100°C in the liquid sealing bath.
1. A method for producing a single crystal of a high dissociation pressure compound, characterized by pulling the single crystal under a pressure of 1/cm I.
(2)不活性ガスにより3〜60気圧とした圧力容器内
で、ルツボにより高解離圧化合物融液を液封保持し、回
転引上軸のフォースバー下端に取付けた種子単結晶を化
合物融液面j、り回転させながら引上げる単結晶の製造
装置において、ルツボ上にフォースバーを通づ一管状開
口部を上部に設けた石英製蓋を取付けてその下端を液封
浴中に保持し、蓋−に部の外側に補助ヒーターを設け、
蓋内部のフォースバー下部に揮発性元素の受け皿を設け
て揮発性元素を蒸発せしめ、蓋内部を7TOrr〜4気
圧の分圧の揮発性元素蒸気雰囲気としたことを特徴とす
る高解離圧化合物単結晶の装造製電。
(2) In a pressure vessel maintained at 3 to 60 atmospheres with inert gas, a crucible holds the high dissociation pressure compound melt in a liquid seal, and the seed single crystal attached to the lower end of the force bar of the rotating pull-up shaft is placed in the compound melt. In an apparatus for producing single crystals that is pulled while rotating on plane J, a quartz lid with a tubular opening at the top is attached to the crucible through which a force bar is passed, and the lower end of the lid is held in a liquid sealing bath. An auxiliary heater is installed on the outside of the lid.
A high dissociation pressure compound monomer, characterized in that a volatile element receiving tray is provided at the lower part of the force bar inside the lid to evaporate the volatile element, and the inside of the lid is made into a volatile element vapor atmosphere with a partial pressure of 7 TOrr to 4 atm. Crystal manufacturing and electrical manufacturing.
JP58115717A 1983-06-27 1983-06-27 Method and device for producing compound single crystal with high dissociation pressure Pending JPS6011299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58115717A JPS6011299A (en) 1983-06-27 1983-06-27 Method and device for producing compound single crystal with high dissociation pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58115717A JPS6011299A (en) 1983-06-27 1983-06-27 Method and device for producing compound single crystal with high dissociation pressure

Publications (1)

Publication Number Publication Date
JPS6011299A true JPS6011299A (en) 1985-01-21

Family

ID=14669412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58115717A Pending JPS6011299A (en) 1983-06-27 1983-06-27 Method and device for producing compound single crystal with high dissociation pressure

Country Status (1)

Country Link
JP (1) JPS6011299A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233588A (en) * 1989-03-06 1990-09-17 Nippon Mining Co Ltd Growth of single crystal
DE102009027436A1 (en) 2009-07-02 2011-01-13 Calisolar Gmbh Growth of crystals made of electrically conductive melts, comprises crystallizing the electrically conductive melts into a diamond- or zinc blend structure, and introducing a crystal seed oriented in drawing direction into the melt

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233588A (en) * 1989-03-06 1990-09-17 Nippon Mining Co Ltd Growth of single crystal
DE102009027436A1 (en) 2009-07-02 2011-01-13 Calisolar Gmbh Growth of crystals made of electrically conductive melts, comprises crystallizing the electrically conductive melts into a diamond- or zinc blend structure, and introducing a crystal seed oriented in drawing direction into the melt

Similar Documents

Publication Publication Date Title
US10570528B2 (en) Apparatus and method for producing gallium oxide crystal
CN102197168B (en) Method and apparatus for manufacturing SiC single crystal film
CN113322510A (en) SiC single crystal growth device and liquid phase epitaxial SiC single crystal growth method
JP4253974B2 (en) SiC single crystal and growth method thereof
JP2008239480A (en) Semiconductor crystal
US3649193A (en) Method of forming and regularly growing a semiconductor compound
JPS6011299A (en) Method and device for producing compound single crystal with high dissociation pressure
JPH09221397A (en) Production of silicon carbide single crystal
JP3719341B2 (en) Liquid phase epitaxial growth method of SiC crystal
Blum et al. Growth of large single crystals of gallium phosphide from a stoichiometric melt
JP2800713B2 (en) Method for manufacturing compound semiconductor single crystal
JPS6011298A (en) Method and device for producing compound single crystal with high dissociation pressure
JPS62119198A (en) Device for rotating and pulling up single crystal provided with magnetic field impressing device
JPS58199796A (en) Pulling device of crystal under sealing with liquid
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JP2734813B2 (en) Method for manufacturing compound semiconductor single crystal
Shibata et al. 3C-SiC crystal on sapphire by solution growth method
JPH05319973A (en) Single crystal production unit
JPS5834925A (en) Liquid phase epitaxial growth device
JPH089517B2 (en) Single crystal manufacturing method
JPS58167500A (en) Preparation of single crystal of gallium arsenic
JPS58209109A (en) Growth of compound semiconductor crystal
JP2004338960A (en) METHOD FOR MANUFACTURING InP SINGLE CRYSTAL
JPH07206589A (en) Method for producing compound semiconductor single crystal
KR20210004468A (en) Single crystal growth device and single crystal growth method of using the same