JPS60107239A - Bulb exhausting apparatus - Google Patents

Bulb exhausting apparatus

Info

Publication number
JPS60107239A
JPS60107239A JP21460983A JP21460983A JPS60107239A JP S60107239 A JPS60107239 A JP S60107239A JP 21460983 A JP21460983 A JP 21460983A JP 21460983 A JP21460983 A JP 21460983A JP S60107239 A JPS60107239 A JP S60107239A
Authority
JP
Japan
Prior art keywords
valve
exhaust
bulb
gas
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21460983A
Other languages
Japanese (ja)
Other versions
JPH029422B2 (en
Inventor
Masaaki Yada
矢田 正明
Yutaka Katase
片瀬 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21460983A priority Critical patent/JPS60107239A/en
Publication of JPS60107239A publication Critical patent/JPS60107239A/en
Publication of JPH029422B2 publication Critical patent/JPH029422B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/38Exhausting, degassing, filling, or cleaning vessels
    • H01J9/385Exhausting vessels

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

PURPOSE:To efficiently exhaust the gas containing impurity which is emitted within a bulb by high frequency discharge by providings drift generating apparatus which applies electric field and magnetic field crossing each other to an exhaust bulb to the outside of said exhaust bulb. CONSTITUTION:The electromagnets 17a, 17b of a drift generating apparatus generate a magnetic field B within an exhaust bulb 2 in such a direction as orthogonally crossing the axis of exhaust bulb 2, while the electrode plates 18a, 18b generate an electric field E which orthogonally crosses the axis and magnetic field B. A valve 4 is opened and a valve 1 is vacuumed by a vacuum pump 5. Next, a valve 6 is opened in order to supply inactive gas within a gas bomb 7 to the valve 1 through the exhaust bulb 2. When a high frequency signal is applied to the valve 1 with a high frequency coil 14, discharges are generated within the valve 1 and thereby impurity absorbed by the valve 1 is emitted. Next, a valve 8 is opened and the gas in the valve 1 is attracted toward a vacuum tank 9. In this case, when the electric field E is generated simultaneously with magnetic field B, gas particles are given acceleration based on the drift movement and thereby it passes at a high speed throughout the exhaust bulb 2.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は管球製造工程中においてバルブ内を排気する装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an apparatus for evacuating the inside of a valve during a tube manufacturing process.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

石英、ガラスまたはセラミックからなるバルブにタング
ステンHの電極またはフィラメントを封装してなる管球
においては、バルブの内壁や電極の表面汚れ、水分等の
不純物付着、あるいはガス層や酸化変質層が残存してい
ると管球の品質を著しく低下させるため、管球製造工程
中に脱ガス処理を行っている。
In bulbs made of quartz, glass, or ceramic bulbs sealed with tungsten H electrodes or filaments, there may be dirt on the inner walls of the bulb or electrodes, adhesion of impurities such as moisture, or residual gas or oxidized layers. Since the quality of the tube will deteriorate significantly if the tube is exposed to heat, degassing is performed during the tube manufacturing process.

従来における脱ガス処理は、電気炉による加熱脱ガス処
理でアシ、電極やフィラメント〜を封着したバルブを外
部から加熱し、この際電極やフィラメントに通電し、排
気管を通じて排気ポンプによりバルブ内を真空引きする
ものであった。しかしながらこのような脱ガス処理によ
ると、バルブを加熱するものでおるからバルブが所定温
度に達するまでに時間を要しかつ脱ガス後にバルブを常
温まで降温させるのにも時間を要するから、作業能率が
低い欠点がある。
Conventional degassing treatment involves heating the bulb with the reeds, electrodes, and filament sealed together using an electric furnace and heating it from the outside.At this time, the electrodes and filament are energized, and the inside of the bulb is pumped through the exhaust pipe with an exhaust pump. It was meant to be vacuumed. However, with this type of degassing treatment, since the valve is heated, it takes time for the valve to reach a predetermined temperature, and it also takes time to cool the valve to room temperature after degassing, which reduces work efficiency. There is a drawback that the price is low.

このような加熱脱ガス処理に代って、プラズマ排気処理
が提案されておシ、プラズマ排気処31ハ、ハ#ニア”
内t−一度排気しておいてこのバルブに窒素ガスまたは
アルゴンガスを供給し、このパルプの外部から高周波コ
イルなどによって高周波を印加してパルプ内に放電を生
起させて不活性ガスにプラズマを発生させるものである
Instead of such heating degassing treatment, plasma exhaust treatment has been proposed.
After exhausting the air once, supply nitrogen gas or argon gas to this valve, and apply high frequency from outside the pulp using a high frequency coil etc. to generate a discharge within the pulp and generate plasma in the inert gas. It is something that makes you

この高周波放電によりバルブ壁や電極等に付着および吸
蔵されている不純物がたたき出されて離脱するので、該
バルブ内のガスを排除するようにしたものである。
This high-frequency discharge knocks out impurities attached to and occluded on the bulb walls, electrodes, etc., and removes them, thereby eliminating the gas inside the bulb.

このようなプラズマ排気方法はバルブを加熱する必要が
なく、電極に通電する必要もないので加熱炉や給電装置
が不要となるばかシでなく、パルプの昇温、降温時間を
待たなくてもよいので作業能率が向上するなどの利点が
ある。
This plasma exhaust method does not require heating the valve or energizing the electrodes, so it does not require a heating furnace or power supply device, and there is no need to wait for the pulp temperature to rise or fall. This has the advantage of improving work efficiency.

しかしながら高周波放電によりてパルプ内にたたき出さ
れた不純物は排気管を通じて排除されるため、この排除
能率が良くない問題が残されている。すなわち高周波放
電によってたたき出された不純物は排気ポンプで排除さ
れるものであるが、この排除時間は排気管の内径とここ
を流れるガス流速によって決まる。排気管の大きさは無
制限に大きくできないのでガス流速を早めることによシ
排気時間を短縮しなければならない。最終的にパルプ内
の真空度は1o−Llo−’Torr程度まで高真空が
要求され、これを短時間に得ようとすると排気容量の大
きな真空ポンプを使用せざるを得す、装置が高価になる
不具合があった。
However, since the impurities knocked out into the pulp by the high frequency discharge are removed through the exhaust pipe, the problem remains that the removal efficiency is not good. In other words, the impurities knocked out by the high-frequency discharge are removed by the exhaust pump, and the removal time is determined by the inner diameter of the exhaust pipe and the gas flow rate flowing therethrough. Since the size of the exhaust pipe cannot be increased without limit, the exhaust time must be shortened by increasing the gas flow rate. Ultimately, the degree of vacuum inside the pulp is required to be as high as 1o-Llo-'Torr, and if you try to achieve this in a short time, you have no choice but to use a vacuum pump with a large exhaust capacity, which makes the equipment expensive. There was a problem.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情にもとづきなされたもので、そ
の目的とするところは、高周波放電によってたたき出さ
れた不純物を含有するガスを能率的に排除することがで
きる管球の排気装置を提供しようとするものである。
The present invention was made based on the above circumstances, and its purpose is to provide a tube exhaust device that can efficiently eliminate gas containing impurities ejected by high-frequency discharge. That is.

〔発明の概要〕[Summary of the invention]

本発明は、排気管の外部にこの排気管に対して相互に直
交する電場と磁場を印加するドリフト発生装置を設けた
ことを特徴とするものであシ、パルプ内において放電に
よシプラズマ電荷が与えられたガス粒子を上記電場と磁
場の作用によるドリフト運動によって加速度を与え、強
制的に排除するようにしたものである。
The present invention is characterized in that a drift generator is provided outside the exhaust pipe to apply mutually orthogonal electric and magnetic fields to the exhaust pipe, and plasma charges are generated by discharge within the pulp. The applied gas particles are accelerated by drift motion due to the action of the electric field and magnetic field, and are forcibly removed.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面にもとづき説明する。 An embodiment of the present invention will be described below based on the drawings.

図において1は放電灯の外管バルブであり、内部には図
示しない発光管がマウントされている。2は上記バルブ
lから導出された排気管を示す。排気管2は分岐接続管
3に接続されている。分岐接続管3は、第1の電磁開閉
弁4を介して真空ポンプ5に接続されているとともに、
第2の電磁開閉弁6を介して窒素ガスまたはアルゴンガ
スのポンベ7に接続されておシ、さらに第3の電磁開閉
弁8を介して真空タンク9に接続されている。なお真空
タンク9は開閉弁10を介して排気ポンプ11に接続さ
れ、この排気ポンプ11によって所定の高真空が保たれ
/′ るようになっている。上記第1ないし第3の電磁開閉弁
4.6.8は制御器12からの指示信号によって開閉作
動される。制御器12はコンピュータ(CPU ) 1
3によりコントロールされる。
In the figure, 1 is an outer bulb of a discharge lamp, and a discharge tube (not shown) is mounted inside. Reference numeral 2 indicates an exhaust pipe led out from the valve l. The exhaust pipe 2 is connected to a branch connecting pipe 3. The branch connection pipe 3 is connected to a vacuum pump 5 via a first electromagnetic on-off valve 4, and
It is connected to a nitrogen gas or argon gas pump 7 via a second electromagnetic on-off valve 6, and further connected to a vacuum tank 9 via a third electromagnetic on-off valve 8. The vacuum tank 9 is connected to an exhaust pump 11 via an on-off valve 10, and a predetermined high vacuum is maintained by the exhaust pump 11. The first to third electromagnetic on-off valves 4.6.8 are opened and closed by instruction signals from the controller 12. The controller 12 is a computer (CPU) 1
Controlled by 3.

パルプlは高周波コイル14によって包囲され、この高
周波コイル14によシプラズマ放電させられる。高周波
コイル14は高周波電源15に接続され、この高周波電
源15は上記コンピュータ13によって高周波コイル1
4に対するオン、オフおよび周波数制御が調整される。
The pulp 1 is surrounded by a high frequency coil 14, and is caused to undergo plasma discharge by this high frequency coil 14. The high frequency coil 14 is connected to a high frequency power source 15, and this high frequency power source 15 is connected to the high frequency coil 1 by the computer 13.
On, off and frequency controls for 4 are adjusted.

排気管2の周囲にはドリフト発生装置16が設けられて
いる。ドリフト発生装置16は第2図に示すように、排
気管2を挾んで一対の電磁石17 a e 17 bと
、これら電磁石17a、17bと直交して電極板18a
、18bを配置して構成されている。一対の電磁石17
h、17bは排気管2内に排気管2の軸線と直交する方
向に磁界Bを発生させるとともに、一対の電極板18m
、18bは上記軸線と直交しかつ磁界Bと直交する電界
Eを発生させるようになっている。
A drift generator 16 is provided around the exhaust pipe 2. As shown in FIG. 2, the drift generator 16 includes a pair of electromagnets 17 a e 17 b sandwiching the exhaust pipe 2, and an electrode plate 18a perpendicular to these electromagnets 17a and 17b.
, 18b are arranged. A pair of electromagnets 17
h, 17b generates a magnetic field B in the exhaust pipe 2 in a direction perpendicular to the axis of the exhaust pipe 2, and a pair of electrode plates 18m
, 18b generate an electric field E that is perpendicular to the axis and perpendicular to the magnetic field B.

電磁石17h、17bは電磁石電源19に接続されてい
るとともに、電極板18m、18bは電極板電源2oに
接続されている。これら電源19.20のオン、オフお
よび磁界B、電界Eの強弱はコンピュータ13によって
制御されるようになっている。
The electromagnets 17h and 17b are connected to an electromagnet power source 19, and the electrode plates 18m and 18b are connected to an electrode plate power source 2o. The on/off of these power supplies 19 and 20 and the strength of the magnetic field B and electric field E are controlled by the computer 13.

このような装置を用いて脱ガス処理する手順を説明する
A procedure for degassing using such an apparatus will be explained.

バルブ1の排気管2を分岐接続管3に接続したら、真空
ポンプ5を作動させ、第1の電磁開閉弁4を開く。この
ためバルブ1内の空気は真をポン7°5に引き出される
。この真空引きはバルブl内が数Torrになるまで行
う。
After connecting the exhaust pipe 2 of the valve 1 to the branch connection pipe 3, the vacuum pump 5 is activated and the first electromagnetic on-off valve 4 is opened. For this reason, the air inside the valve 1 is drawn out to an angle of 7°5. This evacuation is performed until the inside of the valve l reaches several Torr.

つぎに第1の電磁開閉弁4を閉じ、第2の電磁開閉弁6
を開く。するとガスがンベ7内の窒素ガスまたはアルゴ
ンガスが排気管2を通じてバルブl内に供給される。バ
ルブl内のガス圧が200〜600 Torr程度に達
すると第2の電磁開閉弁6を閉じる。
Next, close the first electromagnetic on-off valve 4, and close the second electromagnetic on-off valve 6.
open. Then, nitrogen gas or argon gas in the gas chamber 7 is supplied into the valve l through the exhaust pipe 2. When the gas pressure within the valve l reaches approximately 200 to 600 Torr, the second electromagnetic on-off valve 6 is closed.

高周波電源15を作動させ高周波コイル14によってバ
ルブlに高周波を付加する。これによシバルブ1内に放
電が発生する。この高周波放電はバルブ1やこのバルブ
1内のマウント部材に付着あるいは吸蔵している不純物
をたたき出すとともに、ガスにプラズマを発生させる。
The high frequency power source 15 is activated and the high frequency coil 14 applies high frequency to the valve l. This causes a discharge within the valve 1. This high-frequency discharge knocks out impurities attached to or occluded on the bulb 1 and the mounting member inside the bulb 1, and also generates plasma in the gas.

つぎに第3の電磁開閉弁8を開いてバルブ1内のガスを
真空タンク9側に吸引する。このとき電磁石17a、1
7b間に磁界Bを発生させるとともに電極板18a、1
8b間に電界Eを発生させる。この磁界Bと電界Eの作
用により、上記高周波放電によって電荷が与えられたガ
ス粒子にドリフト運動にもとづく加速度が与えられてガ
スは排気管2中を高速で通過する。
Next, the third electromagnetic on-off valve 8 is opened to suck the gas inside the valve 1 into the vacuum tank 9 side. At this time, electromagnets 17a, 1
While generating a magnetic field B between electrode plates 18a and 1
An electric field E is generated between 8b. Due to the action of the magnetic field B and the electric field E, acceleration based on drift motion is applied to the gas particles charged by the high-frequency discharge, so that the gas passes through the exhaust pipe 2 at high speed.

ドリフト運動について第3図を参照して説明する。一般
に、電子およびイオンは、磁界Bが存在すると磁力線に
巻き付いたサイクロトロン運動をする。電子とイオンで
は回転方向が異なシ、回転牛径、角周波数も異なるが、
円形軌道上の粒子に働く遠心力と電磁力とが力学的平衡
を保つ。ところが磁界B中の荷電粒子に対して、さらに
磁界ベクトルBと直交する電界Eが加わった場合、粒子
はE方向へは動かず、l’−E’xnドリフト」と呼ば
れるメカニズムによりEとBとに垂直な方向へ「ドリフ
ト運動」を起こす。
The drift motion will be explained with reference to FIG. Generally, when a magnetic field B is present, electrons and ions undergo cyclotron motion in which they are wrapped around magnetic lines of force. Electrons and ions have different rotation directions, rotation diameters, and angular frequencies, but
Centrifugal force and electromagnetic force acting on particles on a circular orbit maintain mechanical equilibrium. However, when an electric field E perpendicular to the magnetic field vector B is further applied to the charged particles in the magnetic field B, the particles do not move in the E direction, and due to a mechanism called ``l'-E'xn drift,'' E and B are causes a "drift motion" in a direction perpendicular to .

このドリフト運動は電荷の符号、質量の大きさに影響な
く一定である。
This drift motion is constant regardless of the sign of the charge or the size of the mass.

したがってプラズマに一様な外部磁界が加わっている場
合、その磁界Bに垂直な静電界Eが重なると粒子は磁力
線を横切って、これらBおよびEに、ともに垂直な方向
、つまシ排気管2の管軸方向への加速度を受ける。
Therefore, when a uniform external magnetic field is applied to the plasma, when the electrostatic field E perpendicular to the magnetic field B overlaps, the particles cross the magnetic lines of force and move in the direction perpendicular to both B and E. Subjected to acceleration in the direction of the tube axis.

このため本実施例のドリフト発生装置16を使用すれば
、バルブ1内のガス排除がきわめてゝ 迅速に行われ、
排除時間が短かくて高真空度が得られ、排気ポンプ11
を格別に大きな排気能力をもつポンプにする必要がなく
なる。
Therefore, if the drift generator 16 of this embodiment is used, the gas inside the valve 1 can be removed extremely quickly.
A high degree of vacuum can be obtained with a short evacuation time, and the exhaust pump 11
There is no need to use a pump with a particularly large exhaust capacity.

このようなドリフト発生装置16の使用によるバルブ1
内の排気によシパルブ1内の圧力が数Torrになると
、第3の電磁開閉弁8を閉じ、電源19.20をオフに
する。そして再び第2の電磁開閉弁6を開いてバルブ1
内に窒素ガスまたはアルゴンガスを導入し、高周波放電
を起させてドリフト発生装置16による排気を繰シ返す
・この繰り返しを30回程度行い、1回のサイクルに要
する時間を約5秒程度としている。
Valve 1 by using such a drift generator 16
When the pressure inside the pump 1 reaches several Torr due to the exhaust gas inside, the third electromagnetic on-off valve 8 is closed and the power supply 19, 20 is turned off. Then, open the second electromagnetic on-off valve 6 again and open the valve 1.
Nitrogen gas or argon gas is introduced into the chamber, high-frequency discharge is caused, and exhaust is repeated by the drift generator 16. This is repeated about 30 times, and the time required for one cycle is about 5 seconds. .

この結果、バルブl内を高真空に、かつ高純度に脱ガス
することができる。
As a result, the inside of the valve 1 can be made into a high vacuum and degassed with high purity.

なお、外管バルブ1内に放電を発生させた場合、プラズ
マによる発光を伴う。この発光は使合状態によっても異
なる。したがってプラズマの発光具合を観察することに
よって脱ガスの進行状態を確認することができる。
Note that when electric discharge is generated within the outer bulb 1, light emission is accompanied by plasma. This light emission also differs depending on the state of use. Therefore, the progress of degassing can be confirmed by observing the state of plasma light emission.

本発明は放電灯の外管バルブばかシでなく、放電灯の発
光管、けい光ランプのバルブ、白熱電球のバルブなどに
も適用可能である。
The present invention is applicable not only to outer bulbs of discharge lamps, but also to arc tubes of discharge lamps, bulbs of fluorescent lamps, bulbs of incandescent lamps, and the like.

〔発明の効果〕〔Effect of the invention〕

以上述べた通シ本発明によると、プラズマ発生後のガス
を、排気管に設けたドリフト発生装置により高速で排除
することができるから、ガス排除時間が大能力の排気ポ
ンプを使用することなく大幅に短縮でき、よってガス排
除作業が高能率に行える。したがって高周波放電による
不純物のたたき出しと相まって管球の脱ガス工程が効率
よく行え、量産が可能になる。
According to the present invention as described above, the gas after plasma generation can be removed at high speed by the drift generator installed in the exhaust pipe, so the gas removal time can be significantly reduced without using a large-capacity exhaust pump. Therefore, gas removal work can be performed with high efficiency. Therefore, in combination with knocking out impurities by high-frequency discharge, the degassing process of the tube can be carried out efficiently, making mass production possible.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は排気装置の構
成を示す説明図、第2図はドリフト発生装置の説明図、
第3図はドリフト運動の原理を説明する図である。 1・・・バルブ、2・・・排気管、5・・・真空ポンプ
、7・・・ガスボンベ、9・・・真空タンク、14・・
・高周波コイル、16・・・ドリフト発生装置。 出願人代理人 弁理士 鈴 江 武 彦第 1 図 ワ 〜2 − m−] 第2図 0 第3図
The drawings show an embodiment of the present invention; FIG. 1 is an explanatory diagram showing the configuration of an exhaust device, FIG. 2 is an explanatory diagram of a drift generator,
FIG. 3 is a diagram explaining the principle of drift motion. 1... Valve, 2... Exhaust pipe, 5... Vacuum pump, 7... Gas cylinder, 9... Vacuum tank, 14...
- High frequency coil, 16... drift generator. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2-m-] Figure 2 0 Figure 3

Claims (1)

【特許請求の範囲】[Claims] バルブの排気管に接続されこのバルブ内を排気する真空
系と、上記排気管に接続され上記排気されたバルブ内に
不活性ガスを供給するガス源と、上記バルブの周囲に設
けられ高周波電源から印加された高周波によって上記バ
ルブ内に放電を生起せしめて不活性ガスにプラズマを発
生させる高周波発生装置と、上記プラズマ発生後に上記
バルブ内の不活性ガスを排気管を通じて排除する手段と
、この不活性ガス排気中に上記排気管に対して相互に直
交する電場と磁場を印加するドリフト発生装置とを具備
したことを特徴とする管球の排気装置。
A vacuum system connected to the exhaust pipe of the valve and evacuating the inside of the valve, a gas source connected to the exhaust pipe and supplying inert gas into the evacuated valve, and a high-frequency power supply provided around the valve. a high frequency generator that generates plasma in the inert gas by causing discharge in the bulb by applied high frequency; a means for expelling the inert gas in the bulb through an exhaust pipe after the plasma is generated; A tube exhaust device comprising a drift generator that applies an electric field and a magnetic field orthogonal to each other to the exhaust pipe during gas exhaust.
JP21460983A 1983-11-15 1983-11-15 Bulb exhausting apparatus Granted JPS60107239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21460983A JPS60107239A (en) 1983-11-15 1983-11-15 Bulb exhausting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21460983A JPS60107239A (en) 1983-11-15 1983-11-15 Bulb exhausting apparatus

Publications (2)

Publication Number Publication Date
JPS60107239A true JPS60107239A (en) 1985-06-12
JPH029422B2 JPH029422B2 (en) 1990-03-01

Family

ID=16658547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21460983A Granted JPS60107239A (en) 1983-11-15 1983-11-15 Bulb exhausting apparatus

Country Status (1)

Country Link
JP (1) JPS60107239A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4870238B1 (en) * 2011-07-11 2012-02-08 株式会社カイダー技研 Hook for hanging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4870238B1 (en) * 2011-07-11 2012-02-08 株式会社カイダー技研 Hook for hanging

Also Published As

Publication number Publication date
JPH029422B2 (en) 1990-03-01

Similar Documents

Publication Publication Date Title
US5397956A (en) Electron beam excited plasma system
JPH0414480B2 (en)
US3852181A (en) Continuous cathode sputtering system
JP3150056B2 (en) Plasma processing equipment
JPS61226925A (en) Discharge reaction device
JPS60107239A (en) Bulb exhausting apparatus
US5142198A (en) Microwave reactive gas discharge device
US5432342A (en) Method of and apparatus for generating low-energy neutral particle beam
JPH06196446A (en) High frequency magnetic field excitation treatment device
JPS62224686A (en) Ion source
JP2515885B2 (en) Plasma processing device
JP2001127047A (en) Plasma treatment system
JPH0266941A (en) Etching apparatus
JPH10308297A (en) Plasma treatment device
De Ghorain et al. Spiraling in fluorescent lamps
JP2773157B2 (en) Semiconductor manufacturing equipment
JPH01181425A (en) Plasma processing device
JPH03232224A (en) Plasma processor
JP2002241947A (en) Thin film deposition apparatus
JPS5833009B2 (en) Vacuum chamber gas venting device
JPH02267896A (en) X-ray generator
JPH02130923A (en) Plasma reaction equipment
JPH02170530A (en) Semiconductor manufacturing device
JPS6114722A (en) Manufacturing device of semiconductor
JPH0357141A (en) Manufacture of metal vapor discharge lamp