JPH02130923A - Plasma reaction equipment - Google Patents

Plasma reaction equipment

Info

Publication number
JPH02130923A
JPH02130923A JP28388288A JP28388288A JPH02130923A JP H02130923 A JPH02130923 A JP H02130923A JP 28388288 A JP28388288 A JP 28388288A JP 28388288 A JP28388288 A JP 28388288A JP H02130923 A JPH02130923 A JP H02130923A
Authority
JP
Japan
Prior art keywords
magnetic field
plasma
chamber
generation chamber
plasma generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28388288A
Other languages
Japanese (ja)
Other versions
JPH07105384B2 (en
Inventor
Nobuo Fujiwara
伸夫 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63283882A priority Critical patent/JPH07105384B2/en
Publication of JPH02130923A publication Critical patent/JPH02130923A/en
Publication of JPH07105384B2 publication Critical patent/JPH07105384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To maintain high density plasma, and improve uniformity by a method wherein minimum magnetic field is formed by superposing multipole cusped magnetic field and mirror magnetic field. CONSTITUTION:Permanent magnets 10 to form multipole cusp magnetic field, and solenoids 12 to form mirror magnetic field are installed on the peripheral part of a plasma generating chamber. An exhaust vent 7 is installed at the bottom part of the reaction chamber 1. An iron core 11 constitutes a magnetic circuit retaining and connecting each of the permanent magnets 10. Multipole cusp magnetic field by four pairs of the permanent magnets 10 and mirror magnetic field by two solenoids 12 are synthesized to form minimum magnetic field. Plasma is generated in a region along magnetic line of force, and diffuses toward the central part of the plasma generating chamber 2 where the magnetic force becomes minimum. Thereby, the inside of the chamber 2 is filled with plasma of uniform density.

Description

【発明の詳細な説明】 〔雄業上の利用分野〕 この発明は、ガス放電によりプラズマを発生させ、発生
したプラズマを利用して半導体基板の表面にエツチング
や薄膜形成等の処理を行うプラズマ反応装置、特に高密
度プラズマを均一性よく発生できるプラズマ反応装置に
関するものである。
[Detailed Description of the Invention] [Field of Application] This invention relates to a plasma reaction in which plasma is generated by gas discharge and the generated plasma is used to perform processing such as etching or forming a thin film on the surface of a semiconductor substrate. The present invention relates to an apparatus, particularly a plasma reactor capable of generating high-density plasma with good uniformity.

〔従来の技術〕[Conventional technology]

ICなどの半導体装置を製造する際は、半導体基板(ウ
ェハ)Kエツチングや薄膜形成等の処理が行われる。こ
のような半導体基板処理装置の一つとして、ガス放電に
よるプラズマを利用したプラズマ反応装置がある。
When manufacturing a semiconductor device such as an IC, a semiconductor substrate (wafer) is subjected to processes such as etching and thin film formation. One such semiconductor substrate processing apparatus is a plasma reaction apparatus that utilizes plasma generated by gas discharge.

第3図は、電子サイクロトロン共鳴放電により発生する
プラズマを利用した一般的なプラズマ反応装置の櫃略縦
断面図である。!3図において、このプラズマ反応装置
は、反応室1と、この反応室1の上部に設けられ、下端
が反応室1の上部に開口した、円筒状のプラズマ発生室
2と、一端がプラズマ発生室2の上面の開口部に接続さ
れるととも忙他端がマイクロ波発生手段(図示せず)K
接続され、マイクロ波発生手段により発生されたマイク
ロ波をプラズマ発生室2に導く導波管3と。
FIG. 3 is a schematic longitudinal sectional view of a typical plasma reactor that utilizes plasma generated by electron cyclotron resonance discharge. ! In FIG. 3, this plasma reactor includes a reaction chamber 1, a cylindrical plasma generation chamber 2 provided at the upper part of the reaction chamber 1 and whose lower end is open to the upper part of the reaction chamber 1, and a plasma generation chamber 2 at one end. The other end is connected to the opening on the top surface of 2 and the other end is a microwave generating means (not shown) K.
and a waveguide 3 that is connected to the waveguide 3 and guides the microwave generated by the microwave generation means to the plasma generation chamber 2.

プラズマ発生室2の上面に開設された開口部に被着され
た石英板4と、プラズマ発生室2を囲んでその外周部に
設けられた、複数個の極小磁場形成用コイル5とを備え
ている。なお、プラズマ発生II2の上部にはガス導入
口6が設けられ、反応室lの側部には排気ロアが設けら
れている。また、反応室l内の下部には、プラズマ発生
室2の開口下端に対向して保持台8が設けられ、この上
に半導体基板9が載せられている。
It comprises a quartz plate 4 adhered to an opening formed on the upper surface of the plasma generation chamber 2, and a plurality of minimal magnetic field forming coils 5 surrounding the plasma generation chamber 2 and provided on its outer periphery. There is. Note that a gas inlet 6 is provided at the top of the plasma generator II2, and an exhaust lower is provided at the side of the reaction chamber l. Further, in the lower part of the reaction chamber 1, a holding table 8 is provided opposite to the lower end of the opening of the plasma generation chamber 2, and a semiconductor substrate 9 is placed on this holding table 8.

従来のプラズマ反応装置は上述したように!成されてお
り、反応室l内部に残ったガスを排気ロアから十分に排
気した後、プラズマ発生室2および反応室l内にガス導
入口6から反応性ガスを導入しながらその一部を排気ロ
アから排気し、両室内のガス圧力を所定の値に保つ。さ
らK、マイクロ波発生手段の発生する周波数2.45G
Hzのマイクロ波を導波管3および石英板4を介してプ
ラズマ発生室2に導入する。一方、プラズマ発生室2の
周囲に設けられた極小磁場形成用コイル5に電源(図示
せず)から通電してこの極小俤場形成用コイル5aKよ
り、プラズマ発生室2および反応室1内において、プラ
ズマ発生室2から反応室IK向かつて発散する不均一な
磁界を形成させる。
Conventional plasma reactor as mentioned above! After fully exhausting the gas remaining inside the reaction chamber l from the exhaust lower, a part of the gas is exhausted while introducing the reactive gas into the plasma generation chamber 2 and the reaction chamber l from the gas inlet 6. Exhaust air from the lower part and maintain the gas pressure in both chambers at a specified value. Moreover, the frequency generated by the microwave generating means is 2.45G.
Hz microwaves are introduced into the plasma generation chamber 2 via a waveguide 3 and a quartz plate 4. On the other hand, the coil 5 for forming a minimal magnetic field provided around the plasma generation chamber 2 is energized from a power source (not shown), and from this coil 5aK for forming a minimal magnetic field, inside the plasma generation chamber 2 and the reaction chamber 1, A non-uniform magnetic field is formed that emanates from the plasma generation chamber 2 toward the reaction chamber IK.

この結果、プラズマ発生室2内の反応性ガスの電子は、
電子サイクロトロン共鳴によりマイクロ波の電磁エネル
ギーを吸収して加速され、プラズマ発生室2内を円運動
しながら螺旋状に下降する。
As a result, the electrons of the reactive gas in the plasma generation chamber 2 are
It is accelerated by absorbing the electromagnetic energy of the microwave by electron cyclotron resonance, and descends spirally while moving circularly within the plasma generation chamber 2.

このように高速で円運動する電子の衝突によりプラズマ
発生室2内には高密度のガスプラズマが発生する。この
ガスプラズマは、極小磁場形成用コイル5の形成する磁
力線に沿ってプラズマ発生室2から反応室l内に移送さ
れ、保持台B上の半導体基板9の表面にエツチングや薄
膜形成等の処理を施す。なお、この際に用いられるガス
の種類、圧力、マイクロ波電力等は、基板処理工程の種
類により選択される。
High-density gas plasma is generated in the plasma generation chamber 2 due to the collision of electrons moving in a circular motion at high speed. This gas plasma is transferred from the plasma generation chamber 2 into the reaction chamber 1 along the lines of magnetic force formed by the minimal magnetic field forming coil 5, and is used to perform processes such as etching and thin film formation on the surface of the semiconductor substrate 9 on the holding table B. give Note that the type of gas, pressure, microwave power, etc. used at this time are selected depending on the type of substrate processing process.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

極小磁場形成用コイルを備えた従来のプラズマ反応装置
では、ヨツフエ磁場コイル、ベースボールコイル、イン
ーヤンコイル等により極小磁場を形成していたため、コ
イル両端部においてプラズマが磁場による圧縮を受け、
プラズマの断面形状が楕円形となり、半導体基板を処理
する際の均一性を向上させることが困難であるという問
題点があった。また、均一性向上のためにコイルの多極
化を因ると、磁場強度を十分に強くすることができず、
コイルの大型化、励磁電力の高出力化などを必要とし、
実用上問題があった。
In conventional plasma reactors equipped with coils for forming a minimal magnetic field, the minimal magnetic field was created using a Yotsufue magnetic field coil, a baseball coil, a Yin-Yang coil, etc., so the plasma was compressed by the magnetic field at both ends of the coil.
There has been a problem in that the cross-sectional shape of the plasma is elliptical, making it difficult to improve uniformity when processing semiconductor substrates. Additionally, if the coil is multipolarized to improve uniformity, the magnetic field strength cannot be made strong enough.
Requires larger coils and higher output power for excitation,
There was a practical problem.

この発明は、上述したような問題点を解決するためKな
されたもので、極小磁場の利用による高密度プラズマを
維持し、かつ均一性にすぐれたプラズマ反応装置を得る
ことを目的とする。
This invention was made to solve the above-mentioned problems, and aims to maintain high-density plasma by utilizing a minimal magnetic field and to obtain a plasma reactor with excellent uniformity.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るプラズマ反応装置は、多極カスプ磁場を
形成する永久磁石およびミラー磁場を形成するコイル手
段を設けたものである。
The plasma reaction apparatus according to the present invention is provided with a permanent magnet that forms a multipolar cusp magnetic field and a coil means that forms a mirror magnetic field.

〔作 用〕[For production]

この発明においては、永久磁石およびコイル手段により
プラズマ発生室内に極小磁場が形成され、プラズマ発生
室の中心部での磁場が外周部に比べて弱くなっているの
で、プラズマ発生室内のプラズマは安定に閉じ込められ
る。このためプラズマ発生室には密度の高い安定したプ
ラズマが発生され、半導体基板の処理速度が向上する。
In this invention, a minimal magnetic field is formed within the plasma generation chamber by the permanent magnet and coil means, and the magnetic field at the center of the plasma generation chamber is weaker than at the outer periphery, so the plasma within the plasma generation chamber is stabilized. be trapped. Therefore, stable plasma with high density is generated in the plasma generation chamber, and the processing speed of semiconductor substrates is improved.

またガス圧力などのプラズマ発生の条件も緩和される。Additionally, conditions for plasma generation such as gas pressure are relaxed.

さらK、永久磁石による多極カスプ磁場により、有効な
プラズマ発生領域がプラズマ発生室内の外周部となり、
かつ軸対称であるため、半導体基板処理の均一性み向上
する。
Moreover, due to the multipolar cusp magnetic field generated by the permanent magnet, the effective plasma generation area becomes the outer periphery of the plasma generation chamber,
Moreover, since it is axially symmetrical, the uniformity of semiconductor substrate processing is improved.

「実施flI] 以下、この発明の一実施例を添付図面に基づいて説明す
る。但し、以下の実施例の構成および作用は、第3図の
プラズマ反応装置と一部を除いて同様であるので、以下
においては特に相違する点のみについては詳しく説明し
、他の点の詳しい説明は省略する。
``Practice flI'' Hereinafter, one embodiment of the present invention will be described based on the attached drawings.However, the structure and operation of the following embodiment are the same as the plasma reactor shown in FIG. 3 except for some parts. In the following, only the points that are particularly different will be explained in detail, and detailed explanations of other points will be omitted.

第1図はこの発明の一実施例を示す概略縦断面図である
。この実施例は、第3図に示された極小磁場形成用コイ
ル50代わりにプラズマ発生室2の周囲に設けられ、そ
の内部に多極カスプ磁場を形成する永久磁石10および
ミラー磁場を形成するコイル手段例えばンレノイド12
を備えている点を除けば、第3図のプラズマ反応装置と
同様忙構成されている。
FIG. 1 is a schematic vertical sectional view showing an embodiment of the present invention. This embodiment is provided around the plasma generation chamber 2 instead of the minimum magnetic field forming coil 50 shown in FIG. Means e.g. Renoid 12
The plasma reactor has the same structure as the plasma reactor shown in FIG. 3, except that it is equipped with a.

なお、この実施例では、排気ロアが反応室1の底部に設
けられ、また鉄心11が永久磁石lOどうしを保持して
接続する磁気回路な徊成している。
In this embodiment, the exhaust lower is provided at the bottom of the reaction chamber 1, and the iron core 11 serves as a magnetic circuit that holds and connects the permanent magnets 1O.

第2図は第1図のIIM[−fにおける横断面図である
。、fllえは4対の永久磁石10による多極オスプ磁
場と1例えば2個のソレノイドコイル12によるミラー
磁場とは合成されて極小磁場を形成している。プラズマ
は第2図中に示した磁力線に沿った領域で発生され、磁
場が極小となるプラス1発生室2の中心部に向かって拡
散する。したがって、プラズマ発生室2の内部は均一な
密度のプラズマで満たされる。発生したプラズマはプラ
ズマ発生室2中と同じく軸対称の断面形状のまま、反応
室1中に移送され、保持台8上に設置された半導体基板
90表面を処理する。
FIG. 2 is a cross-sectional view at IIM [-f in FIG. 1. , the multi-pole magnetic field generated by the four pairs of permanent magnets 10 and the mirror magnetic field generated by, for example, two solenoid coils 12 are combined to form a minimal magnetic field. Plasma is generated in a region along the magnetic lines of force shown in FIG. 2, and diffuses toward the center of the plus-one generation chamber 2 where the magnetic field is minimal. Therefore, the inside of the plasma generation chamber 2 is filled with plasma of uniform density. The generated plasma is transferred into the reaction chamber 1 while maintaining the same axially symmetrical cross-sectional shape as in the plasma generation chamber 2, and processes the surface of the semiconductor substrate 90 placed on the holding table 8.

表1  約15c+a(6インチ)のSi基板のエツチ
ング特性表1は、本実施例のプラズマ反応装置を使用し
てSi基板をエツチングした際の均一性を、従来例と対
比して示したものである。プラズマを強く圧縮するため
に均一性が悪かった従来例に比べて、本実施例では均一
性が格段に向上した、なお、本実施例の諸元の具体例は
次の通りである。
Table 1 Etching characteristics of approximately 15c+a (6 inch) Si substrate Table 1 shows the uniformity when etching a Si substrate using the plasma reactor of this example in comparison with the conventional example. be. Compared to the conventional example in which the uniformity was poor due to strong compression of the plasma, the uniformity in this example was significantly improved.Specific examples of the specifications of this example are as follows.

プラズマ発生室直径      200ramプラズマ
発生室軸方向長さ   18orILl+!ミラ一磁場
間隔        22011M永久磁石表面磁束密
度   1500ガウスまた、本実施例のプラズマ反応
装置における磁場は極小磁場であるため、プラズマを安
定に閉じ込めることができ、プラズマ発生密度が向上し
、半導体基板処理における反応速度を増大させることが
できる。
Plasma generation chamber diameter 200ram Plasma generation chamber axial length 18orIL+! Mira-magnetic field spacing: 22011M Permanent magnet surface magnetic flux density: 1500 Gauss Also, since the magnetic field in the plasma reactor of this example is an extremely small magnetic field, plasma can be stably confined, plasma generation density is improved, and it is useful in semiconductor substrate processing. The reaction rate can be increased.

なお、以上の説明では、電子サイクロトロン共鳴放電を
利用してプラズマを発生する実施例にっいてのみ説明し
たが、この発明は高周波放電、マグネトロン放電、PI
G放電などを利用するプラズマ反応装置に対しても応用
できる。
In addition, in the above explanation, only the embodiment in which plasma is generated using electron cyclotron resonance discharge has been explained, but this invention also applies to high frequency discharge, magnetron discharge, PI
It can also be applied to plasma reaction devices that use G discharge or the like.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明は、多極カスプ磁場を形成する
永久磁石およびミラー磁場を形成するコイル手段を設け
、極小磁場を多極カスプ磁場とミラー磁場の合成により
形成したので、安定した高密度プラズマを均一性よく発
生でき、ひいては半導体基板の処理均一性も向上しかつ
処理速度も増加させることができるという効果を奏する
As described above, the present invention provides a permanent magnet that forms a multipolar cusp magnetic field and a coil means that forms a mirror magnetic field, and forms an extremely small magnetic field by combining the multipolar cusp magnetic field and the mirror magnetic field. This has the effect that plasma can be generated with good uniformity, and as a result, the uniformity of processing semiconductor substrates can be improved and the processing speed can also be increased.

【図面の簡単な説明】 第1図はこの発明の一実施例を示す縦断面図、第2図は
第1図の線[−1における横断面因、第3図は従来のプ
ラズマ反応装置を示す断面図である。 図において、lは反応室、2はプラズマ発生室。 9は半導体基板、lOは永久磁石、12はソレノイドコ
イルである。 なお、図中、同一符号は同一、又は相当部分を示す。 代坤人 曾  我 道  照 声1図 兇2図
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a longitudinal cross-sectional view showing an embodiment of the present invention, Fig. 2 is a cross-sectional view taken along the line [-1 in Fig. 1, and Fig. 3 is a cross-sectional view of a conventional plasma reactor. FIG. In the figure, l is a reaction chamber and 2 is a plasma generation chamber. 9 is a semiconductor substrate, IO is a permanent magnet, and 12 is a solenoid coil. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Daikonjinzo Gado Terusei Figure 1 and Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)ガス放電によりプラズマをプラズマ発生室内に発
生させ、発生したプラズマにより反応室内の半導体基板
の表面にエッチングや薄膜形成等の処理を行うプラズマ
反応装置において、前記プラズマ発生室の周囲に設けら
れ、その内部に多極カスプ磁場を形成する永久磁石およ
びミラー磁場を形成するコイル手段を備え、前記多極カ
スプ磁場と前記ミラー磁場が重ね合わされて極小磁場が
形成されることを特徴とするプラズマ反応装置。
(1) In a plasma reactor that generates plasma in a plasma generation chamber by gas discharge and performs processing such as etching or thin film formation on the surface of a semiconductor substrate in the reaction chamber using the generated plasma, a , a plasma reaction comprising a permanent magnet forming a multipolar cusp magnetic field and a coil means forming a mirror magnetic field therein, wherein the multipolar cusp magnetic field and the mirror magnetic field are superimposed to form a minimal magnetic field. Device.
JP63283882A 1988-11-11 1988-11-11 Plasma reactor Expired - Fee Related JPH07105384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63283882A JPH07105384B2 (en) 1988-11-11 1988-11-11 Plasma reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63283882A JPH07105384B2 (en) 1988-11-11 1988-11-11 Plasma reactor

Publications (2)

Publication Number Publication Date
JPH02130923A true JPH02130923A (en) 1990-05-18
JPH07105384B2 JPH07105384B2 (en) 1995-11-13

Family

ID=17671400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63283882A Expired - Fee Related JPH07105384B2 (en) 1988-11-11 1988-11-11 Plasma reactor

Country Status (1)

Country Link
JP (1) JPH07105384B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505451A (en) * 2003-09-08 2007-03-08 ロート・ウント・ラウ・アクチェンゲゼルシャフト ECR plasma source with linear plasma discharge opening

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217636A (en) * 1988-07-06 1990-01-22 Hitachi Ltd Dry etching device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217636A (en) * 1988-07-06 1990-01-22 Hitachi Ltd Dry etching device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505451A (en) * 2003-09-08 2007-03-08 ロート・ウント・ラウ・アクチェンゲゼルシャフト ECR plasma source with linear plasma discharge opening

Also Published As

Publication number Publication date
JPH07105384B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
JP3233575B2 (en) Plasma processing equipment
US4947085A (en) Plasma processor
KR890003266A (en) Plasma treatment method and apparatus
JPH0216732A (en) Plasma reactor
JPH0216731A (en) Plasma reactor
JP2618001B2 (en) Plasma reactor
JPH06267903A (en) Plasma device
JPS61213377A (en) Method and apparatus for plasma deposition
JP3294839B2 (en) Plasma processing method
JPH02130923A (en) Plasma reaction equipment
JPH0223613A (en) Plasma reactor
JPH0722195A (en) High density plasma treating device
JPH02312231A (en) Dryetching device
JPH0687440B2 (en) Microwave plasma generation method
JP2920852B2 (en) Microwave plasma device
JPH02170530A (en) Semiconductor manufacturing device
JPH01187824A (en) Plasma processor
JP3205542B2 (en) Plasma equipment
JP2515885B2 (en) Plasma processing device
JPH025413A (en) Plasma processor
JPH0572097B2 (en)
JP2909475B2 (en) ECR plasma generator
JP2024036088A (en) plasma processing equipment
JPH02256233A (en) Plasma treatment method and apparatus
JP2913121B2 (en) ECR plasma generator

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees