JPS63197394A - Semiconductor laser array element - Google Patents

Semiconductor laser array element

Info

Publication number
JPS63197394A
JPS63197394A JP3017887A JP3017887A JPS63197394A JP S63197394 A JPS63197394 A JP S63197394A JP 3017887 A JP3017887 A JP 3017887A JP 3017887 A JP3017887 A JP 3017887A JP S63197394 A JPS63197394 A JP S63197394A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor laser
oscillation
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3017887A
Other languages
Japanese (ja)
Inventor
Kenji Endo
健司 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3017887A priority Critical patent/JPS63197394A/en
Publication of JPS63197394A publication Critical patent/JPS63197394A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent the damage of a laser reflection surface, and increase the data transfer speed, by arranging, between oscillation parts, a region whose resistance is made high by radiating high energy particles, and separating them electrically. CONSTITUTION:On an n-type substrate 1, the following are crystal-grown; an n-type AlxGa1-xAs clad layer 2, an AlyGa1-yAs active layer 3, a p-type AlzGa1-zAs block layer 4, and an n-type GaAs block layer 5. Then the layer 5 is subjected to a selective etching so as to reach the layer 4, and filled with the layer 4. In the active layer wherein the layer 5 is subjected to a selective etching, a current is constricted and injected. A part of mode vertically distributed from the active layer 3 reaches the block layer 5 in both end-regions, and suffers loss. Thus a laser oscillation part is constituted. The upper surface of the laser oscillation part is coated with Au, and irradiated selectively by proton beam. Thereby, a high resistance regions 6 deeper than the layer 3 is formed between the laser oscillation parts. Next, p-side electrodes 7 are formed separately in each oscillation part.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、独立駆動可能な複数のレーザ発振部を備えた
半導体レーザアレイ素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser array element including a plurality of independently drivable laser oscillation sections.

〔従来の技術〕[Conventional technology]

独立駆動可能な複数のレーザ発振部を備えた半導体レー
ザアレイは、光デイスク装置やレーザプリンターなどの
情報処理機器の光源として広い用途がり、特に光デイス
ク装置の光源として優れた特徴を発揮する。
Semiconductor laser arrays equipped with a plurality of independently driven laser oscillation units have a wide range of uses as light sources for information processing equipment such as optical disk devices and laser printers, and exhibit particularly excellent characteristics as light sources for optical disk devices.

レーザビームが単一の半導体レーザを光源に用いると1
、情報の記録・再生・消去を独立に行わなければならず
情報の運転に時間がかかるのに対して、半導体レーザア
レイを用いると、複数のレーザビームを光ディスクの同
一トラック上に集光して記録・再生(エラーの検出)・
消去を分担させこれらの動作を連続して同時に処理でき
る。また、複数のレーザビームを複数のトラックに集光
させて記録や再生を平行して行うことができ、情報の転
送速度を単一ビームの場合に比較してビーム数倍高める
ことができるなどの利点がある。
When a single semiconductor laser is used as a light source, the laser beam becomes 1
, information must be recorded, reproduced, and erased independently, and it takes time to drive the information. However, when a semiconductor laser array is used, multiple laser beams are focused on the same track on an optical disk. Recording/playback (error detection)/
Erasing can be shared and these operations can be processed continuously and simultaneously. In addition, recording and playback can be performed in parallel by focusing multiple laser beams on multiple tracks, and the information transfer speed can be increased by several times the number of beams compared to a single beam. There are advantages.

これらの用途となる半導体レーザアレイは、複数のレー
ザ発振部とそれらを独立に駆動するための構造を備えて
いる必要がある。従来は、溝をし−ザ発振部間に少なく
とも活性層より深く形成してレーザ発振部を互いに電気
的に分解する方法が一般的であった。
Semiconductor laser arrays used in these applications must include a plurality of laser oscillation units and a structure for independently driving them. Conventionally, a common method has been to form a groove between the laser oscillation sections at least deeper than the active layer to electrically separate the laser oscillation sections from each other.

第3図は、雑誌「アプライド・フイジクス・レター(A
pplied Physics Letters)J 
1982年第41巻1040から1042頁に記載され
ている半導体レーザアレイの構造を示す断面図である。
Figure 3 is from the magazine “Applied Physics Letters” (A
pplied Physics Letters)J
FIG. 4 is a cross-sectional view showing the structure of a semiconductor laser array described in Vol. 41, pp. 1040 to 1042, published in 1982.

GaAs基板1上に活性層3を含むAI!GaAs多層
膜2〜4,10〜12を結晶成長し、複数のレーザ発振
部を同時に形成したのち、活性層より深(GaAs基板
1に達する深さの分離溝14をエツチングで形成して発
振部間の電気的分離を行なっている。
AI containing an active layer 3 on a GaAs substrate 1! After crystal-growing the GaAs multilayer films 2 to 4 and 10 to 12 to simultaneously form multiple laser oscillation sections, a separation groove 14 deeper than the active layer (reaching the GaAs substrate 1) is formed by etching to form the oscillation section. electrical isolation between the two.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この従来の方法では、電気的な分離のために発振部間に
形成する分離溝14は、深さが4〜5μm以上2幅が1
0〜20μm以上と大きかった。このため溝14が障害
となってへき開が円滑に進まず、平坦なレーザ反射面を
得にくいという問題があった。また、溝の幅および溝を
形成するプロセスの必要上、レーザ発振部の間隔に制限
が生じ従来100μm以上であった。半導体レーザアレ
イから出射された複数のレーザビームは、装置の構成が
簡略で位置の調和が容易であることや、外乱に対する安
定性が高いなどの理由で、同一のレンズを経由させて光
デイスク上に集光されるが、これに用いるコリメートレ
ンズの有効視野は、一般に200〜300μmと狭い。
In this conventional method, the isolation groove 14 formed between the oscillating parts for electrical isolation has a depth of 4 to 5 μm or more and a width of 1 μm.
It was large, 0 to 20 μm or more. For this reason, there was a problem that the grooves 14 were an obstacle and the cleavage did not proceed smoothly, making it difficult to obtain a flat laser reflecting surface. Furthermore, due to the width of the groove and the necessity of the process for forming the groove, there is a limit to the spacing between the laser oscillation parts, which has conventionally been 100 μm or more. Multiple laser beams emitted from a semiconductor laser array are routed through the same lens onto an optical disk due to the simple structure of the device, easy alignment of positions, and high stability against external disturbances. However, the effective field of view of the collimating lens used for this is generally as narrow as 200 to 300 μm.

このため従来の発振部の間隔の広い半導体レーザアレイ
ではビーム数が2〜3と少ないものしか光源に用いるこ
とができず、光デイスク装置の転送速度の高速化の障害
になっていた。
For this reason, conventional semiconductor laser arrays with wide spacing between oscillation units can only be used as light sources with a small number of beams, 2 to 3, which has been an obstacle to increasing the transfer speed of optical disk devices.

本発明の目的は、これらの問題点を解決し、レーザ反射
面の損傷をなくすと共に、データ転送速度を速めた半導
体レーザアレイ素子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve these problems and provide a semiconductor laser array element that eliminates damage to the laser reflecting surface and increases data transfer speed.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の構成は、半導体基板上に活性層を含む半導体多
層膜が結晶成長され、この半導体多層膜中に電流狭窄構
造と光導波路構造とを備えた複数の発振部を有する半導
体レーザアレイ素子において、前記各発振部が前記半導
体多層膜上に高エネルギー粒子を照射して高抵抗化した
高抵抗領域によって互いに電気的に分離された構造であ
り、これら各発振部が互いに独立に駆動できるようにし
たことを特徴とする。
The structure of the present invention is a semiconductor laser array element in which a semiconductor multilayer film including an active layer is crystal-grown on a semiconductor substrate, and the semiconductor multilayer film has a plurality of oscillation parts each having a current confinement structure and an optical waveguide structure. , each of the oscillation sections is electrically isolated from each other by a high resistance region made high in resistance by irradiating high energy particles onto the semiconductor multilayer film, so that each of the oscillation sections can be driven independently of each other. It is characterized by what it did.

〔作用〕[Effect]

本発明の構成によれば、従来の半導体レーザアレイ素子
にあった溝に変って、高エネルギー粒子の照射で高抵抗
化した領域を発振部間に設けることで電気的な分離を実
現しているため、発振部の間隔を従来方法に比較して大
幅に狭めること・ができると共に、はぼ平坦な素子表面
が得られることから、溝によってへき開が円滑に進ます
レーザ反射面に損傷を生じやすいといった従来の問題点
を解決できる。
According to the configuration of the present invention, electrical isolation is achieved by providing regions between the oscillation parts that have a high resistance due to irradiation with high-energy particles, instead of the grooves in conventional semiconductor laser array elements. As a result, the spacing between the oscillating parts can be significantly narrowed compared to conventional methods, and a nearly flat element surface can be obtained, allowing cleavage to proceed smoothly due to the grooves.It is easy to cause damage to the laser reflecting surface. It can solve conventional problems such as

〔実施例〕〔Example〕

第1図は本発明の第1の実施例の半導体レーザアレイ素
子の斜視図を示す。n型GaAs基板1上に、n型A 
(!、 G a A sクラッド層2゜A j7y G
 a 1−y A s活性層3.p型Aff、Ga1−
2Asブロック層4.n型GaAsブロック層7を結晶
成長後、n型GaAsブロック層7をp型Aff、Ga
1□Asクラッド層4に達する深さにストライブ上に選
択的にエツチングして、さらに p 型Aez cra
l−、Asクラッド層4で埋め込んだ。n型GaAsブ
ロック層7を選択的にエツチングした活性層領域では、
電流が狭窄されて注入されるとともに、活性N3から垂
直方向に分布したモードの一部が両端の領域でブロック
層7に達し損失を得けることで、レーザ発振部を構成す
る。
FIG. 1 shows a perspective view of a semiconductor laser array element according to a first embodiment of the present invention. On the n-type GaAs substrate 1, the n-type A
(!, G a As cladding layer 2゜A j7y G
a 1-y As active layer 3. p-type Aff, Ga1-
2As block layer 4. After crystal growth of the n-type GaAs block layer 7, the n-type GaAs block layer 7 is grown by p-type Aff, Ga
1□Selective etching is performed on the stripes to a depth that reaches the As cladding layer 4, and further p-type Aez cladding is etched.
l-, filled with As cladding layer 4. In the active layer region where the n-type GaAs block layer 7 is selectively etched,
The current is constricted and injected, and a part of the mode distributed in the vertical direction from the active N3 reaches the block layer 7 at both end regions to obtain a loss, thereby forming a laser oscillation section.

このレーザ発振部の上面をAu薄膜で覆ってプロトンを
選択的に照射し、レーザ発振部の間に少なくとも活性層
3より深く高抵抗領域6を形成しな。その後にp側電極
7を発振部ごとに分離して形成した。
The upper surface of this laser oscillation part is covered with an Au thin film and protons are selectively irradiated to form a high resistance region 6 at least deeper than the active layer 3 between the laser oscillation parts. Thereafter, p-side electrodes 7 were formed separately for each oscillation section.

このようにして形成した半導体レーザアレイは、複数の
レーザ発振部がプロトン照射によって形成された高抵抗
領域6で電気的に分離されており独立に駆動できる。こ
れら高抵抗領域6は10μm以下の幅に形成でき、発振
部の間隔が50μm以下の半導体レーザアレイ素子が実
現できる。また従来の素子にあった溝が不要でほぼ平坦
な素子表面が得られることから、へき開が円滑に進みレ
ーザ反射面に損傷を生じむこともない。
In the semiconductor laser array thus formed, a plurality of laser oscillation sections are electrically separated by a high resistance region 6 formed by proton irradiation and can be driven independently. These high resistance regions 6 can be formed to have a width of 10 μm or less, making it possible to realize a semiconductor laser array element in which the interval between oscillation parts is 50 μm or less. Furthermore, since the grooves found in conventional elements are not required and a substantially flat element surface is obtained, cleavage proceeds smoothly and there is no damage to the laser reflecting surface.

第2図は本発明の第2の実施例の半導体レーザアレイ素
子の斜視図を示す、ストライプ上の複数の溝を形成した
n型GaAs基板1上に、n型A l! x G a 
l−x A sクラッド層2.n型Al!。
FIG. 2 shows a perspective view of a semiconductor laser array element according to a second embodiment of the present invention. An n-type Al! x G a
l-x As cladding layer 2. n-type Al! .

Ga l−u A sガイド層10.klyGap、y
As活性層3.p型A e z G a 1−2 A 
sクラッド層4、n型GaAsブロック層5を液相成長
法でエピタキシャル成長した。
Gal u As guide layer 10. klyGap,y
As active layer 3. p-type A ez Ga 1-2 A
The s-cladding layer 4 and the n-type GaAs block layer 5 were epitaxially grown using a liquid phase growth method.

ここでp型およびn型のクラッド層のA!!層の組成比
x、zは活性層のAff組成比yより大きく、ガイド層
のAe組成比Uは両者の間の大きさである。溝部の活性
層領域は、隣接するガイド層の厚さが溝部中央で薄いい
わゆるPCW構造(平凸薄波路構造)を備えた発振部を
形成する。溝部に対応する位置に、n型GaAsブロッ
クM5を貫通する深さで形成する。溝部に対応する位置
に、n型GaAsブロック層5を貫通する深さにp型不
純物のZnをストライプ状に選択拡散し、電流狭窄構造
を形成する。
Here, A! of the p-type and n-type cladding layers! ! The composition ratios x and z of the layers are larger than the Aff composition ratio y of the active layer, and the Ae composition ratio U of the guide layer is between the two. The active layer region of the groove portion forms an oscillation portion having a so-called PCW structure (plano-convex thin waveguide structure) in which the thickness of the adjacent guide layer is thin at the center of the groove portion. It is formed at a position corresponding to the groove with a depth that penetrates the n-type GaAs block M5. Zn, which is a p-type impurity, is selectively diffused in a stripe pattern to a depth penetrating the n-type GaAs block layer 5 at a position corresponding to the groove portion, thereby forming a current confinement structure.

第1の実施例と同様に、プロトンを選択的に照射しレー
ザ発振部の間に少なくとも活性層3より深く高抵抗領域
6を形成しp側電極7を発振部ごとに分離して形成する
ことによって独立に駆動できる複数のレーザ発振部を備
えた半導体レーザアレイ素子を作製した。
As in the first embodiment, a high resistance region 6 is formed at least deeper than the active layer 3 between the laser oscillation parts by selectively irradiating protons, and the p-side electrode 7 is formed separately for each oscillation part. We fabricated a semiconductor laser array device equipped with multiple laser oscillation units that can be driven independently by the following methods.

これら第1および第2の実施例では、発振部の数が3個
の半導体レーザアレイ素子を示したが、2個あるいは3
個以上の複数個の発振部を備えた半導体レーザアレイ素
子についても本発明を適用でき、また発振部の構造もこ
れらの実施例に限定されるものではなく、他の光導波路
構造や電流狭窄構造を備えた半導体レーザアレイ素子に
対しても本発明を適用でき同様の効果を得げることかで
きる。
In these first and second embodiments, a semiconductor laser array element having three oscillation parts is shown, but two or three oscillation parts may be used.
The present invention can also be applied to a semiconductor laser array element having a plurality of oscillation sections, and the structure of the oscillation section is not limited to these embodiments, and may be applied to other optical waveguide structures or current confinement structures. The present invention can also be applied to a semiconductor laser array element equipped with a semiconductor laser array element, and similar effects can be obtained.

本発明は、AJGa I nPやI nGaAsPなど
の他の半導体材料よりなる半導体レーザアレイ素子に対
しても適用でき同様の効果を得ることができる。
The present invention can be applied to semiconductor laser array elements made of other semiconductor materials such as AJGa I nP and InGaAsP, and similar effects can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の半導体レーザアレイに比較して
、発振部間の電気的な分離のための溝が不要で結晶表面
が平坦な半導体レーザアレイが得られ、反射面形成時の
歩留り低下を改善できる。
According to the present invention, compared to conventional semiconductor laser arrays, it is possible to obtain a semiconductor laser array that does not require grooves for electrical isolation between oscillating parts and has a flat crystal surface, which reduces yield when forming reflective surfaces. can be improved.

また発振部の間隔の狭い半導体レーザアレイを作製でき
、並列記録・再生方式によるデータ転送速度の高速化に
適した光源を提供することができる。
Furthermore, it is possible to fabricate a semiconductor laser array with narrow spacing between oscillating parts, and it is possible to provide a light source suitable for increasing the data transfer rate using the parallel recording/reproducing method.

【図面の簡単な説明】 第1図と第2図は本発明の第1および第2の実施例の半
導体レーザアレイ素子の構造図、第3図は従来の半導体
レーザアレイ素子の一例の構造断面図である。 1−−− n型G a A s基板、2 ・q n型A
 I! )l G al−gAsクラッド層、3・・・
AI!yGa1−yAs活性層、4−P型A l z 
G a 1−z A sクラッド層、5・・・n型Ga
Asブロック層、6・・・高抵抗領域、7・・・p側電
極、8・・・n側電極、9・・・p型不純物拡散領域、
10−n型Alu Ga1−、Asガイド層、11 ・
n型A e u G a 1−u A sクラッド層、
12・・・p型G a A sキヤツプ層、13・・・
絶縁膜、14・・・分離溝。
[Brief Description of the Drawings] FIGS. 1 and 2 are structural diagrams of semiconductor laser array devices according to first and second embodiments of the present invention, and FIG. 3 is a structural cross-section of an example of a conventional semiconductor laser array device. It is a diagram. 1--- n-type Ga As substrate, 2 q n-type A
I! )l Gal-gAs cladding layer, 3...
AI! yGa1-yAs active layer, 4-P type Al z
Ga 1-z As cladding layer, 5...n-type Ga
As block layer, 6... High resistance region, 7... P-side electrode, 8... N-side electrode, 9... P-type impurity diffusion region,
10-n-type Alu Ga1-, As guide layer, 11 ・
n-type AeuGa1-uAs cladding layer,
12...p-type GaAs cap layer, 13...
Insulating film, 14... isolation groove.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に活性層を含む半導体多層膜が結晶成長さ
れ、この半導体多層膜中に電流狭窄構造と光導波路構造
とを備えた複数の発振部を有する半導体レーザアレイ素
子において、前記各発振部が前記半導体多層膜上に高エ
ネルギー粒子を照射して高抵抗化した高抵抗領域によっ
て互いに電気的に分離された構造であり、これら各発振
部が互いに独立に駆動できるようにしたことを特徴とす
る半導体レーザアレイ素子。
A semiconductor multilayer film including an active layer is crystal-grown on a semiconductor substrate, and each of the oscillation parts has a plurality of oscillation parts each having a current confinement structure and an optical waveguide structure in the semiconductor multilayer film. The semiconductor multilayer film is electrically isolated from each other by a high resistance region made high in resistance by irradiating high energy particles onto the semiconductor multilayer film, and each of these oscillation parts can be driven independently of each other. Semiconductor laser array element.
JP3017887A 1987-02-10 1987-02-10 Semiconductor laser array element Pending JPS63197394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3017887A JPS63197394A (en) 1987-02-10 1987-02-10 Semiconductor laser array element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3017887A JPS63197394A (en) 1987-02-10 1987-02-10 Semiconductor laser array element

Publications (1)

Publication Number Publication Date
JPS63197394A true JPS63197394A (en) 1988-08-16

Family

ID=12296500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3017887A Pending JPS63197394A (en) 1987-02-10 1987-02-10 Semiconductor laser array element

Country Status (1)

Country Link
JP (1) JPS63197394A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02181486A (en) * 1989-01-06 1990-07-16 Hitachi Ltd Semiconductor laser element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02181486A (en) * 1989-01-06 1990-07-16 Hitachi Ltd Semiconductor laser element

Similar Documents

Publication Publication Date Title
US4870652A (en) Monolithic high density arrays of independently addressable semiconductor laser sources
US5497391A (en) Monolithic array of independently addressable diode lasers
US4747110A (en) Semiconductor laser device capable of emitting laser beams of different wavelengths
US4674094A (en) Semiconductor laser with an active layer having varying thicknesses
Botez Laser diodes are power-packed: Single-mode laser diodes have a rosy future, both as individual sources of power up to 100 milliwatts and in arrays promising up to half a watt
JPS63197394A (en) Semiconductor laser array element
US4914669A (en) Semiconductor laser array apparatus
US4737959A (en) Semiconductor laser array device
JP2846668B2 (en) Broad area laser
JPS61248584A (en) Semiconductor laser
JPS60236274A (en) Semiconductor laser element
JPS6215879A (en) Semiconductor laser arrays device
JPH0638538B2 (en) Multi-wavelength semiconductor laser device
JPH029468B2 (en)
JPH02180085A (en) Semiconductor laser element and manufacture thereof
JPS63168068A (en) Semiconductor laser array element
JPS61290788A (en) Semiconductor laser device and manufacture thereof
JPS63215088A (en) Semiconductor laser array device
JPS6072288A (en) Semiconductor laser array device
JP2682906B2 (en) AlGaInP-based semiconductor laser device
JPS58192394A (en) Semiconductor laser device
JPS62269375A (en) Semiconductor device
JPS6242480A (en) Multi-beam semiconductor laser element and manufacture thereof
JPH07120837B2 (en) Multi-beam semiconductor laser device and manufacturing method thereof
JPH05226771A (en) Semiconductor laser