JPS6010920A - Complementary semiconductor integrated circuit - Google Patents

Complementary semiconductor integrated circuit

Info

Publication number
JPS6010920A
JPS6010920A JP58120807A JP12080783A JPS6010920A JP S6010920 A JPS6010920 A JP S6010920A JP 58120807 A JP58120807 A JP 58120807A JP 12080783 A JP12080783 A JP 12080783A JP S6010920 A JPS6010920 A JP S6010920A
Authority
JP
Japan
Prior art keywords
channel
complementary semiconductor
connection point
gate
mo8fet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58120807A
Other languages
Japanese (ja)
Inventor
Tatsuo Yamada
山田 達雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58120807A priority Critical patent/JPS6010920A/en
Publication of JPS6010920A publication Critical patent/JPS6010920A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0013Arrangements for reducing power consumption in field effect transistor circuits

Abstract

PURPOSE:To reduce the through-current of a complementary semiconductor logical circuit by giving a signal having respectively timewise differences to a gate comprising a P-channel MOSFET and an N-channel MOSFET from an inverse amplifier of the pre-stage. CONSTITUTION:When a voltage applied to an input terminal 4 of the inverse amplifier 16 of the pre-stage starts changing from an L level to an H level, the through-current flows through a load resistor 12 between the P-channel MOSFET 8 and the N-channel MOSFET10 and a potential difference is produced between both terminals 9, 11 of the resistor. The difference between the time until a voltage at the 2nd connecting point 11 makes the N-channel MOSFET14 nonconductive and the time until a voltage at the 1st connecting point 9 makes the P-channel MOSFET13 conductive is decreased less than the case without using any load resistor by forming a gate signal of the next stage from both the terminals 9, 11 of the load resistor 12, thereby decreasing the through-current flowing to the MOSFETs 13 and 14.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明はPチャネルMO8FETおよびNチャネルM
O8FETから構成される任意の相補形半導体論理回路
における貫通電流を減少させることができる相補形半導
体集積回路に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to a P-channel MO8FET and an N-channel MO8FET.
The present invention relates to a complementary semiconductor integrated circuit that can reduce the through current in any complementary semiconductor logic circuit composed of O8FETs.

〔従来技術〕[Prior art]

第1図は従来の相補形半導体集積回路を示す回路図であ
シ、1例として反転増幅器からなる相補形半導体論理回
路(1)を示す。同図において、(2)は例えば正の電
圧Ve(Bボルトが印加する第1電源端子、(3)は例
えば0ボルトが印加する第2電源端子、(4)はとの相
補形半導体論理回路(1)の入力端子、(5)はこの相
補形半導体論理回路(1)の出力端子、(6)はソース
が第1電源端子(2)に接続され、ゲートが入力端子(
4)に接続され、ドレインが出力端子(5)に接続され
るPチャネルMO8FET、(7)はソースが第2電源
端子(3)に接続され、ゲートが入力端子(4)に接続
され、ドレインが出力端子(5)に接続されたNチャネ
ルMo8rETである。なお、第2図(a)および第2
図(b)はそれぞれ入力信号の波形および出力信号の波
形をそれぞれ定性的に示したものである。
FIG. 1 is a circuit diagram showing a conventional complementary semiconductor integrated circuit, and shows, as an example, a complementary semiconductor logic circuit (1) comprising an inverting amplifier. In the figure, (2) is a first power supply terminal to which, for example, a positive voltage Ve (B volts) is applied, (3) is a second power supply terminal to which, for example, 0 volts is applied, and (4) is a complementary semiconductor logic circuit. (1) is the input terminal, (5) is the output terminal of this complementary semiconductor logic circuit (1), (6) has its source connected to the first power supply terminal (2), and its gate connected to the input terminal (
P-channel MO8FET (7) has its source connected to the second power supply terminal (3), its gate connected to the input terminal (4), and its drain connected to the output terminal (5). is an N-channel Mo8rET connected to the output terminal (5). In addition, Fig. 2 (a) and Fig. 2
Figure (b) qualitatively shows the waveform of the input signal and the waveform of the output signal, respectively.

次に、上記構成による相補形半導体集積回路の動作につ
いて第2図(alおよび第2図(b)を参照して説明す
る。まず、入力端子(4)に、第2図(a)に示す電圧
波形が入力し、出力端子(5)から第2図(b)に示す
電圧波形が出力したとすると、第2図(alに示す電圧
波形におけるA点およびD点はNチャネルMo8rET
(7)の閾値電圧に当たるため、A点でNチャネルMo
8rET(7)が導通し始める点で、D点はNチャネル
Mo8rET(7)が非導通状態になる点である。また
、第2図(a)に示す電圧波形におけるB点および0点
はPチャネルMo8rET(6)の閾値電圧に当るため
、B点はPチャネルMo8rET(6)が非導通になる
点であシ、0点はPチャネルMo8rET(6)が導通
し始める点である。したがって。
Next, the operation of the complementary semiconductor integrated circuit having the above configuration will be explained with reference to FIG. 2 (al) and FIG. 2 (b). First, the input terminal (4) shown in FIG. Assuming that a voltage waveform is input and the voltage waveform shown in FIG. 2(b) is output from the output terminal (5), points A and D in the voltage waveform shown in FIG.
Since this corresponds to the threshold voltage of (7), N-channel Mo at point A
Point D is the point at which the 8rET (7) begins to conduct, and the point D is the point at which the N-channel Mo8rET (7) becomes non-conductive. In addition, since point B and point 0 in the voltage waveform shown in FIG. 2(a) correspond to the threshold voltage of the P-channel Mo8rET (6), point B is the point at which the P-channel Mo8rET (6) becomes non-conductive. , 0 point is the point at which the P-channel Mo8rET (6) begins to conduct. therefore.

入力端子(4)に印加される入力波形が第2図(a)に
示すように変化する場合、この入力電圧が変化するA点
からB点までの時間TI+および入力電圧が変化する0
点からD点までの時間T、では、PチャネルMo5rE
T(6)およびNチャネルMo8rET(7)の双方が
導通状態となるため、貫通電流が第1電源端子(2)−
PfヤネルM08FET(6) −Nf’r*ルMO8
FET(7)−第2電源端子(3)に向って流れる。し
かも、出力端子(5)に接続される負荷を図示していな
いが、この負荷を考慮する場合は負荷電流が更に加算さ
れる。
When the input waveform applied to the input terminal (4) changes as shown in FIG.
In the time T from point to point D, P channel Mo5rE
Since both T(6) and N-channel Mo8rET(7) become conductive, the through current flows to the first power supply terminal (2)-
Pf Janel M08FET (6) -Nf'r*LEMO8
FET (7) - Flows toward the second power supply terminal (3). Moreover, although the load connected to the output terminal (5) is not shown, when this load is taken into consideration, the load current is further added.

しかしながら、従来の相補形半導体集積回路によれば上
述したように貫通電流が流れることを避けることができ
ないうえ、この貫通電流が多くなると、集積回路全体の
動作電流が増大するうえ、瞬間電流の増大は雑音信号の
発生源になるなどの欠点があった。
However, in conventional complementary semiconductor integrated circuits, it is impossible to avoid the flow of through current as described above, and when this through current increases, the operating current of the entire integrated circuit increases, and the instantaneous current increases. had drawbacks such as being a source of noise signals.

〔発明の概要〕[Summary of the invention]

したがって、この発明の目的は前段反転増幅器の負荷抵
抗に流れる貫通電流を利用し、この負荷 、抵抗の両端
に生じる電圧の時間的差異によシ、次段の相補形半導体
論理回路を構成するPチャネルMo8rETとNチャネ
ルMO8F’ETのゲートにそれぞれ異なる時間差異を
もった信号を与えることによシ、相補形半導体論理回路
の貫通電流を減少させる相補形半導体集積回路を提供す
るものである。
Therefore, an object of the present invention is to utilize the through current flowing through the load resistor of the pre-stage inverting amplifier, and to use the time difference in the voltages generated across the load and resistor to generate a The present invention provides a complementary semiconductor integrated circuit in which the through current of a complementary semiconductor logic circuit is reduced by applying signals with different time differences to the gates of a channel Mo8rET and an N-channel MO8F'ET.

このような目的を達成するため、との発明はソースが第
1電源端子に接続され、ゲートが入力端子に接続され、
ドレインが第1接続点に接続されるPチャネルMo8r
ETと、ソースが第2電源端子に接続され、ゲートが入
力端子に接続され、ドレインが第2接続点に接続される
NチャネルMo8rETと、一端が第1接続点に接続さ
れ、他端が第2接続点に接続される負荷抵抗とからなる
前段反転増幅器を備え、前記第1接続点が前記相補形半
導体論理回路のPチャネルMo8rETのゲートに接続
され、前記第2接続点が前記相補形半導体論理回路のN
チャネルMo8rETのゲートに接続されるものであシ
、以下実施例を用いて詳細に説明する。
To achieve such an object, the invention provides a method in which the source is connected to the first power supply terminal, the gate is connected to the input terminal, and
P-channel Mo8r whose drain is connected to the first connection point
ET, an N-channel Mo8rET whose source is connected to the second power supply terminal, whose gate is connected to the input terminal, and whose drain is connected to the second connection point, and whose one end is connected to the first connection point and the other end is connected to the first connection point. and a load resistor connected to two connection points, the first connection point being connected to the gate of the P-channel Mo8rET of the complementary semiconductor logic circuit, and the second connection point being connected to the complementary semiconductor logic circuit. N of logic circuit
It is connected to the gate of the channel Mo8rET, and will be explained in detail below using an embodiment.

〔発明の実施例〕[Embodiments of the invention]

第3図はこの発明に係る相補形半導体集積回路の一実施
例を示す回路図である。同図において、(8)はソース
が@1電源端子(2)に接続され、ゲートが入力端子(
4)に接続され、ドレインが第1接続点(9)に接続さ
れたPチャネルMo8rET、Qt)はソースが第2電
源端子(3)に接続され、ゲートが入力端子(4)に接
続され、ドレインが第2接続点αυに接続され九Nチャ
ネルMO8FET、(13]一端が第1接続点(9)に
接続され、他端が第2接続点αυに接続された負荷抵抗
、a3はソースが第1電源端子(2)に接続され、ゲー
トが第1接続点(9)に接続され、ドレインが出力端子
(5)に接続され7cPチャネルMOS FET、(+
41はソースが第2電源端子(3)に接続され、ゲート
が第2接続点Ql)に接続され、ドレインが出力端子(
5)に接続されたNチャネルMo8rETである。
FIG. 3 is a circuit diagram showing an embodiment of a complementary semiconductor integrated circuit according to the present invention. In the same figure, the source of (8) is connected to the @1 power supply terminal (2), and the gate is connected to the input terminal (2).
4), the drain is connected to the first connection point (9), the P-channel Mo8rET, Qt) has its source connected to the second power supply terminal (3), and its gate connected to the input terminal (4), A 9N channel MO8FET whose drain is connected to the second connection point αυ, (13) a load resistor whose one end is connected to the first connection point (9) and the other end connected to the second connection point αυ, and a3 whose source is connected to the second connection point αυ. A 7cP channel MOS FET, (+
41 has a source connected to the second power supply terminal (3), a gate connected to the second connection point Ql), and a drain connected to the output terminal (
5) is an N-channel Mo8rET connected to

なお、前記PチャネルMO8FETQ:1およびNチャ
ネルMo8rET(14)によシ反転増幅器からなる相
補形半導体論理回路a9を構成する。また、前記Pチー
?ネルMO8FET(8)I Nチー?ネ#MO8FE
TQlおよび負荷抵抗aりから前記相補形半導体論理回
路a四の前段反転増幅器αeを構成する。また、第4図
(a)〜第4図(c)は第3図の各部の波形を定性的に
示したものである。
The P-channel MO8FETQ:1 and the N-channel Mo8rET (14) constitute a complementary semiconductor logic circuit a9 consisting of an inverting amplifier. Also, the P Chi? Channel MO8FET (8) I N Qi? #MO8FE
A pre-stage inverting amplifier αe of the complementary semiconductor logic circuit a4 is constructed from TQl and a load resistance a. Moreover, FIGS. 4(a) to 4(c) qualitatively show the waveforms of each part in FIG. 3.

次に上記構成による相補形半導体集積回路の動作につい
て第4図(a)〜第4図(C)を参照して説明するが、
論理に正論理を用い、論理的に正の状態を1H′とし、
論理的に非圧の状態を1L′として表わす。まず、入力
端子(4)に印加された入力信号の電圧が第4図(a)
に示すように1L′で定常状態にあると、第1接続点(
9)および第2接続点αυの状態ハH′である。したが
って、出力端子(5)は1Lルベルになる。次に、入力
端子(4)に印加される電圧が1Lルベルから1Hルベ
ルに変化し始めると、PチャネルMo8rET(8)と
NチャネルMO8FES(11)の間に負荷抵抗aのを
通して貫通電流が流れる。これによシ、負荷抵抗Q2の
両端には電位差が生じ、第4図(b)に示すように、第
1接続点(9)の波形り、および第2接続点(1])の
波形L2が得られる。そして、この第1接続点(9)の
波形り、上のE点はPチャネルMo8rET(13の閾
値電圧に相当する点であシ、第2接続点aυの波形り、
上のF点はNチャネルMo8rETQ4)の閾値電圧に
相当する点である。そして、負荷抵抗(11Jの両端か
ら次段のゲート信号を作り出すことにより、第2接続点
αDの電圧がNチャネルMo8rET(14)を非導通
状態にさせるF点に達するまでの時間と第2接続点aυ
の電圧がPチャネルMo8rET(13を導通状態にさ
せるE点に達するまでの時間の差を、負荷抵抗を用いな
い場合に比べて小さくすることができる。このため、P
チャネルMo5rET(+3.!=NチーyJルMo5
pETQ4)K流れる貫通電流を減少させることができ
る。
Next, the operation of the complementary semiconductor integrated circuit having the above configuration will be explained with reference to FIGS. 4(a) to 4(C).
Using positive logic, the logically positive state is 1H',
Logically, the non-pressure state is expressed as 1L'. First, the voltage of the input signal applied to the input terminal (4) is shown in Fig. 4(a).
As shown in , when the steady state is at 1L', the first connection point (
9) and the state of the second connection point αυ is H'. Therefore, the output terminal (5) becomes 1L level. Next, when the voltage applied to the input terminal (4) begins to change from 1L level to 1H level, a through current flows between the P-channel Mo8rET (8) and the N-channel MO8FES (11) through the load resistance a. . As a result, a potential difference occurs between both ends of the load resistor Q2, and as shown in FIG. 4(b), the waveform L2 at the first connection point (9) and the waveform L2 at the second connection point (1) is obtained. In the waveform of this first connection point (9), the upper point E is a point corresponding to the threshold voltage of P channel Mo8rET (13), and the waveform of the second connection point aυ is,
The upper point F corresponds to the threshold voltage of the N-channel Mo8rETQ4). By creating a gate signal for the next stage from both ends of the load resistor (11J), the time required for the voltage at the second connection point αD to reach point F, which makes the N-channel Mo8rET (14) non-conductive, and the second connection point aυ
The difference in time required for the voltage of
Channel Mo5rET (+3.!=NchiyJruMo5
The through current flowing through pETQ4)K can be reduced.

次に、入力端子(4)に印加される入力信号の電圧が1
HルベルからゝLルベルに変化し始めると。
Next, the voltage of the input signal applied to the input terminal (4) is 1
When it starts to change from H level to L level.

PチャネルMo8rET(8)とNチャネルMo8rE
T←呻の間に負荷抵抗(1つを通して貫通電流が流れる
P-channel Mo8rET (8) and N-channel Mo8rE
A through current flows through the load resistor (one of the load resistors) during T←.

これによシ、負荷抵抗aりの両端には電位差が生じ、第
1接続点(9)および第2接続点Ql)にはそれぞれ第
4図(b)に示す波形り、および波形り、が得られる。
As a result, a potential difference is generated between both ends of the load resistance a, and the waveforms shown in FIG. can get.

そして、この第1接続点(9)の波形り、上のG点はP
テヤルネMO8FETQ3の閾値電圧に相当する点であ
シ、第2接続点0υの波形り、上のE点はNチャネルM
o8rETQ4)の閾値電圧に相当する点である。
And, the waveform of this first connection point (9), the upper point G is P
This is the point corresponding to the threshold voltage of Teyarne MO8FETQ3, the waveform of the second connection point 0υ, and the upper point E is the N channel M
This point corresponds to the threshold voltage of o8rETQ4).

そして、入力信号の電圧が1Lルベルから1Hルベルへ
変化する場合と同様に、第1接続点(9)の電圧がPチ
ャネルMO8FE’l’α階を非導通状態にさせるG点
に達するまでの時間と、第2接続点a0の電圧がNチャ
ネルMo8rET(14)を導通状態にさせるH点に達
するまでの時間の差を、負荷抵抗を用いない場合に比べ
て小さくすることができ、これによシ、PチャネルMO
8FETα騰およびNチャネルMo8rET(14)に
流れる貫通電流を減少させることができる。したがって
、入力端子(4)に入力する第4図(a)に示す入力電
圧波形に対し、出力端子(5)には第4図(c)に示す
出力電圧波形が得られる。
Then, similarly to the case where the input signal voltage changes from 1L level to 1H level, the voltage at the first connection point (9) reaches point G, which makes the P-channel MO8FE'l'α level non-conductive. The difference between the time and the time required for the voltage at the second connection point a0 to reach the H point that makes the N-channel Mo8rET (14) conductive can be made smaller than when no load resistance is used. Hello, P channel MO
The through current flowing through the 8FET α rise and the N-channel Mo8rET (14) can be reduced. Therefore, in contrast to the input voltage waveform input to the input terminal (4) shown in FIG. 4(a), the output voltage waveform shown in FIG. 4(c) is obtained at the output terminal (5).

なお、上述の説明では負荷抵抗を用いたが、半導体素子
を用いてもよいことはもちろんである。
Note that although a load resistor is used in the above description, it goes without saying that a semiconductor element may also be used.

また、相補形半導体論理回路としてインバータを用いた
が、これに限定せず他の論理回路を用いてもよいことは
もちろんである。また1M08FET03)およびMO
SFET(14)に流れる貫通電流は入力波形の立上り
および立下ル時間、各MO8FETの形状、ゲート容量
9分布容量、負荷抵抗の大きさなどに依存するため、任
意の論理回路の貫通電流を少なくするためにはその前段
以前を含めて設計してもよいことはもちろんである。
Further, although an inverter is used as the complementary semiconductor logic circuit, it is needless to say that the present invention is not limited to this and other logic circuits may be used. Also 1M08FET03) and MO
The through current flowing through the SFET (14) depends on the rise and fall times of the input waveform, the shape of each MO8FET, the gate capacitance9 distributed capacitance, the size of the load resistance, etc., so it is important to reduce the through current of any logic circuit. Of course, in order to do so, the design may include the preceding stages.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、この発明に係る相補形半導
体集積回路によれば流れる貫通電流を減少させることが
できるので、動作電流を軽減できしかも雑音信号の発生
を減少させることができるなどの効果がある。
As explained in detail above, the complementary semiconductor integrated circuit according to the present invention can reduce the flowing through current, thereby reducing the operating current and reducing the generation of noise signals. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図社従来の相補形半導体集積回路を示す回路図、第
2図(a)および第2図(b)はそれぞれ第1図の入力
電圧波形および出力電圧波形を示す図、第3図はとの発
明に係る相補形半導体集積回路の一実施例を示す回路図
、第4図(a)〜第4図(c)は第3図の各部の波形を
示す図である。 (1)・・・・相補形半導体論理回路、(2)・・・・
第1電源端子、(3)・・・・第2電源端子、(4)・
・・・入力端子、(5)・・・・出力端子、(6)・・
・・PチャネルMO8FET、(7)・・・・Nチャネ
ルMO8FET、(8)−’ −−PチャネルMO8F
ET。 (9)・・・・第1接続点、GO)・・・・Nチャネル
MO8FET、αυ・・・・第2接続点、(121・・
・・負荷抵抗、α(至)・・・・PチャネルMO8FE
T、(14)・・・・NチャネルMO8FET1α9・
・・・相補形半導体論理回路、(1G)・・・・前段反
転増幅器。 なお9図中、同一符号は同一または相当部分を示す。 代理人 大岩増雄 第1図 1 第2図 図 乙 44−−一−−−−−−− − 特許庁長官殿 1、事件の表示 特願昭58−120807号2、発明
の名称 相補形半導体集積回路3、補正をする者 第 1 図
Figure 1 is a circuit diagram showing a conventional complementary semiconductor integrated circuit, Figure 2 (a) and Figure 2 (b) are diagrams showing the input voltage waveform and output voltage waveform of Figure 1, respectively, and Figure 3 is a diagram showing the input voltage waveform and output voltage waveform of Figure 1, respectively. FIGS. 4(a) to 4(c) are circuit diagrams showing one embodiment of the complementary semiconductor integrated circuit according to the invention of . (1)... Complementary semiconductor logic circuit, (2)...
First power terminal, (3)...Second power terminal, (4)...
...Input terminal, (5)...Output terminal, (6)...
...P channel MO8FET, (7)...N channel MO8FET, (8)-' --P channel MO8F
E.T. (9)...First connection point, GO)...N-channel MO8FET, αυ...Second connection point, (121...
...Load resistance, α (to)...P channel MO8FE
T, (14)...N channel MO8FET1α9・
... Complementary semiconductor logic circuit, (1G) ... Front stage inverting amplifier. In addition, in FIG. 9, the same reference numerals indicate the same or corresponding parts. Agent Masuo Oiwa Figure 1 1 Figure 2 Figure Otsu 44 - - 1 - Mr. Commissioner of the Japan Patent Office 1. Indication of case: Japanese Patent Application No. 58-120807 2. Title of invention: Complementary semiconductor integrated circuit. Circuit 3, person performing correction Figure 1

Claims (1)

【特許請求の範囲】 ソースが第1電源端子に接続され、ドレインが出力端子
に接続されたPチャネルMO8FETと、ソースが第2
電源端子に接続され、ドレインが出力端子に接続される
NチャネルMO8FETとKよシ構成される任意の相補
形半導体論理回路からなる相補形半導体集積回路におい
て、ソースが第1電源端子に接続され、ゲートが入力端
子に接続され、ドレインが第1接続点に接続されるPチ
ャネルMO8FETと、ソースが第2電源端子に接続さ
れ、ゲートが入力端子に接続され、ドレインが第2接続
点に接続されるNチャネルMO8FETと、一端が第1
接続点に接続され、他端が第2接続点に接続される負荷
抵抗とからなる前段反転増幅器を備え、前記第1接続点
が前記相補形半導体論理回路のPチャネルMO8FET
のゲートに接続され。 前記第2接続点が前記相補形半導体論理回路のNチャネ
ルMO8FETのゲートに接続されることを特徴とする
相補形半導体集積回路。
[Claims] A P-channel MO8FET whose source is connected to a first power supply terminal and whose drain is connected to an output terminal;
A complementary semiconductor integrated circuit consisting of an arbitrary complementary semiconductor logic circuit configured in K and an N-channel MO8FET connected to a power supply terminal and whose drain is connected to an output terminal, the source of which is connected to the first power supply terminal, A P-channel MO8FET whose gate is connected to the input terminal, whose drain is connected to the first connection point, and whose source is connected to the second power supply terminal, whose gate is connected to the input terminal, and whose drain is connected to the second connection point. N-channel MO8FET with one end connected to the first
a pre-stage inverting amplifier consisting of a load resistor connected to a connection point and a load resistor having the other end connected to a second connection point, the first connection point being a P-channel MO8FET of the complementary semiconductor logic circuit;
connected to the gate. A complementary semiconductor integrated circuit, wherein the second connection point is connected to a gate of an N-channel MO8FET of the complementary semiconductor logic circuit.
JP58120807A 1983-06-30 1983-06-30 Complementary semiconductor integrated circuit Pending JPS6010920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58120807A JPS6010920A (en) 1983-06-30 1983-06-30 Complementary semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58120807A JPS6010920A (en) 1983-06-30 1983-06-30 Complementary semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS6010920A true JPS6010920A (en) 1985-01-21

Family

ID=14795460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58120807A Pending JPS6010920A (en) 1983-06-30 1983-06-30 Complementary semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS6010920A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265814A (en) * 1986-05-13 1987-11-18 Nec Corp Complementary mos logic circuit
JPS63136823A (en) * 1986-11-28 1988-06-09 Nec Corp Cmos integrated circuit
JPS63215220A (en) * 1987-03-04 1988-09-07 Nec Corp Pre-driver circuit
EP0430187A2 (en) * 1989-11-30 1991-06-05 Siemens Aktiengesellschaft Digital circuit with switching stages of the complementary MOS type

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265814A (en) * 1986-05-13 1987-11-18 Nec Corp Complementary mos logic circuit
JPS63136823A (en) * 1986-11-28 1988-06-09 Nec Corp Cmos integrated circuit
JPS63215220A (en) * 1987-03-04 1988-09-07 Nec Corp Pre-driver circuit
EP0430187A2 (en) * 1989-11-30 1991-06-05 Siemens Aktiengesellschaft Digital circuit with switching stages of the complementary MOS type
EP0430187A3 (en) * 1989-11-30 1991-06-12 Siemens Aktiengesellschaft Digital circuit with switching stages of the complementary mos type

Similar Documents

Publication Publication Date Title
EP0303341B1 (en) Output buffer circuits
US6624672B2 (en) Output buffer with constant switching current
JPH0584597B2 (en)
KR20000005839A (en) Slew rate output circuit with an improved driving capability of driving an output MOS field effect transistor
JPH0454721A (en) Clock driver circuit
JPS58151124A (en) Level converting circuit
JPH0716158B2 (en) Output circuit and logic circuit using the same
JPH05122017A (en) Schmitt trigger input buffer circuit
JPS6010920A (en) Complementary semiconductor integrated circuit
JPH05110396A (en) Signal delay circuit
US5530400A (en) Transistor circuit with transistor characteristic sensor
JPS6083419A (en) Output buffer circuit
JPS5927125B2 (en) Pulse generation circuit
JPS59201524A (en) Output circuit
JP2546398B2 (en) Level conversion circuit
JP2504079B2 (en) Voltage detection circuit
JP2919401B2 (en) Output circuit
JPS63119323A (en) Insulated gate type output buffer circuit
JPS58196727A (en) Logical circuit
JPS61154313A (en) Through-current preventing circuit for output inverter
JPH0642629B2 (en) Complementary insulation gate type semiconductor circuit
JP2889327B2 (en) Oscillation circuit
JPS6212210A (en) Output buffer circuit
JPH04168806A (en) Selector circuit
JPS63152220A (en) Level converting circuit