JPS60111488A - Wavelength control type semiconductor laser - Google Patents

Wavelength control type semiconductor laser

Info

Publication number
JPS60111488A
JPS60111488A JP58218671A JP21867183A JPS60111488A JP S60111488 A JPS60111488 A JP S60111488A JP 58218671 A JP58218671 A JP 58218671A JP 21867183 A JP21867183 A JP 21867183A JP S60111488 A JPS60111488 A JP S60111488A
Authority
JP
Japan
Prior art keywords
laser
wavelength
diffraction grating
wavelengths
lambda2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58218671A
Other languages
Japanese (ja)
Other versions
JPS6412115B2 (en
Inventor
Hideto Furuyama
英人 古山
Hajime Okuda
肇 奥田
Yuzo Hirayama
雄三 平山
Yutaka Uematsu
豊 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58218671A priority Critical patent/JPS60111488A/en
Publication of JPS60111488A publication Critical patent/JPS60111488A/en
Publication of JPS6412115B2 publication Critical patent/JPS6412115B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Abstract

PURPOSE:To inhibit the variation of the state of laser oscillation by external reflected beams by giving a coupling coefficient between the progressive waves and reflected waves of laser beams at least two values and widening the spectral width of a wavelength control type semiconductor laser. CONSTITUTION:Groove sections 12 are formed on a substrate 11, and a distance up to a diffraction grating 13 from an active layer 15 differs at a central section and both end sections in the direction orthogonal to the direction of a resonator. The thickness of an optical waveguide 14 is thinned at both ensections and thickened at the central section, and the coupling coefficients of both end sections and the central section are made K1 and K2. A laser using the diffractin grating 13 is brought to a DFB laser having a coupling coefficient in which K1 and K2 are mixed. When the DFB laser is laser-oscillated at a mode of n=1, two wavelengths of lambda1 and lambda2 are oscillated. When the difference of the wavelengths of lambda1 and lambda2 is slight, two oscillating wavelengths of lambda1 and lambda2 is slight, two oscillating wavelengths couple by several slight wavelength extent, and oscillating spectrum, the width thereof is widened, which looks as through being oscillated by one wavelength is obtained.

Description

【発明の詳細な説明】 (発明の技術分野〕 本発明は、単−縦モードで安定なレーザ発振特性を示す
半導体レーザに係わり、特に外部反射光による発振状態
の変動を抑制した波長制御型半導体レーザに関する。
[Detailed Description of the Invention] (Technical Field of the Invention) The present invention relates to a semiconductor laser that exhibits stable laser oscillation characteristics in a single longitudinal mode, and in particular to a wavelength-controlled semiconductor laser that suppresses fluctuations in the oscillation state due to externally reflected light. Regarding lasers.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

DBR(分布ブラッグ反射)レーザやDFB(分布帰還
)レーザ等の波長制御型半導体レーザは、単−縦モード
で安定なレーザ発振が実現でき根性を利用して、−2の
波長だけをレーザ発振のための帰還光とするものであり
、非常に鋭い発振スペクトルを得ることができる。しか
も、この発振波長がブラッグ反射鏡の反射波長によって
固定されているため、温度や変調等による波長変動がh
pト常に小さいと言う特徴を有()でいる。
Wavelength-controlled semiconductor lasers such as DBR (distributed Bragg reflection) lasers and DFB (distributed feedback) lasers can achieve stable laser oscillation in a single longitudinal mode. It is possible to obtain a very sharp oscillation spectrum. Moreover, since this oscillation wavelength is fixed by the reflection wavelength of the Bragg reflector, wavelength fluctuations due to temperature, modulation, etc.
It has the characteristic that p is always small.

′ しかしながら、この種のレーザにあっては次のよう
な問題があった。すなわち、余りにも鋭い波長選択性を
有するために、反射光によるレーザ発振状態の変動が大
きいと云うことである。これは、光ファイバ等の結合部
でおこる反射光が外部の変動として帰還現象を起こさせ
るために生じるもので、発振スペクトルが狭いほど影響
が大きくなる。
' However, this type of laser has the following problems. In other words, because the wavelength selectivity is too sharp, the fluctuation of the laser oscillation state due to reflected light is large. This occurs because reflected light that occurs at a coupling part such as an optical fiber causes a feedback phenomenon as an external fluctuation, and the narrower the oscillation spectrum, the greater the effect.

従来、この対策としてビームスプリッタ、無反射被覆に
よる反射光抑止或いは高周波重畳によるスペクトル幅の
拡大等の方法が用いられてきた。
Conventionally, methods such as suppressing reflected light using a beam splitter or non-reflective coating, or expanding the spectral width using high frequency superposition have been used as countermeasures against this problem.

しかし、これらの方法では集積化及び小型化が難しいこ
とや変w4装置が複雑になる等の問題を有している。ま
た、反射光を抑止する方法だけでは十分な対策効果が得
られず、更に出力光強度を低下5′となく、外部反射光
によるレーザ発振状態の変動を抑制し得る波長制御型半
導体レーザを提供する:rhP とにある。
However, these methods have problems such as difficulty in integration and miniaturization and the complexity of the variable W4 device. In addition, the present invention provides a wavelength-controlled semiconductor laser that can suppress fluctuations in the laser oscillation state due to externally reflected light without reducing the output light intensity (5'), which would be insufficient to obtain a sufficient countermeasure effect by suppressing reflected light. Do: rhP.

ニー (発明の概要) 光の影響を改善するものである。すなわち本発明の骨子
は、部分的に伝搬する光の結合定数を変化させ広いスペ
クトル幅を得ることにある。
(Summary of the invention) This invention improves the effects of light. That is, the gist of the present invention is to obtain a wide spectrum width by partially changing the coupling constant of propagating light.

以下、本発明の概要を図面を参照して説明する。Hereinafter, an overview of the present invention will be explained with reference to the drawings.

なお、ここではDFBレーザを例にとり説明を行う。Note that the explanation will be given here by taking a DFB laser as an example.

第1図(a)は、従来のDFBレーザの概略構造を示す
斜視図、同図<b)はこのレーザの回折格子部分を示す
斜視図、同図(C)は光取り出し面を示す側面図であり
、図中1は基板、2は導波路層、3は活性層、4はクラ
ッド層、5は回折格子である。DFBレーザは基板1上
に設けられた回折格子5により分布的な光帰還が行われ
る。これによって光増幅が可能となりレーザ発振が行わ
れる。ここで、帰還される光は前述したように回折格子
5のブラッグ反射条件を満たす波長に限ら葎反射波長く
λb)を中心とする禁止帯幅wbをjII’ M”んで
発振可能となり、λbから離れたモード秤量の大きい方
のモードが先に発振を起こし、そのまま単−縦モードの
レーザ発振が起きる。これがDFBレーザの発振原理で
あるが、レーザ発振する波長は前述のごとくブラッグ反
射波長(λb)及び禁止帯幅(Wb)によって決定され
ている。
FIG. 1(a) is a perspective view showing the schematic structure of a conventional DFB laser, FIG. 1(b) is a perspective view showing the diffraction grating portion of this laser, and FIG. 1(C) is a side view showing the light extraction surface. In the figure, 1 is a substrate, 2 is a waveguide layer, 3 is an active layer, 4 is a cladding layer, and 5 is a diffraction grating. In the DFB laser, distributed optical feedback is performed by a diffraction grating 5 provided on the substrate 1. This enables optical amplification and laser oscillation. Here, as mentioned above, the reflected light is limited to a wavelength that satisfies the Bragg reflection condition of the diffraction grating 5, and can oscillate with a forbidden band width wb centered at λb), and from λb to The distant mode with a larger mode weight causes oscillation first, and single-longitudinal mode laser oscillation occurs.This is the oscillation principle of the DFB laser, but as mentioned above, the wavelength of laser oscillation is the Bragg reflection wavelength (λb ) and forbidden band width (Wb).

一方、禁止帯幅(Wb>はDFBレーザの光導波路(ク
ラッド層2及び活性層3)の等価屈折率。
On the other hand, the forbidden band width (Wb>) is the equivalent refractive index of the optical waveguide (cladding layer 2 and active layer 3) of the DFB laser.

進行波と反射波の結合係数に等によって決まる量であり
、K及び禁止帯幅(以下wbと記す)の関係は第2図(
b)のようになっている。つまりに5− が大きいほどwbは広くなる。
It is a quantity determined by the coupling coefficient between the traveling wave and the reflected wave, etc., and the relationship between K and forbidden band width (hereinafter referred to as wb) is shown in Figure 2 (
b). In other words, the larger 5- is, the wider wb becomes.

本発明者等はこのような点に着目し、上記禁止帯幅w 
bを1つのレーザで2つの値(若しくはそれ以上)を持
たせ、各値を十分近接させておくことにより、波長の僅
かに異なる2つのモードで発振が生じることを見出だし
た。さらに、これらの有効であることを見出だした。
The inventors of the present invention focused on such points, and the above-mentioned prohibited band width w
It has been found that by providing two (or more) values for b in one laser and keeping each value sufficiently close, oscillation occurs in two modes with slightly different wavelengths. Furthermore, we have found that these are effective.

すなわち本発明は、光導波路に所定周期の回折格子を設
けた波長制御型半導体レーザにおいて、上記回折格子が
設けられている平面内におけるレーザ行進方向と直角な
方向で、レーザ光の進行波と反射波との結合係数Kに少
なくとも2つの値を持たせるようにしたものである。
That is, the present invention provides a wavelength-controlled semiconductor laser in which an optical waveguide is provided with a diffraction grating of a predetermined period, in which a traveling wave of a laser beam and a reflection are generated in a direction perpendicular to the laser traveling direction in a plane in which the diffraction grating is provided. The wave coupling coefficient K has at least two values.

6− 〔発明の実施例〕 第3図は本発明の一実施例に係わるDFBレーザの概略
構造を示す側面図である。図中11はN−InP基板で
、この基板11上には第4図に斜視図を示す如くストラ
イプ状の溝部12が形成され、さらにこの溝部を含み基
板11上には回折格子13が形成されている。このよう
な溝部12及び回折格子13が形成された基板11上に
はN−TnGaASP導波層14(λ=i、2μm>、
InGaASP活性層15(λ−1,3μm)及%P−
1nPクラッド層16が順次積層されてい′1 □る。そして、クラッド層16上にコンタク]・層を・
jB′F、してP側電極を被着し、基板11の下面にN
側電極を被着してDFBレーザが構成されるものとなっ
ている。
6- [Embodiment of the Invention] FIG. 3 is a side view showing a schematic structure of a DFB laser according to an embodiment of the invention. In the figure, reference numeral 11 denotes an N-InP substrate. On this substrate 11, a striped groove 12 is formed as shown in a perspective view in FIG. ing. On the substrate 11 on which the groove portion 12 and the diffraction grating 13 are formed, an N-TnGaASP waveguide layer 14 (λ=i, 2 μm>,
InGaASP active layer 15 (λ-1, 3 μm) and %P-
1nP cladding layers 16 are sequentially laminated. Then, a contact layer is placed on the cladding layer 16.
jB′F, and then deposit the P-side electrode, and apply N on the lower surface of the substrate 11.
A DFB laser is constructed by attaching side electrodes.

次に、上記構成された実施例レーザの作用について説明
する。
Next, the operation of the embodiment laser configured as described above will be explained.

前記基板11上に溝部12が形成されているので、活性
層15から回折格子13までの距離は、共振器方向と直
向する方向において中央部と両端7一 部とで異なったものとなる。これを分割して考えると上
記両端部では活性層15と回折格子13までの距離、つ
まり光導波n14の厚さが薄いので第5図(a)に示す
如くなり、このときの結合係数をに1とする。一方、上
記中央部では、光導波路層14の厚さが厚いので第5図
(b)に示す如くなり、このときの結合係数をに2とす
る。K1と1〈2との関係はに1 >K2となり、K1
の方かに2の方より広い禁制帯幅を持つ。つまり、K1
の方かに2より発振波長λbから離れることになる。
Since the groove portion 12 is formed on the substrate 11, the distance from the active layer 15 to the diffraction grating 13 is different between the central portion and a portion of both ends 7 in the direction perpendicular to the resonator direction. If we consider this separately, the distance between the active layer 15 and the diffraction grating 13, that is, the thickness of the optical waveguide n14, is thin at both ends, as shown in FIG. 5(a), and the coupling coefficient at this time can be calculated as follows. Set to 1. On the other hand, in the central portion, the optical waveguide layer 14 is thick, as shown in FIG. 5(b), and the coupling coefficient at this time is set to 2. The relationship between K1 and 1<2 is 1>K2, and K1
has a wider forbidden band width than that of 2. In other words, K1
is further away from the oscillation wavelength λb by 2.

したがって、第5図(a>(b)を組合せた回折格子1
3を用いた実施例レーザはに1、K2のト2の差によっ
て決まる波長弁だけずれてモード基が発生ずることにな
る。ここで、第3図に示した古、すことになる。しかも
λ1.λ2の波長差が僅(鴇 ・か数[X]程度である場合、2つの発振波長λ1゜λ
2はそれぞれの僅かな波長床がりによって結合し第6図
(b)の実線に示すようなあたかも1つの波長で発振し
ているような発振スペクトルとなる。これにより、回折
格子のブラッグ反射条件によって固定された発振波長を
有しながら、発振スペクトル幅の広がったDFBレーザ
を得ることが可能になる。
Therefore, in FIG. 5, the diffraction grating 1 combining (a>(b))
In the example laser using 3, a mode group is generated with a wavelength difference determined by the difference between 1 and 2 of K2. Here, we will move on to the age shown in Figure 3. Moreover, λ1. If the wavelength difference between λ2 is only a few [X], the two oscillation wavelengths λ1゜λ
2 are combined by a slight wavelength offset, resulting in an oscillation spectrum as if they were oscillating at one wavelength, as shown by the solid line in FIG. 6(b). This makes it possible to obtain a DFB laser with a wide oscillation spectrum width while having an oscillation wavelength fixed by the Bragg reflection condition of the diffraction grating.

かくして、本実施例によれば、DFBレーザでありなが
ら、その発振スペクトル幅を広げることができる。この
ため、外部反射光によるレーザ発振状態の変動を抑制す
ることができ、DADその他各種の応用が可能である。
Thus, according to this embodiment, although it is a DFB laser, its oscillation spectrum width can be widened. Therefore, fluctuations in the laser oscillation state due to externally reflected light can be suppressed, and various applications such as DAD are possible.

また、ビームスプリッタや反射防止膜等を設ける必要が
ないので、集積化及び小型化等にも極めて有効である。
Furthermore, since there is no need to provide a beam splitter, antireflection film, etc., it is extremely effective for integration and miniaturization.

なお、本発明は上述した実施例に限定されるも・−に示
す如く回折格子を形成すべき部分にストライl −9− −<、それ以上の値を有するものであってもよい。
Although the present invention is limited to the above-mentioned embodiments, the portion where the diffraction grating is to be formed may have a stripe l −9− −< or more as shown in FIG.

つまり、ストライプ状の溝部や凸部以外に、第8もので
あってもよい。また、DFBレーザに限らず、DBRレ
ーザであっても同様な現象効果が得られ、その他各種の
波長制御型レーザに適用することが可能である。その他
、本発明の要旨を逸脱しない範囲で、種々変形して実施
することができる。
In other words, in addition to the striped grooves and protrusions, the eighth groove may be used. Further, the same phenomenon effect can be obtained not only with a DFB laser but also with a DBR laser, and it is possible to apply the present invention to various other wavelength-controlled lasers. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)は従来のDFBレーザの構造を示
すための斜視図及び側面図、第2図(a)(b)は上記
DFBレーザの動作特性を説明するための模式図、第3
図は本発明の一実施例に係わるDFBレーザの概略構造
を示す側面図、第4図は上記実施例レーザに用いた回折
格子の形状を示す斜視図、第5図(a)(b)及び第6
図(a)10− (b)はそれぞれ上記実施例レーザ作用を説明するため
の模式図、第7図及び第8図はそれぞれ変11− 第1図 (a) (b) (C) 第3図 第4図 3 第5図 (a)(b) に1ンに2 第6図 λB(7ブツダ5皮長) (b) λ2λ1 ン良畏
Figures 1 (a) to (C) are perspective views and side views showing the structure of a conventional DFB laser, and Figures 2 (a) and (b) are schematic diagrams explaining the operating characteristics of the DFB laser. , 3rd
The figure is a side view showing the schematic structure of a DFB laser according to an embodiment of the present invention, FIG. 4 is a perspective view showing the shape of the diffraction grating used in the laser of the above embodiment, and FIGS. 6th
Figures (a) and 10-(b) are schematic diagrams for explaining the laser action of the above embodiment, respectively, and Figures 7 and 8 are respectively modified. Figure 4 Figure 3 Figure 5 (a) (b) 1 to 2 Figure 6 λB (7 but 5 skin length) (b) λ2λ1

Claims (1)

【特許請求の範囲】 (1)光導波路に所定周期の回折格子を設けた波長制御
型半導体レーザにおいて、前記回折格子が設けられてい
る平面内におけるレーザ光進行方向は、レーザ光の進行
方向に沿ってストライプ状の溝部が形成され、かつこの
溝部を含んで上記回折格子が形成されていることを特徴
とする特許請求の範囲第1項記載の波長制御型半導体レ
ーザ。 (3)前記回折格子が設けられている平面内には、レー
ザ光の進行方向に沿ってストライプ状の凸部が設けられ
、かつこのストライプ状の凸部を含んで上記回折格子が
形成されていることを特徴とする特許請求の範囲第1項
記載の波長制御型半導体レーザ。
[Scope of Claims] (1) In a wavelength-controlled semiconductor laser in which an optical waveguide is provided with a diffraction grating of a predetermined period, the traveling direction of the laser beam in the plane in which the diffraction grating is provided is the same as the traveling direction of the laser beam. 2. The wavelength-controlled semiconductor laser according to claim 1, wherein a stripe-shaped groove is formed along the groove, and the diffraction grating is formed including the groove. (3) Striped convex portions are provided in the plane on which the diffraction grating is provided along the traveling direction of the laser beam, and the diffraction grating is formed including the striped convex portions. A wavelength-controlled semiconductor laser according to claim 1, characterized in that:
JP58218671A 1983-11-22 1983-11-22 Wavelength control type semiconductor laser Granted JPS60111488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58218671A JPS60111488A (en) 1983-11-22 1983-11-22 Wavelength control type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58218671A JPS60111488A (en) 1983-11-22 1983-11-22 Wavelength control type semiconductor laser

Publications (2)

Publication Number Publication Date
JPS60111488A true JPS60111488A (en) 1985-06-17
JPS6412115B2 JPS6412115B2 (en) 1989-02-28

Family

ID=16723595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58218671A Granted JPS60111488A (en) 1983-11-22 1983-11-22 Wavelength control type semiconductor laser

Country Status (1)

Country Link
JP (1) JPS60111488A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143787A (en) * 1976-05-26 1977-11-30 Hitachi Ltd Semiconductor laser
JPS55125691A (en) * 1979-03-22 1980-09-27 Nec Corp Distributed feedback type semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143787A (en) * 1976-05-26 1977-11-30 Hitachi Ltd Semiconductor laser
JPS55125691A (en) * 1979-03-22 1980-09-27 Nec Corp Distributed feedback type semiconductor laser

Also Published As

Publication number Publication date
JPS6412115B2 (en) 1989-02-28

Similar Documents

Publication Publication Date Title
Lang et al. Theory of grating-confined broad-area lasers
US6118803A (en) Optically amplifying semiconductor diodes with curved waveguides for external cavities
JP2768940B2 (en) Single wavelength oscillation semiconductor laser device
JP2011253930A (en) Semiconductor optical device
JPH0449793B2 (en)
JP2001308454A (en) Light wavelength converting module
JPS6085589A (en) Optical device for emitting sole vertical mode laser light
JP3220259B2 (en) Laser device
JPH01293683A (en) Variable wavelength semiconductor laser
JP2002084033A (en) Distributed feedback semiconductor laser
JPS63164382A (en) Semiconductor laser device
JP2010050162A (en) Semiconductor wavelength variable laser
JPS61222189A (en) Semiconductor laser
JPS6362917B2 (en)
JPS60111488A (en) Wavelength control type semiconductor laser
JPS63111689A (en) Distributed feedback type semiconductor laser
JPS63186A (en) Semiconductor laser
JPH03268379A (en) Semiconductor laser-chip and manufacture thereof
JPS63299291A (en) Semiconductor laser
JPS6295886A (en) Distribution feedback construction semiconductor laser
JP3595677B2 (en) Optical isolator, distributed feedback laser and optical integrated device
JP2732604B2 (en) Distributed feedback laser
JPS63269592A (en) Semiconductor laser
JP2010021308A (en) Wavelength variable semiconductor laser
JPS60152086A (en) Semiconductor laser device