JPS6010917A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS6010917A
JPS6010917A JP58119095A JP11909583A JPS6010917A JP S6010917 A JPS6010917 A JP S6010917A JP 58119095 A JP58119095 A JP 58119095A JP 11909583 A JP11909583 A JP 11909583A JP S6010917 A JPS6010917 A JP S6010917A
Authority
JP
Japan
Prior art keywords
output
transistor
voltage
semiconductor integrated
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58119095A
Other languages
Japanese (ja)
Inventor
Masa Sato
雅 佐藤
Yasuhisa Sugao
菅生 靖久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58119095A priority Critical patent/JPS6010917A/en
Publication of JPS6010917A publication Critical patent/JPS6010917A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00346Modifications for eliminating interference or parasitic voltages or currents
    • H03K19/00353Modifications for eliminating interference or parasitic voltages or currents in bipolar transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00369Modifications for compensating variations of temperature, supply voltage or other physical parameters
    • H03K19/00376Modifications for compensating variations of temperature, supply voltage or other physical parameters in bipolar transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/082Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using bipolar transistors
    • H03K19/086Emitter coupled logic

Abstract

PURPOSE:To make the circuit operaion stable by flowing an opposite phase current of an output in an ECL to a ground line to make the voltage drop on the ground line constant. CONSTITUTION:When a base of a transistor (TR) 32 is connected to a reference voltage VR and a base potential of a TR31 is larger than the reference voltage VR, a TR36 is turned on, an output current flows to the ground line 320 via the TR36, an output terminal 310 and a load resistor 314, and when the base potential of the TR31 is smaller than the reference voltage VR, a TR37 is turned on and a current flows to the ground line 320 via a resistor 38, Thus, the same current is flowed to the ground line 320 even if the potential at the output terminal 310 is both high and low, the voltage drop of the ground line 320 is made constant therby making the circuit operation stable.

Description

【発明の詳細な説明】 く1) 発明の技術分野 本発明は入力スレッジホールド特性を改善した多ビット
出力の半導体集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION 1) Technical Field of the Invention The present invention relates to a multi-bit output semiconductor integrated circuit with improved input threshold hold characteristics.

(2) 技術の背景 半導体集積回路に対する大規模化、多機能化の要求は増
々増大している中、半導体集積回路の出力ピン数は増加
の傾向にある。出力ピン数が増加することにより、出力
電流の総和の変化量が大きくなる。すなわち、電源電流
の変化が大きくなってしまう。一方、半導体集積回路の
電源は半導体チップ外からワイヤを介して供給している
。そのためワイヤの抵抗による電圧降下によりチップ内
の電源電圧が変化し、特に論理振幅電圧の小さいECL
回路などでは回路の動作に悪影響を与えており出力ピン
数が多くなっても電源電流の変動が少ない半導体集積回
路が要望されてきた。
(2) Background of the Technology While demands for larger scale and multifunctional semiconductor integrated circuits are increasing, the number of output pins of semiconductor integrated circuits is increasing. As the number of output pins increases, the amount of change in the total output current increases. In other words, the change in power supply current becomes large. On the other hand, power for semiconductor integrated circuits is supplied from outside the semiconductor chip via wires. Therefore, the power supply voltage within the chip changes due to the voltage drop due to the resistance of the wire, especially for ECLs with small logic amplitude voltages.
In circuits, etc., there has been a demand for semiconductor integrated circuits that have less fluctuation in power supply current even when the number of output pins increases, which has an adverse effect on the operation of the circuit.

(3) 従来技術と問題点 第1図は従来の半導体集積回路例をECL回路で説明す
る図である。半導体ディバイス13はシステムのグラン
ド電源11にグランド線12を介して接続している。回
路は出力ピン15〜18により負荷19〜112を駆動
する。出力ピン15は出力トランジスタ14のエミッタ
に接続しており、エミッタフォロワの動作を行う。出力
トランジスタ14がオフの時出力ビン15はローレベル
であり、基準電圧に接続された抵抗19に電流は流れな
い。出力トランジスタ14がオンの時、出力ピン15は
ハイレベルとなり、出力トランジスタ14のコレクタよ
りエミッタ、出力ピン15を 7介して抵抗19に電流
が流れる。この電流はグランド線12より供給されるが
出力ピン数が多くなると全出力ピンがオンの時とオフの
時の電流が大きく異なってくる。一方グランド線12は
例えば金のワイヤで構成するが、その抵抗値は零ではな
い。そのため電流変化によってグランド線12による電
圧降下も変わる。半導体集積回路はグランド電圧(A点
の電圧)を基準にして入力スレソシホルド電圧などを決
めているが従来の回路構成では前述の様にワイヤの電圧
降下の影響で集積回路のグランド電圧が変化してしまう
。第2図(alにグランド電圧の変化が入力スレッジホ
ルト電圧に及ぼす影響を示すためにECL集積回路の入
力段の構成を第1図と同一部分に同一番号を与えて示し
た。差動回路21の論理スレッシホルト電圧は。
(3) Prior Art and Problems FIG. 1 is a diagram illustrating an example of a conventional semiconductor integrated circuit using an ECL circuit. The semiconductor device 13 is connected to the ground power supply 11 of the system via a ground line 12. The circuit drives loads 19-112 via output pins 15-18. The output pin 15 is connected to the emitter of the output transistor 14 and acts as an emitter follower. When the output transistor 14 is off, the output bin 15 is at a low level and no current flows through the resistor 19 connected to the reference voltage. When the output transistor 14 is on, the output pin 15 is at a high level, and current flows from the collector of the output transistor 14 to the emitter and through the output pin 15 to the resistor 19. This current is supplied from the ground line 12, but as the number of output pins increases, the current when all the output pins are on and when all the output pins are off becomes significantly different. On the other hand, the ground line 12 is made of, for example, a gold wire, but its resistance value is not zero. Therefore, as the current changes, the voltage drop across the ground line 12 also changes. Semiconductor integrated circuits determine the input threshold voltage, etc. based on the ground voltage (voltage at point A), but in conventional circuit configurations, the ground voltage of the integrated circuit changes due to the voltage drop in the wire, as described above. Put it away. In FIG. 2 (al), the configuration of the input stage of an ECL integrated circuit is shown with the same numbers given to the same parts as in FIG. 1 to show the influence of changes in ground voltage on the input threshold voltage. Differential circuit 21 The logical threshold voltage for is .

基準電圧■、により設定される。Vには抵抗23゜定電
流源22によってA点の電圧VAからの電圧降下により
定まる。ところがA点の電圧は前述の様に回路の出力状
態によって変動する。このため入力スレッジホルト電圧
vlH,v1.は第2図(b)に示すように変動し入力
雑音余裕度が小さくなるので回路の論理振幅■、を大き
くしなければならない。第2図(b)で■は出力トラン
ジスタがオフの場合、■は出力トランジスタがオンの場
合をそれぞれ示している。第1図、第2図で示された様
に従来の半導体集積回路においてはグランドに流れる電
流の変化が大きく、電流変化によるグランド電圧の変動
が半導体集積回路の入力雑音余裕度を小さくする欠点を
有していた。
It is set by the reference voltage ■. V is determined by the voltage drop from the voltage VA at point A due to the resistor 23 and constant current source 22. However, the voltage at point A fluctuates depending on the output state of the circuit as described above. Therefore, the input threshold voltages vlH, v1. changes as shown in FIG. 2(b), and the input noise margin becomes small, so the logic amplitude of the circuit must be increased. In FIG. 2(b), ■ indicates a case where the output transistor is off, and ■ indicates a case where the output transistor is on. As shown in Figures 1 and 2, in conventional semiconductor integrated circuits, there are large changes in the current flowing to the ground, and fluctuations in the ground voltage due to current changes reduce the input noise margin of the semiconductor integrated circuit. had.

(4) 発明の目的 本発明は以上従来技術の欠点に鑑み、多出力端子の半導
体集積回路において、出力論理の変化による電源電流の
変動が少ない半導体集積回路を提供することを目的とす
る。
(4) Purpose of the Invention In view of the above-mentioned drawbacks of the prior art, it is an object of the present invention to provide a semiconductor integrated circuit with multiple output terminals in which the power supply current fluctuates less due to changes in output logic.

(5) 発明の構成 本発明は出力端子より負荷を駆動する能力を有 1した
出力手段と、該出力手段の出力電流の逆相電流を作成す
る逆相電流作成手段を有し、基準電圧電源端子に該逆相
電流を加えることによって前記出力手段の出力端子の論
理変化に伴う基準電圧電源端子における電流変動を抑え
ることを特徴とした半導体集積回路を提供するものであ
る。
(5) Structure of the Invention The present invention has an output means having the ability to drive a load from an output terminal, and a reverse-sequence current generating means for creating a reverse-sequence current of the output current of the output means, and a reference voltage power supply. The present invention provides a semiconductor integrated circuit characterized in that current fluctuations at a reference voltage power supply terminal due to logic changes at the output terminal of the output means are suppressed by applying the negative phase current to the terminal.

(6) 発明の実施例 以下2図面を用いて本発明の一実施例を詳細に説明する
(6) Embodiment of the Invention An embodiment of the invention will be described in detail below using two drawings.

第3図は本発明によるE CL ft!理回路の構成図
である。トランジスタ31.32と定電流源33及び抵
抗34.35は差動回路を構成する。出力端子310〜
313は負荷抵抗314〜317を介して一2■の基準
電圧線320に接続する。出力端子310を駆動する出
力トランジスタ36のベースは差動回路のトランジスタ
32のコレクタに接続する。差動回路の他方のトランジ
スタ31のコレクタはトランジスタ37のベースに接続
し。
FIG. 3 shows the E CL ft! according to the present invention. FIG. 2 is a configuration diagram of a logic circuit. Transistors 31, 32, constant current source 33, and resistors 34, 35 constitute a differential circuit. Output terminal 310~
313 is connected to the reference voltage line 320 via load resistors 314 to 317. The base of the output transistor 36 that drives the output terminal 310 is connected to the collector of the transistor 32 of the differential circuit. The collector of the other transistor 31 of the differential circuit is connected to the base of transistor 37.

トランジスタ37のエミッタより抵抗38を介して外部
接続端子39から基準電圧線320に接続する。一方策
積回路のグランド端子はグランド線318からシステム
のグランド電源319に接続する。
The emitter of the transistor 37 is connected to an external connection terminal 39 via a resistor 38 to a reference voltage line 320 . On the other hand, the ground terminal of the integrated circuit is connected from a ground line 318 to a ground power supply 319 of the system.

トランジスタ32のベースが基準電圧VRに固定されて
いる時トランジスタ31.32で構成される差動回路は
次の様に動(。トランジスタ31のベース電圧がVRよ
り低い場合、トランジスタ31.32のエミッタ電圧は
トランジスタがオンの時のベース−エミッタ電圧をVB
EとするとVR−VBEとなる。この時トランジスタ3
1のベース−エミッタ電圧はVBEより小さくなりベー
ス電流が流れずオフとなり、トランジスタ32はオンと
なる。この時、トランジスタ36のベース電圧はローレ
ベルとなり、トランジスタ36はオフとなる。またトラ
ンジスタ37のベース電圧はハイレベルとなりトランジ
スタ37はオンとなる。
When the base of the transistor 32 is fixed to the reference voltage VR, the differential circuit composed of the transistors 31 and 32 operates as follows (If the base voltage of the transistor 31 is lower than VR, the emitter of the transistor 31 and 32 The voltage is the base-emitter voltage when the transistor is on, VB.
If E, then VR-VBE. At this time transistor 3
The base-emitter voltage of transistor 32 becomes smaller than VBE, so that no base current flows and the transistor 32 is turned off. At this time, the base voltage of the transistor 36 becomes low level, and the transistor 36 is turned off. Further, the base voltage of the transistor 37 becomes high level, and the transistor 37 is turned on.

そこでグランド線318より流れ込む電源電流はトラン
ジスタ37.抵抗38.外部接続端子39を介して基準
電圧線320へ流れる。次にトランジスタ31のベース
電圧VB+がVRより高い場合、トランジスタ31.3
2のエミッタ電圧はVB +−VBEとなり、トランジ
スタ31はオン。
Therefore, the power supply current flowing from the ground line 318 flows into the transistor 37. Resistance 38. It flows to the reference voltage line 320 via the external connection terminal 39. Next, if the base voltage VB+ of transistor 31 is higher than VR, transistor 31.3
The emitter voltage of 2 becomes VB + - VBE, and transistor 31 is turned on.

トランジスタ32はオフとなる。この時、トランジスタ
36のベース電圧はハイレベルとなりトランジスタ36
はオンとなる。また、トランジスタ37のベース電圧は
ローとなりトランジスタ37はオフとなる。そこで電源
電流はトランジスタ36、出力端子310.負荷抵抗3
14を介して基準電圧線320へ流れる。つまり1本実
施例においては、出力端子310の論理がハイかローか
にかかわらずトランジスタ36.37のどちらか一方が
オンとなっているので抵抗38の抵抗値を適当に設定す
ることにより、グランド線318に流れる電流を一定に
することが出来る。すなわち。
Transistor 32 is turned off. At this time, the base voltage of the transistor 36 becomes high level, and the transistor 36
is turned on. Further, the base voltage of the transistor 37 becomes low, and the transistor 37 is turned off. Therefore, the power supply current flows through the transistor 36, the output terminal 310. Load resistance 3
14 to reference voltage line 320. In other words, in this embodiment, regardless of whether the logic of the output terminal 310 is high or low, one of the transistors 36 and 37 is on, so by appropriately setting the resistance value of the resistor 38, the ground The current flowing through line 318 can be made constant. Namely.

グランド線31Bによる電圧降下を一定にすることが出
来る。通常トランジスタ32に入力する基準電圧VRは
第2図(alの従来例において示したように、半導体集
積回路内のグランドを基準として作成するので、グラン
ド線318による電圧降下が一定であればトランジスタ
31における入力スレッジホルト電圧は一定であり2回
路の動作は安定である。さらに、この電圧降下は半導体
集積回路の設計時に計算可能であり、電圧降下を考慮し
た設計を行うことよってシステム全体としてスレッシホ
ルト電圧を調整出来るのでシステムの雑音余裕度も向上
する。さらに論理振幅を小さくとる設計も可能となり高
速化、低消費電力化にも対応出来る。システムの論理振
幅VLは第2図(blに示した様にスレッシホルト電圧
が変動した場合には変動の幅の2倍大きくしなければな
らない。変動がない場合には例えば第2図(b)の1の
領域のみで動作する時にはVL=V I H−V I 
Lであるが基準電圧VRが変動幅△■を持つ時にはVL
=VIH−vIL+2△Vとしなければならない。本発
明はこの△Vを無視出来るほど小さくするものである。
The voltage drop due to the ground line 31B can be made constant. Normally, the reference voltage VR input to the transistor 32 is created using the ground in the semiconductor integrated circuit as a reference, as shown in the conventional example in FIG. The input threshold voltage is constant and the operation of the two circuits is stable.Furthermore, this voltage drop can be calculated when designing a semiconductor integrated circuit, and by designing with this voltage drop in mind, the threshold voltage of the entire system can be reduced. can be adjusted, which improves the noise margin of the system.Furthermore, it is possible to design with a small logic amplitude, which can support higher speeds and lower power consumption.The logic amplitude VL of the system is as shown in Figure 2 (bl). If the threshold voltage fluctuates, it must be made twice as large as the width of the fluctuation.If there is no fluctuation, for example, when operating only in the region 1 in Fig. 2(b), VL = V I H - V I
However, when the reference voltage VR has a fluctuation range △■, VL
=VIH-vIL+2ΔV. The present invention aims to reduce this ΔV to a negligible value.

第3図の実施例は基準電圧線320へ接続する外部接続
端子39を設けているが1本発明はこれに限らず2例え
ば抵抗38の一端を負の電源端子VB、Hに接続しても
よい。
Although the embodiment shown in FIG. 3 is provided with an external connection terminal 39 connected to the reference voltage line 320, 1 the present invention is not limited to this; 2 For example, one end of the resistor 38 may be connected to the negative power supply terminals VB and H. good.

(7) 発明の詳細 な説明した様に本発明によれば半導体集積回路のグラン
ド端子を流れる電流を一定にすることが出来るので、グ
ランド端子電流の変動によるスレッシホルト電圧の変動
を防ぐことが出来、特にECL回路などの論理振幅電圧
の小さい半導体集積回路においても2回路動作が安定で
雑音余裕度の大きな半導体集積回路を構成出来る利点が
ある。
(7) As described in detail, according to the present invention, the current flowing through the ground terminal of a semiconductor integrated circuit can be made constant, so fluctuations in the threshold voltage due to fluctuations in the ground terminal current can be prevented. Particularly, even in a semiconductor integrated circuit such as an ECL circuit with a small logic amplitude voltage, there is an advantage that the two-circuit operation is stable and a semiconductor integrated circuit with a large noise margin can be constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体集積回路の出力動作を示す構成図
、第2図fa)は従来の半導体集積回路六方動作を示す
構成図、第2図Tb)は基準電圧変動の効果を示す関係
図、第3図は本発明による半導体集積回路の一実施例の
構成図である。 37・・・トランジスタ、 38°・°抵抗。 39・・・外部接続端子、 318・・・グランド線 第1図 第2図 \ 20 第3図
Fig. 1 is a block diagram showing the output operation of a conventional semiconductor integrated circuit, Fig. 2 fa) is a block diagram showing the hexagonal operation of a conventional semiconductor integrated circuit, and Fig. 2 Tb) is a relational diagram showing the effect of reference voltage fluctuation. , FIG. 3 is a block diagram of an embodiment of a semiconductor integrated circuit according to the present invention. 37...transistor, 38°・°resistance. 39...External connection terminal, 318...Ground wire Figure 1 Figure 2\20 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1) 出力端子より負荷を駆動する能力を有した出力
手段と、該出力手段の出力電流の逆相電流を作成する逆
相電流作成手段を有し、基準電圧電源端子に該逆相電流
を加えることによって前記出力手段の出力端子の論理変
化に伴う基準電圧電源端子における電流変動を抑えるこ
とを特徴とした半導体集積回路。
(1) It has an output means having the ability to drive a load from an output terminal, and a negative sequence current generating means for creating a negative sequence current of the output current of the output means, and the negative sequence current is applied to a reference voltage power supply terminal. A semiconductor integrated circuit characterized in that current fluctuations at a reference voltage power supply terminal due to a logic change at an output terminal of the output means are suppressed by adding a voltage to the output terminal.
(2) 前記逆相電流作成手段は、前記出力手段と負荷
との組合せとに対応する構成を有してなる特許請求の範
囲第1項記載の半導体集積回路。
(2) The semiconductor integrated circuit according to claim 1, wherein the negative phase current generating means has a configuration corresponding to the combination of the output means and the load.
JP58119095A 1983-06-30 1983-06-30 Semiconductor integrated circuit Pending JPS6010917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58119095A JPS6010917A (en) 1983-06-30 1983-06-30 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58119095A JPS6010917A (en) 1983-06-30 1983-06-30 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS6010917A true JPS6010917A (en) 1985-01-21

Family

ID=14752774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58119095A Pending JPS6010917A (en) 1983-06-30 1983-06-30 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS6010917A (en)

Similar Documents

Publication Publication Date Title
US4687953A (en) Dynamic ECL line driver circuit
JP2909382B2 (en) Integrated circuit
JPS61500762A (en) ECL gate with switched load current source
JPH0336336B2 (en)
JPH04329712A (en) High speed logic circuit
JPS6070822A (en) Semiconductor integrated circuit
JPS6010917A (en) Semiconductor integrated circuit
JP2760017B2 (en) Logic circuit
JPS6022862A (en) Power supply circuit
JPH08293784A (en) Emitter coupled logical output circuit
JP2956561B2 (en) Variable delay circuit
JPS59214327A (en) Logical circuit device
SU1580441A1 (en) Reading amplifier
JP2651830B2 (en) Semiconductor integrated circuit
JPS6066519A (en) Semiconductor logic circuit
JP3237686B2 (en) Current switching type logic circuit
JPS58105610A (en) Output circuit
JPH03293813A (en) Semiconductor integrated circuit
JPH036920A (en) Semiconductor integrated circuit
JPH0427732B2 (en)
JPH04170222A (en) Ecl logic circuit
JPS60134506A (en) Differential amplifier
JPS59193626A (en) Transistor logical circuit
JPH04119011A (en) Semiconductor device
JPH0413310A (en) Logic circuit