JPS60107886A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS60107886A
JPS60107886A JP21557983A JP21557983A JPS60107886A JP S60107886 A JPS60107886 A JP S60107886A JP 21557983 A JP21557983 A JP 21557983A JP 21557983 A JP21557983 A JP 21557983A JP S60107886 A JPS60107886 A JP S60107886A
Authority
JP
Japan
Prior art keywords
output
laser
threshold value
oscillation threshold
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21557983A
Other languages
Japanese (ja)
Inventor
Takao Furuse
古瀬 孝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP21557983A priority Critical patent/JPS60107886A/en
Publication of JPS60107886A publication Critical patent/JPS60107886A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Abstract

PURPOSE:To enable a semiconductor laser to maintain low-noise characteristics even when a readout of recorded results is performed at lower-photo output by a method wherein plural lasers, whose oscillation threshold value currents different from each other, are formed on the same semiconductor substrate. CONSTITUTION:Buried semiconductor lasers A and B, whose mesa widths are different from each other at a ratio such that one side is about 1mum and the other side is about 2mum, for example, are formed on a semiconductor substrate 1 at a prescribed interval. As the widths of the active layers 4 of the lasers A and B different at a ratio such that one side is about 1mum and the other side is about 2mum, the oscillation threshold value currents of the lasers A and B become a respectively different oscillation threshold value current of about 25mA and about 50mA. In such the laser A, about -144dB/Hz of noise can be obtained when the oscillation threshold value current is 25mA and the output is 2mW, while in the laser B, about -130dB/ Hz of noise can be obtained when the oscillation threshold value current is 50mA and the output is 2mA, and about -160dB/Hz of noise can be obtained when the oscillation threshold value current is 50mA and the output is 20mW. Accordingly, when optical recording is performed, the region of the laser B is used, while in case the recorded results on a medium are read out under a photo output operating condition of 2mW or thereabouts, the region of the laser A is used. As a result, the semiconductor laser can be made to operate at a high S/N ration.

Description

【発明の詳細な説明】 本発明は半導体レーザ装置に関するものである。[Detailed description of the invention] The present invention relates to a semiconductor laser device.

AJGaAs系あるいはIg+GaAse系等の倒斜を
用いた多層構造半導体レーザは高効率のレーザ発振動作
が可能であり光フアイバ通信等の用途に広く用いられデ
ィジタル信号処理系tはじめアナログ信号処理系へも適
用領域が拡大しつつある。特に、光信号による記録媒体
への書き込み、及び読み出し機能を有する。 I)RA
W (1)irect TLead AfterWri
te)装置への半導体レーザの応用社、記録密度の大幅
な向上に合わせ、省き込み、読み出しの速度向上が可能
であり情報処理機能の拡大が期待されている〇 しかしながら、これまでに検討されてきた半導体レーザ
による、書き込み読出し装置においては、同一の半導体
レーザ光源を用いているため、本質的に雑音に弱い欠点
を有していた。この様子金示すために第1図を用いて半
導体レーザの雑音について簡単に示す。第1図は半導体
レーザの駆動電流(Ilと光出力(Ll特性及び光出力
に含まれる雑音成分(Il、IN)と駆動電流(Il特
性について示すものである。この特性は半導体レーザの
構造や栴成柑料を変更してもほとんど変化なく、半導体
レーザの発振原理にもとづくものである。すなわち、#
8導体レーザの雑音成分()1.IN) tri発振閾
値(’th )の近傍で大きく、駆動電流の増加(光出
力の増加)にともない小さくなり、 nxNoc (I/Ith 1 )−3で示されること
が知られている。
A multilayer semiconductor laser using a tilted structure such as AJGaAs or Ig+GaAse is capable of highly efficient laser oscillation operation and is widely used in applications such as optical fiber communication, and is also applicable to digital signal processing systems and analog signal processing systems. The area is expanding. In particular, it has a function of writing to and reading from a recording medium using optical signals. I) R.A.
W (1) direct TLead AfterWri
te) Application of semiconductor lasers to equipment Along with the significant improvement in recording density, it is possible to improve the speed of data processing and readout, and the expansion of information processing functions is expected. Writing/reading devices using semiconductor lasers use the same semiconductor laser light source, so they inherently have the disadvantage of being susceptible to noise. To illustrate this situation, the noise of the semiconductor laser will be briefly explained using FIG. Figure 1 shows the drive current (Il) and optical output (Ll characteristics) of a semiconductor laser, the noise components included in the optical output (Il, IN), and the drive current (Il characteristics). There is almost no change even if the ingredients are changed, and it is based on the oscillation principle of semiconductor lasers.
Noise component of 8-conductor laser ()1. It is known that it is large near the IN) tri oscillation threshold ('th), becomes smaller as the drive current increases (light output increases), and is expressed as nxNoc(I/Ith1)-3.

従って、半導体レーザの光出力約20 mW −CNt
t≠媒体へ記録し、約2mW出力で記録結果を読み出す
様な場合、光出力的20 mWに於ては雑音成分は16
0 d137Hz以下と充分に小さな値であるが、約2
mW出力での読み出し時には雑音成分が一130d 1
3/’1−1 z近傍となり、30d1い12以上雛音
声多い状態で(8号を読み出す状態になり、読不出し誤
差を仕じやすい欠点が避けもれ外かった。ここで、読み
出し時の光出力を10mW程度へ増加することにより雑
音成分は−150dR/)lx程度へ改善できるが、こ
の様な状態で長時間読み出しを続けるとその光出力が高
いため記9々媒体が6変形し再記録状態に陥いるのでむ
やみに読み出し時の光出力を大きくすることはできない
ものである。
Therefore, the optical output of the semiconductor laser is approximately 20 mW -CNt
When recording on a medium and reading the recorded result with an output of about 2 mW, the noise component is 16 at an optical output of 20 mW.
0 d137Hz or less, which is a sufficiently small value, but about 2
When reading with mW output, the noise component is 1130d1
3/'1-1 z, and in a state where there are many voices of 30d1 and 12 or more (number 8), the disadvantage of easily causing a readout error was unavoidable.Here, when reading By increasing the optical output to about 10 mW, the noise component can be improved to about -150 dR/)lx, but if reading continues for a long time in this condition, the high optical output will cause the media listed above to deform. It is not possible to unnecessarily increase the optical output at the time of reading because this will result in a re-recording state.

本発明の目的は、この様な従来構造の欠点を除去し、低
)′r、出力での読み出(〜時にも低雑音特性を維持し
た信頼性の高い半導体レーザ装置を提供することにある
〇 本発明の半導体レーザ装置は半導体基板上に、少なくと
も発振閾値10.流の異なる複数の半導体レーザを形成
[7たことを特徴とする構造である。
An object of the present invention is to eliminate such drawbacks of the conventional structure and to provide a highly reliable semiconductor laser device that maintains low noise characteristics even when reading at low r'r and output. The semiconductor laser device of the present invention has a structure characterized in that a plurality of semiconductor lasers having at least 10 different oscillation thresholds are formed on a semiconductor substrate.

以下、本発明の実施例について図面を参照して説明する
0第2図、第3図はそれぞれ本発明を実施した場合の半
導体レーザ装置の構造断面図及びその電流(Il−光出
力(Llと電流(Il−雑音(RIN)特性を示す図で
ある。実施例の半導体レーザ装置の構造は第2図に示す
様に先ず、第1の液相結晶成長法により、n型GaAs
基板m上に順次n型A/〜iGa fi:t(・As層
(2)、n型AI!、Jo、Ga7,7As層(3)、
活性層となるAt >/i Ga 7戸A3層(4)、
p型Al!)、(! Ga7(柄ΔS層(5)、p型G
aAs層(6)を順次形成する。各層厚はそれぞれ1.
0μm、0.7μm、 0.111m、 1.0μm1
05μmを標準値としioLかる後、化学エツチング液
(Hs PO4+ HtOt +3 CHsOH)を用
いて第2図に示す様に0aks基板(1)に達する深さ
までメサエッチングを行い、活性領域を有する帯状メサ
領域を複数個形成する。本実施例では発振閾値電流の異
なる代表例として第2図に於ては、幅の異なる2本のメ
サ領域を有する例について示しており、幅のせまいメサ
領域(図の左側、矢印A部)の活性層幅は約1μm1幅
の広いメサ領域(図の右側、矢印8部)の活性I?41
Kiiは約2μmとし、両メサの間1M’?+は約50
μmとした〇 次に、第2の結晶成長工程により第2図に示す様にメサ
領域側面を狸込む様に、n型Aム、ぜOax7歩辛AS
lil(71、p Jjl At p、 j Ch ′
I、7ΔS層(8)、n型Ali齢(、+ a p2.
 A s層(9)を・順次形成するコしかる後にzn拡
散によりp型不純物拡散層0111.電極分離用8 i
 02)持θカ、及びp型メーミック°1!lL極Q4
.11型オーミック1←、極Q:李を形成して本発明に
係る半導体レーザ装置が形成される。
Embodiments of the present invention will be described below with reference to the drawings. FIGS. 2 and 3 are a cross-sectional view of the structure of a semiconductor laser device in which the present invention is implemented, and its current (Il - light output (Ll) 2 is a diagram showing current (Il-noise (RIN) characteristics. The structure of the semiconductor laser device of the example is as shown in FIG. 2. First, an n-type GaAs
On substrate m, n-type A/~iGa fi:t(・As layer (2), n-type AI!, Jo, Ga7,7As layer (3),
At>/i Ga 7 houses A3 layer (4), which becomes the active layer.
p-type Al! ), (! Ga7 (pattern ΔS layer (5), p-type G
AAs layers (6) are sequentially formed. The thickness of each layer is 1.
0μm, 0.7μm, 0.111m, 1.0μm1
After obtaining the ioL using a standard value of 05 μm, mesa etching is performed using a chemical etching solution (Hs PO4 + HtOt +3 CHsOH) to a depth that reaches the 0aks substrate (1) as shown in Figure 2 to form a band-shaped mesa region having an active region. Form multiple pieces. In this embodiment, as a typical example of different oscillation threshold currents, FIG. 2 shows an example having two mesa regions with different widths, and a narrow mesa region (arrow A on the left side of the figure). The active layer width of the active layer is about 1 μm1 in the wide mesa region (arrow 8 on the right side of the figure). 41
Kii is approximately 2μm, and the distance between both mesas is 1M'? + is about 50
μm〇Next, as shown in Fig. 2, in the second crystal growth process, as shown in Fig. 2, the side surface of the mesa region is covered with n-type A, zeOax7
lil(71, p Jjl At p, j Ch ′
I, 7ΔS layer (8), n-type Ali age (, + a p2.
After sequentially forming the As layer (9), a p-type impurity diffusion layer 0111. is formed by Zn diffusion. 8i for electrode separation
02) Possessing θ force and p-type memic °1! lL pole Q4
.. A semiconductor laser device according to the present invention is formed by forming an 11-type ohmic 1←, pole Q: Li.

木構造に於−r#J:、同一半導体基板上に間隔的50
μmへたてて、そのメサ幅が約1μm1幅が約2μ■の
異なる埋込81J坐1体レーザA及びBを形成し、分離
されているp型オーミック電極によりそれぞれが独立し
た半導体レーザ動作を行なう仁とができる。ここで、半
導体レーザAと8とは活性層幅かそれぞれ約1μm、他
方が約2μmと異なるため、発振1rAl lfj を
流は約25 mA及び約50 mAと異ったものになろ
う 第3図に、A及び13代、おける・それぞれの駆動電流
(I)−光出力(Ll特性及び駆動電流(Il−雑音(
RIN)特性を示す。半導体レーザAにおいては、発振
閾値電流25mA、2mW出方時の雑音(几IN)は約
−144dB/Hzを得、一方、半導体レーザBにおい
て祉、発振閾値電流50mA、2 mW出方時の雑音(
RIN)は約−130dB/It−1x 、 20 m
W出方時ノ維音(R,IN)は約−160d B/Hz
 を得ることができた〇従って、光出力を約20 mW
にまで高めて記録媒体へ光記録するに際しては本実施例
による半導体レーザのB領域を用いてレーザ記録を行い
、2mW程度の光出力動作状態にして媒体の記録結果を
読み出すに際しては、本実施例の半導体レーザのA領域
を用いることによって、2 mW出カ時の雑音(几IN
)を約−140dQ/1(zにまで低減てき、高87N
動作が可能となり、読み出し誤差の少ない長幼な半導゛
 体レーザ光源とすることができた。なお、本実施例に
ある様に、メサ幅を小さくすることにより発振閾値電流
を低減し、雑音成分を低減した半導体レーザにおいて、
低出力動作の読み出し動作だけでな(20mW程度の高
出方動作を行ない、光記録動作を実行すると、活性WI
幅がせまく、発掘光断面積が小さいため、半導体レーザ
の反射鏡面及びその近傍の相別が高光出力密度動作によ
る発熱現象により破壊される(高光出力密度動作による
破壊といわれ半導体レーザに本質的である)ため、第3
図で示す様KA領領域半導体レーザの最大光出力は12
〜13 mW程度が限界であることを追記しておく。ま
た、本実施例の半導体レーザに於ては、2ケのレーザ領
域の間隔が約50μmとせまいため、通常良く用いる光
学系をそのまま利用して2本の光ビームをコリメート及
びフォーカシングすることができる%徴ヲ有するもので
ある。
In the tree structure -r#J:, 50 at intervals on the same semiconductor substrate
Two different buried 81J seat lasers A and B with a mesa width of about 1 μm and a width of about 2 μm are formed, each having an independent semiconductor laser operation using a separated p-type ohmic electrode. You can have the righteousness to act. Here, since the active layer widths of semiconductor lasers A and 8 are different, each being about 1 μm and the other about 2 μm, the currents of the oscillation 1rAl lfj will be different, about 25 mA and about 50 mA. In the A and 13th generations, the respective drive current (I) - optical output (Ll characteristics and drive current (Il - noise (
RIN) characteristics. In semiconductor laser A, the noise (IN) when the oscillation threshold current is 25 mA and 2 mW output is approximately -144 dB/Hz, while in semiconductor laser B, the noise when the oscillation threshold current is 50 mA and 2 mW output is approximately -144 dB/Hz. (
RIN) is approximately -130dB/It-1x, 20m
The sound of W output (R, IN) is approximately -160dB/Hz
Therefore, the optical output was reduced to about 20 mW.
When performing optical recording on a recording medium at a high power output of about 2 mW, laser recording is performed using the B region of the semiconductor laser according to this embodiment. By using the A region of the semiconductor laser, the noise at 2 mW output (⇠IN
) to approximately -140dQ/1 (z, high 87N
This enabled us to create a long-term semiconductor laser light source with little readout error. As shown in this example, in a semiconductor laser in which the oscillation threshold current is reduced by reducing the mesa width and the noise component is reduced,
In addition to the low-output readout operation (about 20mW high-output operation), when the optical recording operation is performed, the active WI
Because the width is narrow and the cross section of the excavated light is small, the reflective mirror surface of the semiconductor laser and the phase separation in its vicinity are destroyed by the heat generation phenomenon caused by high optical output density operation (this is called destruction due to high optical output density operation, and is an essential phenomenon in semiconductor lasers. There is), the third
As shown in the figure, the maximum optical output of the KA domain semiconductor laser is 12
It should be noted that the limit is approximately 13 mW. In addition, in the semiconductor laser of this example, since the distance between the two laser regions is narrow, approximately 50 μm, the two light beams can be collimated and focused using a commonly used optical system as is. It has a % characteristic.

さらに第4図に於ては本発明に係る他の実施例について
示す。第4図の構造に於ては、前述した例とは異なり1
回の液相結晶成長工程によって形成できる本発明の応用
例を示す0本構造に於ては、まずO+IAs基板(1)
に通常のホトレジスト工程及び選択的化学エツチング(
3%E3「、含有量のC)JsOHエツチング液等によ
り、横幅約3μm深さ約1μmのV字状溝と横幅約51
1m深さ約111mの凹状溝を、間隔約50μm離して
形成する0この後、液相結晶成長工程によりn型” o
、 a OII’e、 7 ” H(31、kl゛2.
yOり戸ゝAs1(41、p型A/ip、J(ja d
 y As層(81,n型GaAs層0→を順次形成す
る0ζこで各層の層厚は、n型AZ p、・a’ Ga
 >、 7 As jf’t (31はR1の外側に於
て約0.2μm、Al t)、’l ’ Ga Il、
P ’ As 1tii(41はα1μm% p型Al
 ’pJOa azAs j較(s+は約1.5μm、
n型0aAs層0喧は約1.0μmとした。次に、前述
した、第2図に示す構造例と同様に、Zn拡散によるp
型不純物拡散層0(l、電極分離用8i02屑◇υ、及
びp型オー ξツク布枠θ望n型オーミック電極a1を
形成して本発明の他の実施例が形成される。
Furthermore, FIG. 4 shows another embodiment according to the present invention. In the structure shown in Figure 4, unlike the previous example, 1
In the case of an O+IAs substrate (1) showing an application example of the present invention, which can be formed by multiple liquid phase crystal growth steps,
Standard photoresist process and selective chemical etching (
A V-shaped groove with a width of about 3 μm and a depth of about 1 μm and a width of about 51
Concave grooves with a depth of 1 m and approximately 111 m are formed at intervals of approximately 50 μm. After this, a liquid phase crystal growth process is performed to form n-type grooves.
, a OII'e, 7" H (31, kl゛2.
yOrito As1 (41, p type A/ip, J (ja d
y As layer (81, n-type GaAs layer 0 → is formed sequentially 0ζ where the layer thickness of each layer is n-type AZ p, ・a' Ga
>, 7 As jf't (31 is about 0.2 μm outside R1, Al t), 'l' Ga Il,
P'As 1tii (41 is α1μm% p-type Al
'pJOa azAs j comparison (s+ is about 1.5 μm,
The thickness of the n-type 0aAs layer was approximately 1.0 μm. Next, similarly to the above-mentioned structure example shown in FIG.
Another embodiment of the present invention is formed by forming an impurity diffusion layer 0 (l), 8i02 scraps ◇υ for electrode separation, and a p-type ξ oak cloth frame θ and an n-type ohmic electrode a1.

本構造に於ては、第4図に示す様に、A領域の半導体レ
ーザは、ミゾ幅が狭まく、その発光スポットは約1.2
μm程度となることに加え、p型不純物拡散幅は約3μ
mと狭いため発振閾値翫流約30mA、光出力2m〜V
時の雑音(TIIN)を約−140dB/1−1x K
まで低減でき、一方B領域の半導体レーザは、ミゾ幅が
広く、その発光スポットは約2511m程度と大きく、
又、p型不純物拡散幅は約6μrl+と広いため、口(
、振]んi偵知、流約6 (l woAで高出力1山作
d’ i’JfJヒとなり約”l OmW XIJ作時
Oa音(IIIN)U、約−1(i 0 d13/ll
z k得ることができ、前述と同様の、jv近接した半
導体レーザA、と8とを用いることにより高S/N特性
による書き込みと読み出しを?’lう轡能を、−回の結
4^成長工程により形成することができる行@を有する
ものである。
In this structure, as shown in FIG. 4, the groove width of the semiconductor laser in region A is narrow, and the emission spot is approximately 1.2 mm.
In addition to being on the order of μm, the p-type impurity diffusion width is approximately 3 μm.
Due to the narrow width of m, the oscillation threshold current is approximately 30mA, and the optical output is 2m~V.
Time noise (TIIN) approximately -140dB/1-1x K
On the other hand, the semiconductor laser in region B has a wide groove and a large emission spot of about 2511 m.
In addition, since the p-type impurity diffusion width is as wide as approximately 6 μrl+, the opening (
, Shak]n i reconnaissance, flow rate 6 (l woA with high output 1 mountain production d'i'JfJhi becomes about "l OmW
By using semiconductor lasers A and 8 in close proximity to each other, write and read data with high S/N characteristics can be obtained. It has a row that can be formed by four consecutive growth steps.

−ザと、20 mW程が〔の大出力動作を可能にする半
導体レーザとを同一基板上に接近させて形成1〜である
ため、複数の光学系を用意してそれぞれのレーザ光を一
1?光する必要はなく、単一の光学系で集光できること
に合わせ、岩き込み、R>Fみ出し動作のいずれに於て
も]E(雑音特性にけれた牛導体し−ザ装置忙択供する
ことができる。
- laser and a semiconductor laser that enables high output operation of about 20 mW are formed on the same substrate in close proximity to each other. Therefore, multiple optical systems are prepared to combine each laser beam into one ? Since light does not need to be focused and can be focused with a single optical system, it is possible to use a conductor with excellent noise characteristics for both rock-in and R>F-extrusion operations. can be provided.

なお、以上の実施例においては、AlGaAs系の半搏
体ロ料ゲ用いた例について述べftが、In0aAsP
糸等他の半導体材ネ1を用いても同様の効果が得られる
のt、し言うまでもない3また発据則偵知流を互いに異
ならしめる手段として上記実施例では活性領域のストラ
イプ幅を変える方法を採ったが、他の方法、例えば、(
イ)活性層の厚さを変える、(ロ)活性層のキャリアの
ライフタイムfc変える(不純物濃度を変える。深い準
位を導入する等)等によっても上記実施例と同様の効果
が得られるり
In the above embodiments, an example using an AlGaAs-based semicircular material is described, and ft is In0aAsP.
It goes without saying that the same effect can be obtained by using other semiconductor materials such as thread, but in the above embodiment, as a means of differentiating the detection flow from one another, the width of the stripes in the active region is varied. However, there are other methods, such as (
The same effect as in the above embodiment can be obtained by (b) changing the thickness of the active layer, (b) changing the lifetime fc of carriers in the active layer (changing the impurity concentration, introducing a deep level, etc.).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は半導体レーザの駆動電流−光出力特性及び駆動
電流−雑音特性を示す図、第2図は本発明に係る半導体
レーザ装置の一実施例の構造断面図、第3図は本発明の
実施例に係る半導体レーザの駆動電流−光出力特性及び
駆動電流−雑音特性を示す図、第4図は本発明に係る他
の実施例の構造断面図である。 各図に於て、 1:n型GaAs基板 2:n型Al jニア・Ga 4.6 As層3 : 
n m、 At h、C3* 、?、Z As 層4 
: Al #’、’/ ’ Ga ’7.pAs f@
5:p型Aed、7 Gap、(Asso:p型GaA
s層 7:n型A/ #、’d” (1a 6.、y As層
8:p型Al p、?C1a /、 7 As層9:n
型A/ >、J Ga I、p、7. As層10:p
型不純物拡散層 11 : 8i02層 12:p型オーミック電極 13:n型オーミック電極 14:n型GRAS 層 を示j。 第1図 lN 2O3046506070θθ qo to。 1 (MA) 第2図 A f3 第3図 IN zo so 40so 6o ’to no qo t
o。 1、(fllA)
FIG. 1 is a diagram showing the drive current-optical output characteristics and drive current-noise characteristics of a semiconductor laser, FIG. 2 is a cross-sectional view of the structure of an embodiment of the semiconductor laser device according to the present invention, and FIG. FIG. 4 is a diagram showing drive current-optical output characteristics and drive current-noise characteristics of a semiconductor laser according to an embodiment, and is a structural sectional view of another embodiment according to the present invention. In each figure, 1: n-type GaAs substrate 2: n-type Alj near Ga 4.6 As layer 3:
nm, At h, C3*,? , Z As layer 4
: Al #','/'Ga'7. pAs f@
5: p-type Aed, 7 Gap, (Asso: p-type GaA
S layer 7: n-type A/ #, 'd'' (1a 6., y As layer 8: p-type Al p, ?C1a /, 7 As layer 9: n
Type A/>, J Ga I, p, 7. As layer 10:p
type impurity diffusion layer 11: 8i02 layer 12: p-type ohmic electrode 13: n-type ohmic electrode 14: n-type GRAS layer. Figure 1 lN 2O3046506070θθ qo to. 1 (MA) Fig. 2 A f3 Fig. 3 IN zo so 40so 6o 'to no qot
o. 1, (fllA)

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に、少なくとも発振閾値電流の異なる複数
の半導体レーザを形成したことを特徴とする半導体レー
ザ装置〇
A semiconductor laser device characterized in that a plurality of semiconductor lasers having at least different oscillation threshold currents are formed on a semiconductor substrate〇
JP21557983A 1983-11-16 1983-11-16 Semiconductor laser Pending JPS60107886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21557983A JPS60107886A (en) 1983-11-16 1983-11-16 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21557983A JPS60107886A (en) 1983-11-16 1983-11-16 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS60107886A true JPS60107886A (en) 1985-06-13

Family

ID=16674771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21557983A Pending JPS60107886A (en) 1983-11-16 1983-11-16 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS60107886A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287289A (en) * 1985-06-14 1986-12-17 Sharp Corp Semiconductor laser device for light memory
JPS63102389A (en) * 1986-10-20 1988-05-07 Mitsubishi Electric Corp Semiconductor laser
JPH02122584A (en) * 1988-10-31 1990-05-10 Nec Corp Semiconductor laser array and optical disk device
US4956700A (en) * 1987-08-17 1990-09-11 Siliconix Incorporated Integrated circuit with high power, vertical output transistor capability

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287289A (en) * 1985-06-14 1986-12-17 Sharp Corp Semiconductor laser device for light memory
EP0206642A2 (en) * 1985-06-14 1986-12-30 Sharp Kabushiki Kaisha Optical memory semiconductor laser
JPS63102389A (en) * 1986-10-20 1988-05-07 Mitsubishi Electric Corp Semiconductor laser
US4956700A (en) * 1987-08-17 1990-09-11 Siliconix Incorporated Integrated circuit with high power, vertical output transistor capability
JPH02122584A (en) * 1988-10-31 1990-05-10 Nec Corp Semiconductor laser array and optical disk device

Similar Documents

Publication Publication Date Title
JP3249999B2 (en) Semiconductor laser device
JP2005019679A (en) Semiconductor laser device
JPS60107886A (en) Semiconductor laser
US5544190A (en) II-VI Semiconductor diode laser with lateral current confinement
KR100616540B1 (en) Two wavelength semiconductor laser device and method of producing the same
JPS61248584A (en) Semiconductor laser
JPS58134492A (en) Semiconductor device generating at least two optical beams
JPS61280693A (en) Complex semiconductor laser
JPH0156547B2 (en)
JPS60107885A (en) Semiconductor laser
JPS6072288A (en) Semiconductor laser array device
JP4083836B2 (en) Semiconductor laser device and manufacturing method thereof
JPS63215088A (en) Semiconductor laser array device
JP2682906B2 (en) AlGaInP-based semiconductor laser device
JP2000138419A (en) Semiconductor laser element and its manufacture
JPS61184737A (en) Multibeam optical pickup device
JPH0330388A (en) Two-wavelength semiconductor laser
JPS61236185A (en) Preparation of semiconductor laser element
JPH11195837A (en) Manufacture of semiconductor laser
JPS63222490A (en) Semiconductor laser
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JPS63197394A (en) Semiconductor laser array element
JP2001274516A (en) Semiconductor laser and method for manufacturing the same
JPS61161786A (en) Semiconductor laser device
JPS61242089A (en) Semiconductor laser device