JPH01181425A - Plasma processing device - Google Patents
Plasma processing deviceInfo
- Publication number
- JPH01181425A JPH01181425A JP281588A JP281588A JPH01181425A JP H01181425 A JPH01181425 A JP H01181425A JP 281588 A JP281588 A JP 281588A JP 281588 A JP281588 A JP 281588A JP H01181425 A JPH01181425 A JP H01181425A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- magnetic
- waveguide
- plasma
- oscillation source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000010355 oscillation Effects 0.000 claims abstract description 18
- 239000000696 magnetic material Substances 0.000 claims abstract description 7
- 230000004907 flux Effects 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 3
- 238000013459 approach Methods 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 abstract 2
- 238000009832 plasma treatment Methods 0.000 abstract 1
- 230000005684 electric field Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Drying Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はCVD(Chemical Vapor D
eposition)、エツチング、スパッタリング等
に適用される電子サイクロトロン共鳴(ECR: El
ectron CyclotronResonance
)を利用するプラズマ装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to CVD (Chemical Vapor D)
Electron cyclotron resonance (ECR: El
ectron Cyclotron Resonance
).
プラズマ装置は、低温、低ガス圧にて良好な処理が行え
るため、半導体分野はもとより数多くの分野で注目を集
めている。Plasma devices are attracting attention not only in the semiconductor field but also in many other fields because they can perform good processing at low temperatures and low gas pressures.
第4図は、従来のプラズマ装置の縦断面を表す(特開昭
60−105234号公報)。FIG. 4 shows a longitudinal section of a conventional plasma device (Japanese Patent Application Laid-open No. 105234/1983).
第4図に従い説明を行なう。導波管2の基端はマイクロ
波発振源7に接続されており、管路途中には先端側に向
かうにしたがって拡大している拡大部2aが設けられ、
先端は下方に向けて開口している。The explanation will be given according to FIG. The base end of the waveguide 2 is connected to a microwave oscillation source 7, and an enlarged portion 2a is provided in the middle of the conduit, which enlarges toward the distal end.
The tip is open downward.
導波管2の内側には半球殻状の頂部を有する放電管30
が拡大部2aの中枢まで頂部を下方より進入きせた状態
で、導波管2と同心状に配されている。Inside the waveguide 2 is a discharge tube 30 having a hemispherical top.
is arranged concentrically with the waveguide 2, with its top extending from below to the center of the enlarged portion 2a.
放電管30の管壁には真空排気系8および放電ガス供給
系9が接続されている。放電管30の上部空間には、試
料13を保持する支持台12が保持面を導波管2の管軸
に直交するように配されている。導波管2の外側には、
各別の電源によって励磁される3個の円筒状のコイル5
0a〜50cが巻回されている。A vacuum exhaust system 8 and a discharge gas supply system 9 are connected to the tube wall of the discharge tube 30. In the upper space of the discharge tube 30, a support stand 12 for holding the sample 13 is arranged with its holding surface perpendicular to the tube axis of the waveguide 2. On the outside of the waveguide 2,
Three cylindrical coils 5 each excited by a separate power source
0a to 50c are wound.
このうち、最大磁場発生用のコイル50aは、導波管2
の小断面部2bおよび拡大部2aに巻回され、コイル5
0bは、導波管2の拡大部2aおよび大断面部2cに巻
回され、コイル50cは、導波管2の大断面部2cに巻
回されている。ここでコイル50aとコイル50bとの
境目は、放電管30の頂部に略対応し、コイル50bと
コイル50cとの境目は支持台12の保。Among these, the coil 50a for generating the maximum magnetic field is connected to the waveguide 2.
The coil 5 is wound around the small cross-section portion 2b and the enlarged portion 2a.
0b is wound around the enlarged portion 2a and large cross-section portion 2c of the waveguide 2, and the coil 50c is wound around the large cross-section portion 2c of the waveguide 2. Here, the boundary between the coils 50a and 50b approximately corresponds to the top of the discharge tube 30, and the boundary between the coils 50b and 50c corresponds to the top of the support base 12.
持回に略対応している。It roughly corresponds to the number of times.
3個のコイル50a〜50cは、その外寸法が略等しい
が、コイル50aは、内寸法が略等しいコイル50b1
コイル50cよりも内寸法が小さくなっている。The three coils 50a to 50c have substantially equal outer dimensions, but coil 50a has substantially equal inner dimensions than coil 50b1.
The inner dimensions are smaller than the coil 50c.
以下、このような装置によってプラズマ処理する場合の
処理方法について説明する。A processing method for plasma processing using such an apparatus will be described below.
先ず、試料13を、放電管30内に搬入し、被処理面を
上面として支持台12に保持させる。次に、真空排気系
を駆動し、放電管30内を所定圧力になるまで減圧排気
した後、放電ガス供給系9を駆動し、放電ガスを放電管
30内に導入するとともに、真空排気系8を駆動し、放
電管30内を、所定の処理圧力に適正に維持する。その
後、マイクロ波発振源7によりマイクロ波を発振させ、
このマイクロ波を導波管2を介して放電管30内に導き
、管内に電界を印加するとともに、コイル50a〜50
cに通電して磁場を印加すると、放電管30内にプラズ
マ放電が生じ、この放電により導入された放電ガスがプ
ラズマ化され、イオン及びラジカルが発生する。First, the sample 13 is carried into the discharge tube 30 and held on the support stand 12 with the surface to be treated as the upper surface. Next, the evacuation system is driven to reduce and exhaust the inside of the discharge tube 30 to a predetermined pressure, and then the discharge gas supply system 9 is driven to introduce discharge gas into the discharge tube 30, and at the same time, the evacuation system 8 is driven to properly maintain the inside of the discharge tube 30 at a predetermined processing pressure. After that, the microwave is oscillated by the microwave oscillation source 7,
This microwave is guided into the discharge tube 30 via the waveguide 2, an electric field is applied inside the tube, and the coils 50a to 50
When a magnetic field is applied by energizing C, a plasma discharge is generated in the discharge tube 30, and the discharge gas introduced by this discharge is turned into plasma, and ions and radicals are generated.
このイオン及びラジカルを用いて試料13の処理がなさ
れる。The sample 13 is processed using these ions and radicals.
前記従来装置において、磁気コイルの外寸法は、ECR
プラズマ処理に必要とされる磁場の大きさを考慮した場
合、直径400〜450fl程度となり、装置が大型化
すると共に、これに伴い磁気コイル電源等の周辺機器も
大型化するため、半導体製造プロセスに適用するにはス
ペース、価格等の点で問題があり、実験装置として利用
されるに止まっていた。In the conventional device, the outer dimensions of the magnetic coil are ECR
When considering the size of the magnetic field required for plasma processing, the diameter is approximately 400 to 450 fl, which increases the size of the equipment and also increases the size of peripheral equipment such as magnetic coil power supplies, making it difficult for semiconductor manufacturing processes. There were problems in terms of space, cost, etc., and it was only used as an experimental device.
このため、半導体製造の実際のプロセスに適用し得る小
型のプラズマ装置の出現が望まれていた。For this reason, there has been a desire for a small-sized plasma device that can be applied to the actual process of semiconductor manufacturing.
本発明は以上の事情に鑑みてなされたものであって、従
来、複数の円筒状のコイルを導波管に空間を余して巻回
していたのを、単一のコイルを導波管の拡大部に沿って
巻回することにより、また、拡大部への巻回とともに、
コイルのマイクロ波発振源側の端面に磁性体を配するこ
とにより、半導体製造の実際のプロセスにも通用し得る
小型のプラズマ装置を提供することを目的とする。The present invention has been made in view of the above circumstances, and instead of conventionally winding a plurality of cylindrical coils around a waveguide with some space left over, a single coil is wound around the waveguide. By winding along the enlarged part, and with winding to the enlarged part,
It is an object of the present invention to provide a small-sized plasma device that can be used in actual semiconductor manufacturing processes by disposing a magnetic material on the end face of the coil on the microwave oscillation source side.
本発明に係るプラズマ装置は、マイクロ波発振源と該マ
イクロ波発振源に連なり、先端側に向かうにしたがって
拡大している部分を有する導波管と、半球形状部を有し
、該半球形状部が前記導波管の拡大部に内設されたプラ
ズマ生成室と、前記導波管の外側に巻回された磁気コイ
ルと、前記プラズマ生成室と連通された試料室とを備え
るプラズマ装置において、前記磁気コイルが前記導波管
の拡大部に沿って巻回された単一の磁気コイルであるこ
とを特徴とし、さらに、前記磁気コイルが前記導波管の
拡大部に沿って巻回される単一のコイルであり、該コイ
ルのマイクロ波発振源の端面に磁性体が配されているこ
とを特徴とする。A plasma device according to the present invention includes a microwave oscillation source, a waveguide connected to the microwave oscillation source and having a portion that expands toward the tip side, and a hemispherical portion, the hemispherical portion being connected to the microwave oscillation source. A plasma device comprising: a plasma generation chamber installed in an enlarged part of the waveguide; a magnetic coil wound around the outside of the waveguide; and a sample chamber communicated with the plasma generation chamber. The magnetic coil is a single magnetic coil wound along the enlarged portion of the waveguide, and further, the magnetic coil is wound along the enlarged portion of the waveguide. It is a single coil, and is characterized in that a magnetic material is disposed on the end face of the microwave oscillation source of the coil.
第1図は、本発明に係るプラズマ装置の−実施例を表し
た模式的断面図であり、第2図は磁気コイルlおよびそ
の近傍の拡大図である。FIG. 1 is a schematic sectional view showing an embodiment of the plasma apparatus according to the present invention, and FIG. 2 is an enlarged view of the magnetic coil l and its vicinity.
図において、2は先端部が下方に開口した導電性材料か
らなる導波管を示し、該導波管2の基端は、マイクロ波
発振源7に接続されており、先端部は先端側に向かうに
したがって拡がり、拡大部を形成している。導波管2の
拡大部の外側には磁気コイルlが拡大部に沿うように巻
回されており、該磁気コイル1のマイクロ波発振源7側
の端面には、鉄等の磁性体が配されている。In the figure, reference numeral 2 indicates a waveguide made of a conductive material with a downwardly opened tip.The base end of the waveguide 2 is connected to a microwave oscillation source 7, and the tip is opened downward. It expands toward the other side, forming an enlarged portion. A magnetic coil 1 is wound around the outside of the expanded portion of the waveguide 2 along the expanded portion, and a magnetic material such as iron is arranged on the end face of the magnetic coil 1 on the side of the microwave oscillation source 7. has been done.
なお、磁気コイルlは、循環水15により水冷される。Note that the magnetic coil 1 is water-cooled by circulating water 15.
前記拡大部の内側には、半球殻状のプラズマ生成室3が
、その頂部3aをコイル1のコイル長の略中央付近に対
応する位置まで下方より進入させた状態で導波管2と同
心状に配されている。プラズマ生成室3は、マイクロ波
を通過させ易い電気絶縁材料、例えば石英、パイレック
スガラス等で形成されており、図示しない冷却システム
により空冷される。Inside the enlarged part, a hemispherical shell-shaped plasma generation chamber 3 is arranged concentrically with the waveguide 2 with its apex 3a extending from below to a position corresponding to approximately the center of the coil length of the coil 1. It is arranged in The plasma generation chamber 3 is made of an electrically insulating material that allows microwaves to easily pass through, such as quartz or Pyrex glass, and is air-cooled by a cooling system (not shown).
プラズマ生成室3の下方には、試料室4が配されている
。試料室4は、例えば中空の立方体、直方体、円柱等の
形状をなし、上面に設けられた開口端にプラズマ生成室
3の下端が接合されて、該プラズマ生成室3と連通され
、気密に保たれて、いる。A sample chamber 4 is arranged below the plasma generation chamber 3. The sample chamber 4 has the shape of a hollow cube, rectangular parallelepiped, cylinder, etc., and the lower end of the plasma generation chamber 3 is joined to the open end provided on the upper surface, so that the sample chamber 4 communicates with the plasma generation chamber 3 and is kept airtight. It's hanging down.
試料室4には、試料13を保持する支持台12が保持面
を導波管2の管軸に直交するように配され、室壁には、
真空排気系8および放電ガス供給系9が接続されている
。試料室4の下方に、は補助コイル6が端面を支持台1
2の保持面と平行に、且つ軸心を導波管2の軸心に一致
させて配されている。In the sample chamber 4, a support stand 12 for holding the sample 13 is arranged with its holding surface perpendicular to the tube axis of the waveguide 2, and on the chamber wall,
A vacuum exhaust system 8 and a discharge gas supply system 9 are connected. Below the sample chamber 4, an auxiliary coil 6 supports the end surface of the support stand 1.
The waveguide 2 is disposed parallel to the holding surface of the waveguide 2 and with its axis aligned with the axis of the waveguide 2 .
なお、図示の装置では、上下の外寸法が同一のコイルが
用いられているが、本発明は斯かるコイルを用いた装置
に限定されるものではない。Although the illustrated device uses coils with the same upper and lower external dimensions, the present invention is not limited to devices using such coils.
以下、本発明装置によってプラズマ処理する場合の処理
方法について説明するが、前記従来装置を用いる処理方
法と同様である。A processing method for plasma processing using the apparatus of the present invention will be described below, and is similar to the processing method using the conventional apparatus.
先ず、試料13を、試料室4に搬入し、被処理面を上面
として支持台12に保持させる。次に、真空排気系を駆
動し、試料室4およびプラズマ生成室3(以下、「両室
」という)を所定圧力になるまで減圧排気した後、放電
ガス供給系9を駆動し、放電ガスを両室に導入するとと
もに、真空排気系8を駆動し、画室を、所定の処理圧力
に適正に維持する。その後、マイクロ波発振源7により
マイクロ波を発振させ、このマイクロ波を導波管2を介
してプラズマ生成室3に導き、管内に電界を印加すると
ともに、コイル50a〜50cに通電して磁場を印加す
ると、プラズマ放電が生じ、この放電により導入された
放電ガスがプラズマ化され、プラズマイオンが発生する
。このプラズマイオンを用いて試料13の処理がなされ
る。First, the sample 13 is carried into the sample chamber 4 and held on the support stand 12 with the surface to be treated as the upper surface. Next, the vacuum evacuation system is driven to evacuate the sample chamber 4 and plasma generation chamber 3 (hereinafter referred to as "both chambers") to a predetermined pressure, and then the discharge gas supply system 9 is driven to supply the discharge gas. Introduced into both chambers, the evacuation system 8 is driven to properly maintain the chambers at a predetermined processing pressure. Thereafter, the microwave oscillation source 7 oscillates microwaves, and the microwaves are guided into the plasma generation chamber 3 through the waveguide 2, and an electric field is applied inside the tube, and the coils 50a to 50c are energized to generate a magnetic field. When applied, a plasma discharge occurs, and the introduced discharge gas is turned into plasma by this discharge, and plasma ions are generated. The sample 13 is processed using these plasma ions.
ここにおいて、本発明では単一の磁気コイル1を導波管
2の拡大部に隘って巻回したので、空間利用率が向上す
るとともに、コイルがプラズマ生成室3の頂部3aに接
近し、最大磁場が発生する頂部3aにおいて、プラズマ
処理に必要とされる磁束密度を得るためのコイルの巻数
を少な(することができるため、コイルの外寸法が小さ
くなり、装置が小型化する。Here, in the present invention, since the single magnetic coil 1 is wound around the enlarged part of the waveguide 2, the space utilization efficiency is improved and the coil approaches the top 3a of the plasma generation chamber 3. At the top part 3a where the maximum magnetic field is generated, the number of turns of the coil can be reduced to obtain the magnetic flux density required for plasma processing, so the outer dimensions of the coil are reduced and the apparatus becomes smaller.
また、磁気コイル1のマイクロ波発振源7側の端面に磁
性体5を配し、分散していた磁力線の磁路を変え、磁力
線がプラズマ生成室3の頂部3aにおいて収束するよう
にしたので、プラズマ処理に・必要とされる磁束密度を
得るためのコイルの巻数を更に少なくすることができる
ため、コイルの外寸法がより小さくなり、装置がより小
型化する。In addition, a magnetic body 5 is arranged on the end face of the magnetic coil 1 on the side of the microwave oscillation source 7 to change the magnetic path of the dispersed magnetic lines of force so that the lines of magnetic force converge at the top 3a of the plasma generation chamber 3. Since the number of turns of the coil to obtain the magnetic flux density required for plasma processing can be further reduced, the outer dimensions of the coil are smaller and the apparatus becomes more compact.
なお、補助コイル6を配すれば、試料13の近傍の磁場
分布11を均一にすることができ、基板の均一処理が可
能となる。Note that by disposing the auxiliary coil 6, the magnetic field distribution 11 in the vicinity of the sample 13 can be made uniform, making it possible to uniformly process the substrate.
第3図(a)〜(C)は、第1図に示す本発明装置の磁
場分布を縦軸に磁束密度B(ガウス)を、横軸に第1図
に示す2軸からの距Mr(ms)をとって表したもので
ある。ここに2軸とは、放電管3の軸心に一致する座標
軸であり、支持台方向を正にとり、プラズマ室出口部分
を原点にとったものである。同図(alは、z = −
28,5mにおける磁場分布を、同図(b)はz =O
,Otmにおける磁場分布を、同図(C)はz=180
mにおける磁場分布を示す。3(a) to (C) show the magnetic field distribution of the device of the present invention shown in FIG. 1, the vertical axis represents the magnetic flux density B (Gauss), and the horizontal axis represents the distance Mr (from the two axes shown in FIG. 1). ms). Here, the two axes are coordinate axes that coincide with the axial center of the discharge tube 3, with the direction of the support stand being positive, and the origin being the exit portion of the plasma chamber. The same figure (al is z = −
The magnetic field distribution at 28.5 m is shown in the same figure (b) as z = O
, Otm, the same figure (C) shows the magnetic field distribution at z=180
The magnetic field distribution at m is shown.
試料上での、磁場による不均一および電界強度(電界の
2乗)による不均一は6インチ基板上で各々、±10%
、±12%であった。第3図(d)は、z軸上すなわち
r=oの点における磁場分布を示したものであり、同図
より、ECR点すなわち磁束密度が875(ガウス)の
点はz =−28,5mmの点であり、放電管の頂点の
磁束密度Bは1100 (ガウス)であった。The non-uniformity due to the magnetic field and the non-uniformity due to the electric field strength (square of the electric field) on the sample are each ±10% on a 6-inch substrate.
, ±12%. Figure 3(d) shows the magnetic field distribution on the z-axis, that is, at the point r = o. From the figure, the ECR point, that is, the point where the magnetic flux density is 875 (Gauss), is at z = -28,5 mm. The magnetic flux density B at the top of the discharge tube was 1100 (Gauss).
以下に、磁場分布を求めた際の磁気コイル1の仕様を記
す。尚、装置の各部分の寸法は第1図に示す通りである
。The specifications of the magnetic coil 1 when determining the magnetic field distribution are described below. The dimensions of each part of the device are as shown in FIG.
電圧:26.4(V)
電流:30.0(A)
抵抗:0.89(Ω〕
コイル断面形状:矩形4×2〔龍〕
コイル巻線の長さ:350 (m)
電カニ790 (W)
A・ターン: 19800(=30 (A) X30
(r方向巻数)x22(z方向巻数〕)
コイル温度(℃):内側 37
中側148
外側 64
冷却水量74.5C11分〕
内側 6分割
外側 分割なし
以上の本発明装置によれば、磁気コイルの外寸法が従来
装置の外寸法である400 amから225鰭にまで小
さくなった。Voltage: 26.4 (V) Current: 30.0 (A) Resistance: 0.89 (Ω) Coil cross-sectional shape: Rectangular 4 x 2 [Dragon] Coil winding length: 350 (m) Electric crab 790 ( W) A Turn: 19800 (=30 (A) X30
(Number of turns in the r direction) x 22 (Number of turns in the z direction) Coil temperature (°C): Inside 37 Inside 148 Outside 64 Cooling water amount 74.5C11 minutes Inside 6 divisions Outside According to the device of the present invention with no division, the magnetic coil The external dimensions have been reduced from the conventional device's external dimensions of 400 am to 225 fins.
本発明装置では、従来装置において複数個の円筒状のコ
イルを空間を余して導波管に巻回していたのに対し、単
一のコイルを導波管の拡大部にそって巻回したので、空
間利用率が向上するとともに、コイルがプラズマ生成室
の頂部に接近し、プラズマ処理に必要とされる磁束密度
を得るためのコイルの巻数を少なくすることができ、こ
のため、コイルの外寸法が小さくなり、装置が小型化し
た。In the device of the present invention, a single coil is wound along the enlarged part of the waveguide, whereas in the conventional device, multiple cylindrical coils are wound around the waveguide with some space left over. This improves space utilization and allows the coil to move closer to the top of the plasma generation chamber, reducing the number of coil turns needed to obtain the magnetic flux density required for plasma processing. The dimensions have become smaller and the device has become smaller.
また、コイルの端面に磁性体を配し、プラズマ生成室の
頂部の磁束密度を高めるようにしたので、さらに、コイ
ルの巻数を少なくすることができ、このため、コイルの
外寸法がより小さくなり、装置がより小型化した。In addition, by placing a magnetic material on the end face of the coil to increase the magnetic flux density at the top of the plasma generation chamber, it is possible to further reduce the number of turns of the coil, which reduces the external dimensions of the coil. , the equipment has become more compact.
第1図は本発明装置の縦断面図、第2図は本発明装置の
磁気コイルおよびその近傍の断面拡大図、第3図(a)
〜Tdlは本発明装置を用りた場合の磁場分布を示すグ
ラフ、第4図は従来装置の縦断面図である。
1・・・磁気コイル 2・・・導波管 3・・・放電管
5・・・磁性体 7・・・マイクロ波発振源8・・・真
空排気系 9・・・放電ガス供給系特 許 出願人
住友金属工業株式会社代理人 弁理士 河 野
登 失策 1 図
藁 2 図
藁 4 図
”)lal [Gaussl
3図Fig. 1 is a vertical sectional view of the device of the present invention, Fig. 2 is an enlarged cross-sectional view of the magnetic coil of the device of the present invention and its vicinity, and Fig. 3(a)
~Tdl is a graph showing the magnetic field distribution when the device of the present invention is used, and FIG. 4 is a longitudinal cross-sectional view of the conventional device. 1...Magnetic coil 2...Waveguide 3...Discharge tube 5...Magnetic material 7...Microwave oscillation source 8...Evacuation system 9...Discharge gas supply system patent applicant
Sumitomo Metal Industries Co., Ltd. Representative Patent Attorney Kono
Climb blunder 1 Figure 2 Figure 4 Figure”) lal [Gaussl 3 Figure
Claims (1)
、先端側に向かうにしたがって拡大している部分を有す
る導波管と、半球形状部を有し、該半球形状部が前記導
波管の拡大部に内設されたプラズマ生成室と、前記導波
管の外側に巻回された磁気コイルと、前記プラズマ生成
室と連通された試料室とを備えるプラズマ装置において
、前記磁気コイルが前記導波管の拡大部に沿って巻回さ
れた単一の磁気コイルであることを特徴とするプラズマ
装置。 2、マイクロ波発振源と、該マイクロ波発振源に連なり
、先端側に向かうにしたがって拡大している部分を有す
る導波管と、半球形状部を有し、該半球形状部が前記導
波管の拡大部に内設されたプラズマ生成室と、前記導波
管の外側に巻回された磁気コイルと、前記プラズマ生成
室と連通された試料室とを備えるプラズマ装置において
、前記磁気コイルが前記導波管の拡大部に沿って巻回さ
れる単一のコイルであり、該コイルのマイクロ波発振源
の端面に磁性体が配されていることを特徴とするプラズ
マ装置。[Claims] 1. A microwave oscillation source, a waveguide connected to the microwave oscillation source and having a portion that expands toward the tip side, and a hemispherical portion, the hemispherical shape A plasma device comprising: a plasma generation chamber disposed inside an enlarged portion of the waveguide; a magnetic coil wound around the outside of the waveguide; and a sample chamber communicated with the plasma generation chamber. , wherein the magnetic coil is a single magnetic coil wound along the enlarged portion of the waveguide. 2. A microwave oscillation source, a waveguide connected to the microwave oscillation source and having a portion that expands toward the tip side, and a hemispherical portion, and the hemispherical portion is connected to the waveguide. In the plasma device, the plasma apparatus includes a plasma generation chamber installed in an enlarged part of the waveguide, a magnetic coil wound around the outside of the waveguide, and a sample chamber communicated with the plasma generation chamber. A plasma device characterized in that it is a single coil wound along an enlarged portion of a waveguide, and a magnetic material is disposed on the end face of the microwave oscillation source of the coil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP281588A JPH01181425A (en) | 1988-01-08 | 1988-01-08 | Plasma processing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP281588A JPH01181425A (en) | 1988-01-08 | 1988-01-08 | Plasma processing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01181425A true JPH01181425A (en) | 1989-07-19 |
Family
ID=11539898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP281588A Pending JPH01181425A (en) | 1988-01-08 | 1988-01-08 | Plasma processing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01181425A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06196446A (en) * | 1992-12-24 | 1994-07-15 | Nec Corp | High frequency magnetic field excitation treatment device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6425417A (en) * | 1987-07-22 | 1989-01-27 | Hitachi Ltd | Plasma treatment device |
-
1988
- 1988-01-08 JP JP281588A patent/JPH01181425A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6425417A (en) * | 1987-07-22 | 1989-01-27 | Hitachi Ltd | Plasma treatment device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06196446A (en) * | 1992-12-24 | 1994-07-15 | Nec Corp | High frequency magnetic field excitation treatment device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR940008368B1 (en) | Plasma treating apparatus using plasma generated by microwave | |
KR100417327B1 (en) | Vacuum plasma processor | |
US5397956A (en) | Electron beam excited plasma system | |
JPH0770532B2 (en) | Plasma processing device | |
EP0594706A4 (en) | Method of producing flat ecr layer in microwave plasma device and apparatus therefor | |
JP3254069B2 (en) | Plasma equipment | |
JP2618001B2 (en) | Plasma reactor | |
CN108575042B (en) | Coil, medium cylinder and plasma cavity | |
JP3294839B2 (en) | Plasma processing method | |
JPH01181425A (en) | Plasma processing device | |
JP2001015297A (en) | Plasma device | |
JP2567892B2 (en) | Plasma processing device | |
JP3205542B2 (en) | Plasma equipment | |
JP2595128B2 (en) | Microwave plasma processing equipment | |
JP3685461B2 (en) | Plasma processing equipment | |
JP2920852B2 (en) | Microwave plasma device | |
JP2909475B2 (en) | ECR plasma generator | |
JPS644023A (en) | Dry etching device | |
JPH02256233A (en) | Plasma treatment method and apparatus | |
JPH03158471A (en) | Microwave plasma treating device | |
JP2923479B2 (en) | Plasma generator | |
JPH05190501A (en) | Microwave plasma treatment device | |
JP2773157B2 (en) | Semiconductor manufacturing equipment | |
JP2913121B2 (en) | ECR plasma generator | |
JP3017021U (en) | Inductively coupled plasma generation coil |