JPS63186A - Semiconductor laser - Google Patents
Semiconductor laserInfo
- Publication number
- JPS63186A JPS63186A JP61143609A JP14360986A JPS63186A JP S63186 A JPS63186 A JP S63186A JP 61143609 A JP61143609 A JP 61143609A JP 14360986 A JP14360986 A JP 14360986A JP S63186 A JPS63186 A JP S63186A
- Authority
- JP
- Japan
- Prior art keywords
- phase adjustment
- adjustment means
- propagation constant
- total value
- optical waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 10
- 230000003287 optical effect Effects 0.000 claims abstract description 22
- 230000010355 oscillation Effects 0.000 abstract description 16
- 230000008878 coupling Effects 0.000 abstract description 3
- 238000010168 coupling process Methods 0.000 abstract description 3
- 238000005859 coupling reaction Methods 0.000 abstract description 3
- 238000009826 distribution Methods 0.000 description 9
- 238000005253 cladding Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1053—Comprising an active region having a varying composition or cross-section in a specific direction
- H01S5/1064—Comprising an active region having a varying composition or cross-section in a specific direction varying width along the optical axis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/124—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts
- H01S5/1243—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts by other means than a jump in the grating period, e.g. bent waveguides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/124—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts
- H01S5/1246—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts plurality of phase shifts
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
この発明は、分布帰還形半導体レーザにおいて、その光
導波領域に光波の位相調整手段を複数個配設し、かつ該
位相調整手段による位相調整量の合計値Δψを、
Δ、ψ=±−±nπ (nは整数)
とすることにより、
発振が成長した状態でも共振器内の界強度差、屈折率差
を抑制してモード選択性を確保し、安定した単一波長の
光出力を得るものである。[Detailed Description of the Invention] [Summary] The present invention provides a distributed feedback semiconductor laser in which a plurality of light wave phase adjustment means are disposed in the optical waveguide region thereof, and the total value of the phase adjustment amount by the phase adjustment means is adjusted. By setting Δψ to Δ, ψ = ±−±nπ (n is an integer), even when oscillation grows, field strength differences and refractive index differences within the resonator are suppressed to ensure mode selectivity and stability. This provides a single wavelength optical output.
本発明は半導体レーザ、特に単一波長の光出力を得る分
布帰還形半導体レーザの構造に関する。The present invention relates to a semiconductor laser, and more particularly to the structure of a distributed feedback semiconductor laser that obtains a single wavelength optical output.
光を情報信号の媒体とする光通信システムなどの高度化
及び多様化を推進するために、単一波長発振に適する分
布帰還形(DFB) レーザに期待が寄せられている
が、従来のDFBレーザで高出力を求めればその発振モ
ードの安定性が低下し易く、その改善が要望されている
。In order to promote the sophistication and diversification of optical communication systems that use light as a medium for information signals, expectations are placed on distributed feedback (DFB) lasers that are suitable for single-wavelength oscillation, but conventional DFB lasers If high output is sought, the stability of the oscillation mode tends to deteriorate, and improvements are desired.
発振波長すなわち縦モードの制御に適する半導体レーザ
として、光導波領域に設けた回折格子によって選択的に
帰還を行うDFBレーザが最も期待されている。As a semiconductor laser suitable for controlling the oscillation wavelength, that is, the longitudinal mode, a DFB laser that selectively performs feedback using a diffraction grating provided in an optical waveguide region is the most promising.
この回折格子はブラッグ波長λ、において光波の反射率
が極大となるが、回折格子による反射ではこのブラッグ
波長λ、の光波は1回の反射でその位相が2π変化し、
1往復では位相変化がπすなわち反転するためにこのブ
ラッグ波長では発振せず、共振器の1端面から他の端面
までの伝搬中に回折格子に対してほぼ±(2±n)πの
位相のずれを生ずる波長で正帰還となリレーザ発振が行
われる。この発振条件のうちn=0の2波長の闇値電流
が最も小さく、通常のDFBレーザの縦モードはこの2
波長λ9、λ2を含む、或いはその一方から他方に変動
し易い不安定なモードとなる。This diffraction grating has a maximum reflectance of the light wave at the Bragg wavelength λ, but upon reflection by the diffraction grating, the phase of the light wave at the Bragg wavelength λ changes by 2π with one reflection.
In one round trip, the phase change is π, that is, reversed, so oscillation does not occur at this Bragg wavelength, and during propagation from one end face of the resonator to the other end face, a phase change of approximately ± (2 ± n) π is generated with respect to the diffraction grating. Positive feedback relay laser oscillation is performed at the wavelength that causes the shift. Among these oscillation conditions, the dark value current of the two wavelengths n = 0 is the smallest, and the longitudinal mode of a normal DFB laser is in these two wavelengths.
It becomes an unstable mode that includes the wavelengths λ9 and λ2 or easily fluctuates from one to the other.
上述の性質を有するDFBレーザの縦モードを単一にす
るために第3図に示す如き構造が知られている。図にお
いて、26は活性層、25はガイド層、23及び27は
クラッド層であり、ガイド層25とクランド層23との
界面に1次の回折格子24を形成し、中央からみて左側
と右側で、回折格子24のコルゲーションの位相をその
周期への〃シフトさせることにより所要の位相差を与え
ている。A structure as shown in FIG. 3 is known for making the longitudinal mode of a DFB laser having the above-mentioned properties single. In the figure, 26 is an active layer, 25 is a guide layer, 23 and 27 are cladding layers, and a first-order diffraction grating 24 is formed at the interface between the guide layer 25 and the cladding layer 23. , the required phase difference is provided by shifting the phase of the corrugations of the diffraction grating 24 to that period.
この構造を実際に製造するには、例えば位相を2八飛躍
させる位置を界面として一方にポジレジスト他方にネガ
レジストを塗布し、これを2光束干渉法で露光してレジ
ストマスクを形成するが、この構造を正確に実現するこ
とは容易ではない。To actually manufacture this structure, for example, a positive resist is applied to one side and a negative resist is applied to the other side, using the position where the phase jumps by 28 as an interface, and this is exposed using a two-beam interference method to form a resist mask. Accurately realizing this structure is not easy.
単一波長発振を容易に実現するために、本特許出願人は
先に特願昭59−210588により下記のDFBレー
ザを提供している。すなわち該発明によれば、コルゲー
ションを有する光導波領域に伝搬定数を異にする部分が
選択的に形成され、該伝搬定数を異にする部分とその他
の部分との伝搬定数差をΔβとし、かつ該伝搬定数を異
にする部分の長さをL2として、
Δβl、z=±−±nπ (nは整数)とすることによ
り、ブラッグ波長の単−縦モード発振が得られる。In order to easily realize single wavelength oscillation, the applicant of this patent previously provided the following DFB laser in Japanese Patent Application No. 59-210588. That is, according to the invention, portions having different propagation constants are selectively formed in the optical waveguide region having corrugations, and the difference in propagation constant between the portions having different propagation constants and other portions is Δβ, and By setting the length of the portion where the propagation constant is different as L2 and Δβl, z=±−±nπ (n is an integer), single-longitudinal mode oscillation at the Bragg wavelength can be obtained.
第4図はその1実施例の模式斜視図であり、その半導体
基体31内のn型)nGaAsPガイド層及びInGa
AsP活性層からなり全長し、幅Wの光導波領域36の
うち、長さL2の部分36Aを幅W2として伝搬定数差
Δβを与えている。FIG. 4 is a schematic perspective view of one embodiment, in which an n-type)nGaAsP guide layer and an InGaAsP guide layer in the semiconductor substrate 31 are shown.
Of the optical waveguide region 36 which is made of an AsP active layer and has a width W, a portion 36A having a length L2 is set as a width W2 to provide a propagation constant difference Δβ.
前記発明により単一波長発振が容易に実現されるが、こ
の構造のDFBレーザでも回折格子の結合係数にが比較
的に大きく共振器(光導波領域)長しとの積にLが1.
5〜2.0程度以上の低閾値レーザなどでは、発振の成
長に伴って多モード化することがありその対策が要望さ
れている。Although single wavelength oscillation can be easily realized by the above invention, even in a DFB laser with this structure, the coupling coefficient of the diffraction grating is relatively large, and the product of L and the length of the resonator (optical waveguide region) is 1.
In low-threshold lasers of about 5 to 2.0 or more, multimodes may develop as oscillation grows, and countermeasures are required.
この現象は第5図(a)に界強度(光強度)分布、同開
山)に屈折率分布を何れも共振器長方向について例示す
る如く、発振が成長し光出力が増大するに伴って、光導
波領域の拡幅などの位相調整部分で界強度が特に強くな
り、この位置で誘導放出が増加してキャリア密度が城少
し共振器内の屈折率分布に僅かながら差異を生じて、モ
ード選択性すなわちモード相互間の最低閾値の差が減少
することによる。This phenomenon occurs as the oscillation grows and the optical output increases, as shown in the field intensity (light intensity) distribution in Fig. 5(a) and the refractive index distribution in Fig. The field strength becomes particularly strong at the phase adjustment part such as the widening of the optical waveguide region, and stimulated emission increases at this position, which lowers the carrier density. This causes a slight difference in the refractive index distribution within the resonator, which improves mode selectivity. That is, the difference in minimum threshold values between modes is reduced.
前記問題点は、コルゲーションを有する光導波領域に光
波の位相調整手段が複数個配設され、かつ該位相調整手
段によゐ位相調整量の合計値Δψが、
Δψ=±π/2±nπ (nは整
数)である本発明による半導体レーザにより解決される
。The problem is that a plurality of light wave phase adjustment means are disposed in an optical waveguide region having corrugations, and the total value Δψ of the amount of phase adjustment by the phase adjustment means is as follows: Δψ=±π/2±nπ ( n is an integer).
本発明によれば、例えば上述の如き位相調整手段を複数
個分散配置することにより、第2図(al、(b)の共
振器長方向の異強度分布、屈折率分布の如く、共振器内
の異強度差、屈折率差を実線で例示する様に破線の従来
例より大幅に抑制してモード選択性を確保する。According to the present invention, for example, by arranging a plurality of phase adjusting means as described above in a distributed manner, the different intensity distributions and refractive index distributions in the resonator length direction shown in FIGS. As illustrated by the solid line, the difference in intensity and the difference in refractive index are significantly suppressed compared to the conventional example shown by the broken line, thereby ensuring mode selectivity.
なおこの複数の位相調整手段を光導波方向の中心に関し
て対称的に配設すれば、界強度、屈折率を平均化し、変
動を抑制する効果が大きい。Note that if the plurality of phase adjustment means are arranged symmetrically with respect to the center of the optical waveguide direction, the effect of averaging the field strength and refractive index and suppressing fluctuations is great.
また複数の位相調整手段による位相調整量の合計値Δψ
を、
Δψ=±π/2±nπ (nは整
数)とすることは単−縦モードを得るために当然必要で
あり、例えば位相調整手段として光導波領域に前記発明
と同様な伝搬定数を異にする部分を複数個形成する場合
に、伝搬定数を異にする部分のその他の部分との伝搬定
数差及び長さをそれぞれΔβいLiとして、位相調整量
の合計値Δψを、〔実施例〕
以下本発明を実施例により具体的に説明する。In addition, the total value Δψ of the amount of phase adjustment by multiple phase adjustment means
It is naturally necessary to set Δψ=±π/2±nπ (n is an integer) in order to obtain a single longitudinal mode. [Example] When forming a plurality of parts with different propagation constants, the difference in propagation constant from other parts and the length of the parts with different propagation constants are respectively Δβ and Li, and the total value of the phase adjustment amount Δψ is calculated. The present invention will be specifically explained below using examples.
第1図は本発明の実施例を示し、同図(a)はその模式
側断面図、同図(b)はその光導波領域の模式斜視図、
同図(C)はその界分布を示す図である。FIG. 1 shows an embodiment of the present invention, FIG. 1(a) is a schematic side sectional view thereof, FIG. 1(b) is a schematic perspective view of the optical waveguide region,
Figure (C) is a diagram showing the field distribution.
同図(alにおいて、1はイ型1nP基板、3はn型I
nPクラッド層、4はコルゲーション、5は例えばルミ
ネセンスピーク波長λg = 1.2.Irrn、厚さ
0.2−程度のn型1nGaAsPガイド層、6は例え
ばルミネセンスピーク波長λg=1.3−1厚さ0.1
5μm程度でノンドープのInGaAsP活性層、7は
p型1nPクラッド層、8はp+梨型1nGaAsPン
タクト層、9はn側電極、10はp側電極である。In the same figure (al, 1 is an A-type 1nP substrate, 3 is an n-type I
nP cladding layer, 4 is corrugation, and 5 is, for example, the luminescence peak wavelength λg = 1.2. Irrn, an n-type 1nGaAsP guide layer with a thickness of about 0.2-1, 6 is, for example, a luminescence peak wavelength λg=1.3-1 and a thickness of 0.1
A non-doped InGaAsP active layer with a thickness of approximately 5 μm, 7 a p-type 1nP cladding layer, 8 a p+ pear-shaped 1nGaAsP contact layer, 9 an n-side electrode, and 10 a p-side electrode.
本実施例ではガイド層5及び活性層6からなる全長し、
幅Wの光導波領域に、その導波方向の中心に関して対称
的な各端面からの距離Sの位置に、それぞれ長さl、幅
W2の拡幅部分2個を配置し、これらの各寸法及び結合
係数にを例えば、L =400tm、 l
=30um。In this embodiment, the total length consists of a guide layer 5 and an active layer 6,
In an optical waveguide region having a width W, two widened portions each having a length l and a width W2 are arranged at a distance S from each end face symmetrical with respect to the center of the waveguide direction, and each of these dimensions and coupling is For example, L = 400tm, l
=30um.
W−1,8−1W、=2.5Ilrn。W-1,8-1W,=2.5Ilrn.
S=0.3L。S=0.3L.
に= 60cm−’、 K L =2.4として、
この拡幅部分の伝搬定数β2とその他の部分の伝搬定数
β、との差Δβ=β2−β、により、位相調整量の合計
値Δψを、
π
Δψ=21Δβ=−±nπ
としている。= 60 cm-', K L = 2.4,
Based on the difference Δβ=β2−β between the propagation constant β2 of the widened portion and the propagation constant β of the other portions, the total value Δψ of the phase adjustment amount is set to π Δψ=21Δβ=−±nπ.
本実施例は発振が成長した後の界分布が第1図(C1の
如く改善され、大出力でもブラッグ波長λ8の単−縦モ
ードが安定に保たれている。In this embodiment, the field distribution after the oscillation has grown is improved as shown in FIG. 1 (C1), and the single longitudinal mode with the Bragg wavelength λ8 is kept stable even at high output.
なお本実施例では伝搬定数の差Δβを光導波頭域の幅の
差によって与えているが、前記先願発明によって提供し
た如く、例えばガイド層もしくは活性層の厚さの差、半
導体材料の選択などで伝搬定数に差を与えてもよい。In this embodiment, the difference in propagation constant Δβ is given by the difference in the width of the optical waveguide region, but as provided by the prior invention, for example, the difference in the thickness of the guide layer or the active layer, the selection of the semiconductor material, etc. It is also possible to give a difference in the propagation constant.
以上説明した如く本発明によれば、DFBレーザのにL
が大きい場合にもそのモード選択性が発振成長後も確保
されて、大出力の単一波長光を安定して得ることが可能
となり、光を情報信号の媒体とする光通信等のシステム
の高速、大容量化などの進展に大きく寄与する。As explained above, according to the present invention, the L
Even when the oscillation is large, the mode selectivity is maintained even after oscillation growth, making it possible to stably obtain high-output single-wavelength light. , will greatly contribute to advances in capacity expansion, etc.
第1図は本発明の実施例を示す図、
第2図は本発明による界強度及び屈折率の共振器長方向
の分布の例を示す図、
第3図はコルゲーション位相シフトの従来例の模式図、
第4図は伝搬定数に差を設ける従来例の模式図、第5図
は従来の界強度及び屈折率の共振器長方向の分布の例を
示す図である。
図において、
1はヤ型1nP基板、
3はn型InPクラッド層、
4はコルゲーション、
5はn型1nGaAsPガイド層、
6はInGaAsP活性層、
7はp型1nPクラッド層、
8はp十型InGaAsP ’:1ンタクト層、9はn
側電極、
10はp側電極を示す。
(ρ)
(b)
単一2 Z
革3図
単4因
(b)
暑ト長プh司の徐怖のグ″1哨ボ1図
$5図Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing an example of the distribution of field strength and refractive index in the cavity length direction according to the present invention, and Fig. 3 is a schematic diagram of a conventional example of corrugation phase shift. 4 is a schematic diagram of a conventional example in which a difference in propagation constant is provided, and FIG. 5 is a diagram showing an example of the conventional distribution of field strength and refractive index in the resonator length direction. In the figure, 1 is a Y-type 1nP substrate, 3 is an n-type InP cladding layer, 4 is a corrugation, 5 is an n-type 1nGaAsP guide layer, 6 is an InGaAsP active layer, 7 is a p-type 1nP cladding layer, 8 is a p-type InGaAsP ': 1 contact layer, 9 is n
10 indicates a p-side electrode. (ρ) (b) Single 2 Z Leather 3 figures Single 4 factors (b) Hot Tochopu hji's Xuhuan's Gu'' 1 guard 1 figure $5 figure
Claims (1)
整手段が複数個配設され、かつ該位相調整手段による位
相調整量の合計値Δψが、 Δψ=±π/2±nπ(nは整数) であることを特徴とする半導体レーザ。 2)前記位相調整手段が光導波方向の中心に関して対称
的に配設されてなることを特徴とする特許請求の範囲第
1項記載の半導体レーザ。 3)前記位相調整手段が、光導波領域に伝搬定数を異に
する部分を選択的に形成し、該伝搬定数を異にする部分
とその他の部分との伝搬定数差をΔβ_i、該伝搬定数
を異にする部分の長さをL_iとして、前記位相調整量
の合計値Δψが、 Δψ=Σ_iΔβ_iL_i であることを特徴とする特許請求の範囲第1項記載の半
導体レーザ。[Claims] 1) A plurality of light wave phase adjustment means are disposed in an optical waveguide region having corrugations, and the total value Δψ of the amount of phase adjustment by the phase adjustment means is Δψ=±π/2±nπ (n is an integer) A semiconductor laser characterized by: 2) The semiconductor laser according to claim 1, wherein the phase adjustment means is arranged symmetrically with respect to the center of the optical waveguide direction. 3) The phase adjustment means selectively forms portions with different propagation constants in the optical waveguide region, and sets the propagation constant difference between the portions with different propagation constants and other portions to Δβ_i, and the propagation constant to 2. The semiconductor laser according to claim 1, wherein the total value Δψ of the phase adjustment amount is Δψ=Σ_iΔβ_iL_i, where L_i is the length of the different portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61143609A JPS63186A (en) | 1986-06-19 | 1986-06-19 | Semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61143609A JPS63186A (en) | 1986-06-19 | 1986-06-19 | Semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63186A true JPS63186A (en) | 1988-01-05 |
Family
ID=15342710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61143609A Pending JPS63186A (en) | 1986-06-19 | 1986-06-19 | Semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63186A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4857402A (en) * | 1986-04-03 | 1989-08-15 | Fuji Photo Film Co., Ltd. | Magnetic recording medium |
JPH0269983A (en) * | 1988-09-06 | 1990-03-08 | Toshiba Corp | Distributed feedback-type laser |
EP0436300A2 (en) * | 1990-01-02 | 1991-07-10 | AT&T Corp. | Analog optical fiber communication system, and laser adapted for use in such a system |
FR2677499A1 (en) * | 1991-06-07 | 1992-12-11 | Alsthom Cge Alcatel | Monomode semiconductor laser with distributed feedback and its method of manufacture |
EP0588197A1 (en) * | 1992-09-07 | 1994-03-23 | Kabushiki Kaisha Toshiba | High power distributed feedback semiconductor laser |
JPWO2021005700A1 (en) * | 2019-07-09 | 2021-01-14 |
-
1986
- 1986-06-19 JP JP61143609A patent/JPS63186A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4857402A (en) * | 1986-04-03 | 1989-08-15 | Fuji Photo Film Co., Ltd. | Magnetic recording medium |
JPH0269983A (en) * | 1988-09-06 | 1990-03-08 | Toshiba Corp | Distributed feedback-type laser |
EP0436300A2 (en) * | 1990-01-02 | 1991-07-10 | AT&T Corp. | Analog optical fiber communication system, and laser adapted for use in such a system |
FR2677499A1 (en) * | 1991-06-07 | 1992-12-11 | Alsthom Cge Alcatel | Monomode semiconductor laser with distributed feedback and its method of manufacture |
EP0588197A1 (en) * | 1992-09-07 | 1994-03-23 | Kabushiki Kaisha Toshiba | High power distributed feedback semiconductor laser |
JPWO2021005700A1 (en) * | 2019-07-09 | 2021-01-14 | ||
WO2021005700A1 (en) * | 2019-07-09 | 2021-01-14 | 日本電信電話株式会社 | Semiconductor optical element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7366220B2 (en) | Tunable laser | |
US7242699B2 (en) | Wavelength tunable semiconductor laser apparatus | |
US6577660B1 (en) | Distributed feedback type semiconductor laser device having gradually-changed coupling coefficient | |
JP2005510090A (en) | Surface emitting DFB laser structure for broadband communication systems and arrangement of this structure | |
JP5365510B2 (en) | Semiconductor integrated device | |
EP0533485A1 (en) | Semiconductor device and method of making it | |
US7949020B2 (en) | Semiconductor laser and optical integrated semiconductor device | |
JP4469759B2 (en) | Tunable laser | |
JP4904874B2 (en) | Tunable laser | |
JP2003289169A (en) | Semiconductor laser | |
JPS63186A (en) | Semiconductor laser | |
US20060120428A1 (en) | Distributed feedback (DFB) semiconductor laser and fabrication method thereof | |
JPS63185A (en) | Semiconductor laser | |
JP4076145B2 (en) | Complex coupled distributed feedback semiconductor laser | |
JPH06112570A (en) | Distributed bragg-reflection type semiconductor laser | |
US6307989B1 (en) | Optically functional device | |
US11557876B2 (en) | Semiconductor laser | |
JP4074534B2 (en) | Semiconductor laser | |
JP3261679B2 (en) | Driving method of distributed feedback semiconductor laser | |
JPH0290583A (en) | Multi-wavelength semiconductor laser | |
EP1304779A2 (en) | Distributed feedback semiconductor laser | |
JP2004031402A (en) | Distributed feedback type semiconductor laser element | |
JP2770897B2 (en) | Semiconductor distributed reflector and semiconductor laser using the same | |
JP2000223774A (en) | Wavelength-variable light source | |
JPH0770781B2 (en) | Semiconductor laser array |