JPS63185A - Semiconductor laser - Google Patents
Semiconductor laserInfo
- Publication number
- JPS63185A JPS63185A JP61143604A JP14360486A JPS63185A JP S63185 A JPS63185 A JP S63185A JP 61143604 A JP61143604 A JP 61143604A JP 14360486 A JP14360486 A JP 14360486A JP S63185 A JPS63185 A JP S63185A
- Authority
- JP
- Japan
- Prior art keywords
- oscillation
- laser
- wavelength
- phase
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 8
- 230000010363 phase shift Effects 0.000 claims abstract description 16
- 230000003287 optical effect Effects 0.000 claims abstract description 9
- 230000010355 oscillation Effects 0.000 abstract description 15
- 238000000034 method Methods 0.000 abstract description 4
- 230000008878 coupling Effects 0.000 abstract description 3
- 238000010168 coupling process Methods 0.000 abstract description 3
- 238000005859 coupling reaction Methods 0.000 abstract description 3
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 3
- UIZLQMLDSWKZGC-UHFFFAOYSA-N cadmium helium Chemical compound [He].[Cd] UIZLQMLDSWKZGC-UHFFFAOYSA-N 0.000 abstract description 2
- 238000009826 distribution Methods 0.000 description 7
- 238000005253 cladding Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000004020 luminiscence type Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
この発明は、分布帰還形半導体レーザにおいて、ブラッ
ク波長の光波に対して2πの位相差に相当する位相シフ
トを、そのコルゲーションに複数かつ奇数個設けること
により、
発振が成長した状態でも共振器内の界強度差、屈折率差
を抑制してモード選択性を確保し、安定した単一波長の
光出力を得るものである。[Detailed Description of the Invention] [Summary] The present invention provides, in a distributed feedback semiconductor laser, a plurality of odd number phase shifts corresponding to a phase difference of 2π for a black wavelength light wave in its corrugations. Even in a state where oscillation has grown, field strength differences and refractive index differences within the resonator are suppressed to ensure mode selectivity and to obtain stable optical output with a single wavelength.
本発明は半導体レーザ、特に単一波長の光出力を得る分
布帰還形半導体レーザの構造に関する。The present invention relates to a semiconductor laser, and more particularly to the structure of a distributed feedback semiconductor laser that obtains a single wavelength optical output.
° 光を情報(皆号の媒体とする光通信システムなどの
高度化及び多様化を推進するために、単一波長発振に適
する分布帰還形(DFB) レーザに期待が寄せられて
いるが、従来のDFBレーザで高出力を求めればその発
振モードの安定性が低下し易く、その改善が要望されて
いる。° In order to promote the sophistication and diversification of optical communication systems that use light as an information medium, expectations are placed on distributed feedback (DFB) lasers that are suitable for single-wavelength oscillation, but conventional If high output is sought in a DFB laser, the stability of its oscillation mode tends to deteriorate, and improvements are desired.
発振波長すなわち縦モードの制御に適する半導体レーザ
として、光導波領域に設けた回折格子によって選択的に
帰還を行うDFBレーザが最も期待されている。As a semiconductor laser suitable for controlling the oscillation wavelength, that is, the longitudinal mode, a DFB laser that selectively performs feedback using a diffraction grating provided in an optical waveguide region is the most promising.
この回折格子はブラック波長λ、において光波の反射率
が極大となるが、回折格子による反射ではこのブラック
波長λ、の光波は1回の反射でその位相がAπ変化し、
1往復では位相変化がπすなわち反転するためにこのブ
ラック波長では発振せず、共振器の1端面から他の端面
までの伝搬中に回折格子に対してほぼ士(〃±n)πの
位相のずれを生ずる波長で正帰還となりレーザ発振が行
われる。この発振条件のうちn=0の2波長の闇値電流
が最も小さく、通常のDFBレーザの縦モードはこの2
波長λいλ2を含む、或いはその一方から他方に変動し
易い不安定なモードとなる。This diffraction grating has a maximum reflectance of the light wave at the black wavelength λ, but upon reflection by the diffraction grating, the phase of the light wave at the black wavelength λ changes by Aπ with one reflection.
During one round trip, the phase change is π, that is, reversed, so oscillation does not occur at this black wavelength, and during propagation from one end face of the resonator to the other end face, a phase of approximately Positive feedback occurs at the wavelength that causes the shift, and laser oscillation occurs. Among these oscillation conditions, the dark value current of the two wavelengths n = 0 is the smallest, and the longitudinal mode of a normal DFB laser is in these two wavelengths.
It becomes an unstable mode that includes a wavelength λ2 or a wavelength λ2, or that tends to fluctuate from one to the other.
上述の性質を有するDFBレーザの縦モードを単一にす
るために第3図に示す如き構造が知られている0図にお
いて、26は活性層、25はガイド層、23及び27は
クラッド層であり、ガイド層25とクラッド層23との
界面に1次の回折格子24を形成し、中央からみて左側
と右側で、回折格子24のコルゲージランの位相をその
周期への2シフトさせることにより所要の位相差を与、
えている。In order to unify the longitudinal mode of a DFB laser having the above-mentioned properties, a structure as shown in FIG. 3 is known. In FIG. By forming a first-order diffraction grating 24 at the interface between the guide layer 25 and the cladding layer 23, and shifting the phase of the corrugation run of the diffraction grating 24 by two to its period on the left and right sides as seen from the center, the required amount of energy can be obtained. gives a phase difference,
It is growing.
この構造を実際に製造するには、例えば位相を%Δ飛曜
させる位置を界面として一方にポジレジスト他方にネガ
レジストを塗布し、これを2光束干渉法で露光してレジ
ストマスクを形成する方法、或いは位相マスク法などが
適用されている。To actually manufacture this structure, for example, a positive resist is applied to one side and a negative resist is applied to the other side, using the position where the phase is shifted by %Δ as an interface, and this is exposed using the two-beam interference method to form a resist mask. , or a phase mask method is applied.
上述の如くコルゲーションにブラック波長の光波に対し
て1/2πの位相差に相当する位相シフト、例えば1次
の回折格子の場合にはその周期への各の位相シフトを設
けることにより単一波長発振が実現されるが、この構造
のDPBレーザでも回折格子の結合係数にが比較的に太
き(、共振器長(光導波領域長)Lとの積にLが1.5
〜260程度以上の低閾値レーザなどでは、発振の成長
に伴って多モード化することがありその対策が要望され
ている。As mentioned above, single wavelength oscillation is achieved by providing a phase shift corresponding to a phase difference of 1/2π with respect to the black wavelength light wave in the corrugation, for example, in the case of a first-order diffraction grating, each phase shift to that period is provided. However, even in a DPB laser with this structure, the coupling coefficient of the diffraction grating is relatively large (the product of the resonator length (light waveguide region length) L is 1.5).
In low threshold lasers of about 260 MHz or more, multimodes may develop as oscillation grows, and countermeasures are required.
この現象は第4図(alに界強度(光強度)分布、同図
(b)に屈折率分布を何れも共振器長方向について例示
する如く、発振が成長し光出力が増大するに伴って、光
導波領域のコルゲーション位相シフト位置近傍で界強度
が特に強くなり、この位置で誘導放出が増加してキャリ
ア密度が減少し共振器内の屈折率分布に僅かながら差異
を生じて、モード選択性すなわちモード相互間の最低閾
値の差が減少することによる。This phenomenon occurs as the oscillation grows and the optical output increases, as shown in Figure 4 (al) shows the field intensity (light intensity) distribution, and Figure 4 (b) shows the refractive index distribution, both in the cavity length direction. The field strength becomes particularly strong near the corrugation phase shift position in the optical waveguide region, and stimulated emission increases at this position, reducing the carrier density and causing a slight difference in the refractive index distribution within the resonator, resulting in mode selectivity. That is, the difference in minimum threshold values between modes is reduced.
前記問題点は、光波を選択的に帰還するコルゲーション
に、ブラック波長の光波に対して2πの位相差に相当す
る位相シフトが複数かつ奇数個設けられてなる本発明に
よる半導体レーザにより解決される。The above problem is solved by the semiconductor laser according to the present invention, in which a corrugation that selectively returns light waves is provided with a plurality of odd number phase shifts corresponding to a phase difference of 2π with respect to light waves of black wavelength.
本発明によれば、上述の2π位相シフトを奇数個配置す
ることにより光波からみた位相調整量の合計値Δψを、
Δψ=±−±nπ (nは整数)
としてブラック波長λBの単−縦モードを得、かつ複数
個分散配置することにより、第2図(al、(blの共
振器長方向の異強度分布、屈折率分布の如く、共振器内
の界強度差、屈折率差を実線で例示する様に破線の従来
例より大幅に抑制してモード選択性を確保する。According to the present invention, by arranging an odd number of the above-mentioned 2π phase shifts, the total value Δψ of the phase adjustment amount seen from the light wave is set as Δψ=±−±nπ (n is an integer), and a single longitudinal mode of the black wavelength λB is set. As shown in Figure 2 (al, (bl), the field strength difference and refractive index difference in the resonator length direction are shown by solid lines. As shown in the example, mode selectivity is ensured by being significantly suppressed compared to the conventional example shown by the broken line.
なおこの複数のAπ位相シフトを光導波方向の中心に関
して対称的に配設すれば、界強度、屈折率を平均化し、
変動を抑制する効果が大きい。Note that if these multiple Aπ phase shifts are arranged symmetrically with respect to the center of the optical waveguide direction, the field strength and refractive index are averaged,
It is highly effective in suppressing fluctuations.
以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.
第1図は本発明の実施例の模式側断面図であり、1はn
串型InP基板、3はn型TnPクラッド層、4はコル
ゲーション、5は例えばルミネセンスビーク波長λg=
1.0−1厚さ0.2−程度のn型1nGaAsPガイ
ド層、6は例えばルミネセンスビーク波長λg=1.3
−1厚さ0.15−程度でノンドープのInGaAsP
活性層、7はp型!nPクラッド層、8はp+型InG
aAsPコンタクト層、9はn側電極、10はp側電極
である。FIG. 1 is a schematic side sectional view of an embodiment of the present invention, where 1 is n
A skewer-shaped InP substrate, 3 is an n-type TnP cladding layer, 4 is a corrugation, and 5 is, for example, a luminescence peak wavelength λg=
1.0-1 n-type 1nGaAsP guide layer with a thickness of about 0.2-1, 6 is, for example, the luminescence peak wavelength λg = 1.3
-1 Non-doped InGaAsP with a thickness of about 0.15-
Active layer 7 is p-type! nP cladding layer, 8 is p+ type InG
In the aAsP contact layer, 9 is an n-side electrode, and 10 is a p-side electrode.
本実施例のコルゲーション4は、n型[nGaAsPガ
イド層5のエピタキシャル成長に先立って、n型1nP
クラツドN3の上面に例えばポジレジストとネガレジス
トとを縞状に交互に塗布し、ヘリウム−カドミウム(H
e −Cd)レーザ光による2光束干渉法により露光し
てマスクを形成し、次数m−1に該当する周期A=20
0nmで、中央(%L)と各端面からの距離Sの位置(
SSL−S)にそれぞれ〃への位相シフトを設けている
。ただし例えば共振器長L −3O0nm、 S5−1
O0n、結合係数に=60cm−’とし、にL=1.8
となっている。The corrugation 4 of this embodiment is formed by forming an n-type [n-type 1nP prior to the epitaxial growth of the nGaAsP guide layer 5].
For example, a positive resist and a negative resist are applied alternately in stripes on the upper surface of the cladding N3, and helium-cadmium (H
e-Cd) A mask is formed by exposure using a two-beam interferometry method using a laser beam, and a period A=20 corresponding to order m-1 is formed.
At 0 nm, the position of distance S from the center (%L) and each end face (
SSL-S) is provided with a phase shift to 〃, respectively. However, for example, the resonator length L −3O0 nm, S5-1
O0n, coupling coefficient = 60 cm-', and L = 1.8
It becomes.
本実施例は発振が成長した後の界分布及び屈折率分布が
第2図の如く改善され、大出力でもブラック波長λ8の
単−縦モードが安定に保たれている。In this example, the field distribution and refractive index distribution after the oscillation grows are improved as shown in FIG. 2, and the single longitudinal mode of black wavelength λ8 is kept stable even at high output.
なお前記実施例のコルゲーション4は次数m=1に該当
する周期A#200nmとし、%Aの位相シフトを設け
ているが、次数m=2に該当する周期Δ”1100nの
コルゲーションを用いる場合には、χΔ”の位相シフト
を設ける。この様な位相シフトを設けたコルゲーション
は、例えば電子ビーム、イオンビーム等によりレジスト
にパターンを描画して形成することができる。Note that the corrugation 4 in the above embodiment has a period A# of 200 nm corresponding to the order m=1, and is provided with a phase shift of %A, but when using a corrugation with a period Δ"1100n corresponding to the order m=2, , χΔ” phase shift is provided. Corrugations with such a phase shift can be formed by drawing a pattern on a resist using, for example, an electron beam, an ion beam, or the like.
以上説明した如く本発明によれば、DFBレーザのにL
が大きい場合にもそのモード選択性が発振成長後も確保
されて、大出力の単一波長光を安定して得ることが可能
となり、光を情報信号の媒体とする光通信等のシステム
の高速、大容量化などの進展に大きく寄与する。As explained above, according to the present invention, the L
Even when the oscillation is large, the mode selectivity is maintained even after oscillation growth, making it possible to stably obtain high-output single-wavelength light. , will greatly contribute to advances in capacity expansion, etc.
第1図は本発明の実施例を示す図、
第2図は本発明による界強度及び屈折率の共振器長方向
の分布の例を示す図、
第3図はコルゲーション位相シフトの従来例の模式図、
第4図は従来の界強度及び屈折率の共振器長方向の分布
の例を示す図である。
図において、
1は♂型1nP基板、
3はn型InPクラッド層、
4はコルゲーション、
5はn型InGaAsPガイド層、
6はInGaAsP活性層、
7はp型1nPクラッド層、
8はp+型InGaAsPコンタクト層、9はn側電極
、
10はp側電極を示す。
草 2 回
革 2 図
(b)
$4@Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing an example of the distribution of field strength and refractive index in the cavity length direction according to the present invention, and Fig. 3 is a schematic diagram of a conventional example of corrugation phase shift. FIG. 4 is a diagram showing an example of the conventional distribution of field strength and refractive index in the cavity length direction. In the figure, 1 is a male-type 1nP substrate, 3 is an n-type InP cladding layer, 4 is a corrugation, 5 is an n-type InGaAsP guide layer, 6 is an InGaAsP active layer, 7 is a p-type 1nP cladding layer, 8 is a p+ type InGaAsP contact 9 is an n-side electrode, and 10 is a p-side electrode. Grass 2 Turn leather 2 Figure (b) $4@
Claims (1)
ク波長の光波に対して1/2πの位相差に相当する位相
シフトが複数かつ奇数個設けられてなることを特徴とす
る半導体レーザ。 2)前記位相シフトが光導波方向の中心に関して対称的
に配設されてなることを特徴とする特許請求の範囲第1
項記載の半導体レーザ。[Claims] 1) A corrugation that selectively returns light waves is provided with a plurality of odd number phase shifts corresponding to a phase difference of 1/2π with respect to light waves of black wavelength. semiconductor laser. 2) Claim 1, wherein the phase shift is arranged symmetrically with respect to the center of the optical waveguide direction.
Semiconductor laser described in section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61143604A JPS63185A (en) | 1986-06-19 | 1986-06-19 | Semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61143604A JPS63185A (en) | 1986-06-19 | 1986-06-19 | Semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63185A true JPS63185A (en) | 1988-01-05 |
Family
ID=15342589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61143604A Pending JPS63185A (en) | 1986-06-19 | 1986-06-19 | Semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63185A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0289250A2 (en) * | 1987-04-27 | 1988-11-02 | Nippon Telegraph And Telephone Corporation | Phase-shift distributed-feedback semiconductor laser |
JPH0225086A (en) * | 1988-07-13 | 1990-01-26 | Hitachi Ltd | Semiconductor laser device |
US5012484A (en) * | 1990-01-02 | 1991-04-30 | At&T Bell Laboratories | Analog optical fiber communication system, and laser adapted for use in such a system |
CN102377109A (en) * | 2011-11-11 | 2012-03-14 | 中国科学院半导体研究所 | Manufacture method of distributed feedback laser for restraining space hole-burning effect |
JP2016072608A (en) * | 2014-09-30 | 2016-05-09 | 三菱電機株式会社 | Semiconductor laser and optical integrated light source |
-
1986
- 1986-06-19 JP JP61143604A patent/JPS63185A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0289250A2 (en) * | 1987-04-27 | 1988-11-02 | Nippon Telegraph And Telephone Corporation | Phase-shift distributed-feedback semiconductor laser |
EP0289250A3 (en) * | 1987-04-27 | 1989-04-05 | Nippon Telegraph And Telephone Corporation | Phase-shift distributed-feedback semiconductor laser |
JPH0225086A (en) * | 1988-07-13 | 1990-01-26 | Hitachi Ltd | Semiconductor laser device |
US5012484A (en) * | 1990-01-02 | 1991-04-30 | At&T Bell Laboratories | Analog optical fiber communication system, and laser adapted for use in such a system |
CN102377109A (en) * | 2011-11-11 | 2012-03-14 | 中国科学院半导体研究所 | Manufacture method of distributed feedback laser for restraining space hole-burning effect |
JP2016072608A (en) * | 2014-09-30 | 2016-05-09 | 三菱電機株式会社 | Semiconductor laser and optical integrated light source |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7366220B2 (en) | Tunable laser | |
US8705583B2 (en) | Semiconductor laser | |
US7242699B2 (en) | Wavelength tunable semiconductor laser apparatus | |
JPH0219987B2 (en) | ||
JP2001036192A (en) | Distribution feedback type semiconductor laser and manufacture thereof | |
US6026110A (en) | Distributed feedback semiconductor laser with gain modulation | |
JP2982422B2 (en) | Semiconductor laser and method of manufacturing the same | |
JP3186705B2 (en) | Distributed feedback semiconductor laser | |
US7949020B2 (en) | Semiconductor laser and optical integrated semiconductor device | |
US4896331A (en) | Distributed feedback semiconductor laser | |
JP3450169B2 (en) | Distributed feedback semiconductor laser | |
JP2002353559A (en) | Semiconductor laser and method of manufacturing the same | |
JP5310533B2 (en) | Optical semiconductor device | |
JP2002084033A (en) | Distributed feedback semiconductor laser | |
JPS63185A (en) | Semiconductor laser | |
US5469459A (en) | Laser diode element with excellent intermodulation distortion characteristic | |
JPS63186A (en) | Semiconductor laser | |
JPH11195838A (en) | Distribution feedback type of semiconductor laser | |
JP2011082588A (en) | Optical device coupling light propagated through optical waveguide with diffraction grating | |
JP4076145B2 (en) | Complex coupled distributed feedback semiconductor laser | |
JPH0770785B2 (en) | Distributed reflection type semiconductor laser | |
US11557876B2 (en) | Semiconductor laser | |
US20050025210A1 (en) | Semiconductor laser device | |
JPS62173786A (en) | Distributed feedback type semiconductor laser | |
WO2021148121A1 (en) | Dfb laser with angled central waveguide section |