JP3685461B2 - Plasma processing equipment - Google Patents

Plasma processing equipment Download PDF

Info

Publication number
JP3685461B2
JP3685461B2 JP30727393A JP30727393A JP3685461B2 JP 3685461 B2 JP3685461 B2 JP 3685461B2 JP 30727393 A JP30727393 A JP 30727393A JP 30727393 A JP30727393 A JP 30727393A JP 3685461 B2 JP3685461 B2 JP 3685461B2
Authority
JP
Japan
Prior art keywords
frequency power
plasma
coil
power source
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30727393A
Other languages
Japanese (ja)
Other versions
JPH07135096A (en
Inventor
一行 豊田
田中  勉
貞之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP30727393A priority Critical patent/JP3685461B2/en
Publication of JPH07135096A publication Critical patent/JPH07135096A/en
Application granted granted Critical
Publication of JP3685461B2 publication Critical patent/JP3685461B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • H01J37/32165Plural frequencies

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Description

【0001】
【産業上の利用分野】
本発明は半導体製造装置の1つであり、プラズマを利用しウェーハ等の被処理物のエッチングを行う、プラズマ処理装置に関するものである。
【0002】
【従来の技術】
図4により従来のプラズマ処理装置を説明する。
【0003】
図4に示すプラズマ処理装置は、電子サイクロトロン共鳴(ECR)を利用したECRプラズマエッチング装置である。
【0004】
反応室1の下方にバッファ室2が連設され、該バッファ室2には真空ポンプ3が接続されている。前記反応室1の下方に位置され、前記バッファ室2の底面を貫通して平板電極4が気密に設けられている。又、該平板電極4は絶縁ブロック6により絶縁されている。前記平板電極4は被処理物置台を兼ね該平板電極4上にはウェーハ、ガラス基板等の被処理物5が載置され、前記平板電極4は整合器7を介して高周波電源8に接続されている。前記反応室1の上方には断面矩形の導波管9が接続され、該導波管9始端にはマイクロ波電源10が設けられている。又、前記導波管9の内部と反応室1とは石英製の天井板11により気密に仕切られている。
【0005】
前記反応室1を囲繞する側壁12は、水冷構造となっており、側壁12の内部には導水管13が連通し、冷却水が流通する様になっている。又、前記反応室1には反応ガス導入管14が連通し、反応室1に反応ガスを導入する様になっている。
【0006】
前記反応室1の周囲には磁界生成コイル15が設けられ、又バッファ室2には補正コイル17が設けられている。
【0007】
前記真空ポンプ3により所定圧迄減圧し、前記反応ガス導入管14より反応室1に反応ガスを導入し、図示しない圧力制御装置により、圧力設定する。前記マイクロ波電源10が出力したマイクロ波は前記導波管9に導かれ、前記天井板11を通して反応室1に導かれる。該反応室1では前記マイクロ波と前記磁界生成コイル15により生成した静磁界による電子サイクロトロン共鳴(ECR)を利用して高密度のプラズマ16を発生させる。
【0008】
又同時に、平板電極4に高周波電力を印加し、平板電極4に直流バイアス電圧を生じさせ、前記プラズマ16中のイオンを平板電極4上の被処理物5に向け多量に移動させ、該被処理物5をエッチングする。
【0009】
尚、電子サイクロトロン共鳴を利用した装置としては、この他にプラズマCVD装置等がある。
【0010】
【発明が解決しようとする課題】
上記従来例では電子サイクロトロン共鳴の条件を満たす為の構成としてマイクロ波源、マイクロ波を反応室に導入する為の導波管、反応室内部に磁界を生成させる為の磁界生成コイル15、コイルを冷却する為の水冷機構等が必要で、装置の寸法が大きくなると共にコスト高となってしまう。
【0011】
又、磁界生成コイル15で生成した磁界の強さを被処理物5の上部で均一にすることが困難で、この為プラズマ密度が不均一になりエッチング等の処理に問題が生じる。この傾向は試料の寸法が大きくなるに従って顕著になり、大型の試料処理を行うことが困難であり、更に、2.45GHz 定周波数のマイクロ波でプラズマを生成する為、プラズマの生成状態を制御することが困難であるという問題があった。
【0012】
本発明は斯かる実情に鑑み、プラズマ処理装置に於いて装置の小型簡略化を図ると共にプラズマの生成状態を変更可能とするものである。
【0013】
【課題を解決するための手段】
本発明は、1つの真空室に装入された被処理物を前記1つの真空室内に発生させたプラズマにより処理するプラズマ処理装置に於いて、少なくとも前記真空室の一部が絶縁材から成る筒により形成され、該筒の周りに反応ガスを励起するプラズマ発生コイルを複数設け、それぞれのプラズマ発生コイルにそれぞれ高周波電源を接続し、該複数の高周波電源の内、少なくとも1つの高周波電源の出力電力の周波数を異ならせる様にし、前記被処理物に対して前記真空室内に於いてプラズマ処理する様にしたプラズマ処理装置に係るものである。
【0014】
【作用】
プラズマ発生コイルに高周波電力を印加することで、動磁界、動電界が形成され、この動磁界、動電界の作用により真空室内にプラズマが生成され、又プラズマ発生コイルを複数とし、該プラズマ発生コイルに対する高周波電力の印加状態を制御することでプラズマの発生状態を制御する。
【0015】
【実施例】
以下、図面を参照しつつ本発明の一実施例を説明する。
【0016】
導電体材料で且真空構造の反応室21の天井には、該反応室21と同心に石英、或はセラミック等の絶縁物を材料とした円筒22が連設され、該反応室22の上端は導電体の蓋23により閉塞され、前記反応室21、円筒22、蓋23により気密な真空室31が形成される。
【0017】
前記蓋23にはガス導入管24が連通され、前記反応室21の底面には排気管25を介して排気ポンプ26が連通されている。前記反応室21の内部には絶縁材27を介して平板電極28が設けられ、該平板電極28にはウェーハ等の被処理物5を載置可能となっており、前記平板電極28には整合器29を介して高周波電源30が接続されている。
【0018】
前記円筒22の周囲にはプラズマ発生用の第1コイル32、第2コイル33が上下に巻設され、前記第1コイル32の一端は第1整合器34の出力端子に接続され、前記第1コイル32の他端は前記第1整合器34に接続された第1高周波電源35のリターン側に接続されている。又、前記第2コイル33の一端は第2整合器36の出力端子に接続され、前記第2コイル33の他端は前記第2整合器36に接続された第2高周波電源37のリターン側に接続されている。
【0019】
而して、前記第1高周波電源35により第1コイル32に前記第1整合器34を介して、又前記第2高周波電源37により前記第2コイル33に前記第2整合器36を介してそれぞれ高周波電力を印加可能となっている。
【0020】
前記第1高周波電源35、第2高周波電源37には位相シフタ38が接続され、該位相シフタ38により各々の高周波電源が出力する高周波電力の位相差を任意に設定することが可能となっている。
【0021】
以下、作動を説明する。
【0022】
前記排気ポンプ26により真空室31を排気し、図示しない圧力制御装置で所定の圧力に維持しつつ、前記ガス導入管24より反応ガスを導入し、前記第1高周波電源35により第1コイル32に前記第1整合器34を介して、又同時に前記第2高周波電源37により前記第2コイル33に前記第2整合器36を介してそれぞれ高周波電力を印加する。前記第1コイル32、第2コイル33が形成する電界、磁界の作用により反応ガスが解離して真空室31にプラズマ16が発生する。
【0023】
又この時、前記位相シフタ38により第1高周波電源35の出力する高周波電力と前記第2高周波電源37の出力する高周波電力との位相差を調整することで、電界、磁界に攪拌作用が生じプラズマの生成状態が制御される。
【0024】
前記第1コイル32、第2コイル33に印加する高周波電力の周波数は同一とするが、周波数の値は前記被処理物5の種類、処理の仕様により適宜選択され、通常は1MHz 〜100MHz の範囲に於いて適切な値が選択される。
【0025】
又、前記第1コイル32、第2コイル33に高周波電力を印加するのと同時に、前記平板電極28にも前記高周波電源30により整合器29を経て高周波電力が印加される。前記平板電極28に印加された高周波電力により、該平板電極28に直流バイアス電圧を生じさせたり、或はプラズマ16内のイオンを振動させ、被処理物5の処理状態を制御する。前記平板電極28に印加する高周波電力の周波数も、前記被処理物5の種類、処理の仕様に応じて適切な値が選択設定され、通常は100KHz 〜10MHz の範囲に於いて適切な値が選択される。
【0026】
尚、前記実施例ではプラズマ発生用のコイルは2組であったが、3組以上であってもよい。
【0027】
次に、図3は他の実施例を示しており、該他の実施例では前記位相シフタ38は具備していないが、一方の第1高周波電源35は周波数固定型であり、他方の第2高周波電源37は周波数可変型である。周波数固定型の第1高周波電源35の周波数の値は、前記被処理物5の種類、処理の仕様により適宜選択され、通常は1MHz 〜100MHz の範囲に於いて適切な値に設定する。
【0028】
前記第2高周波電源37の周波数を前記第1高周波電源35の周波数と異ならせてプラズマを発生させることで、電界、磁界に攪拌作用が生じプラズマの生成状態が制御される。
【0029】
前記第2高周波電源37の周波数と前記第1高周波電源35の周波数との差は、対象とする処理条件により決定する。
【0030】
尚、第1高周波電源35と第2高周波電源37を共に周波数可変型としてもよく、又一方の周波数を固定した場合他方の周波数を所要範囲で連続的に変動させるようにしてもよく、更にプラズマ発生用のコイルを3以上とし、それぞれのコイルの周波数を異ならせる等、更にコイルの巻数は適宜選択が可能である等種々変更が可能である。
【0031】
【発明の効果】
以上述べた如く本発明によれば、マイクロ波電源、導波管、冷却壁を必要としないので構成が簡単となり、製作費を低減でき、高周波電力により電界、磁界を形成させているので、動電界、動磁界となり発生するプラズマ密度の均一化が図れ、更にプラズマの生成状態を制御可能であるのでプラズマ処理の適用範囲を広げることが可能となる、等の優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明の一実施例を示す概略斜視図である。
【図2】同前実施例の概略断面を示す説明図である。
【図3】本発明の他の実施例を示す概略斜視図である。
【図4】従来のプラズマ処理装置の概略断面を示す説明図である。
【符号の説明】
5 被処理物
16 プラズマ
22 円筒
28 平板電極
30 高周波電源
31 真空室
32 第1コイル
33 第2コイル
35 第1高周波電源
37 第2高周波電源
38 位相シフタ
[0001]
[Industrial application fields]
The present invention is one of semiconductor manufacturing apparatuses, and relates to a plasma processing apparatus that uses plasma to etch an object to be processed such as a wafer.
[0002]
[Prior art]
A conventional plasma processing apparatus will be described with reference to FIG.
[0003]
The plasma processing apparatus shown in FIG. 4 is an ECR plasma etching apparatus using electron cyclotron resonance (ECR).
[0004]
A buffer chamber 2 is connected below the reaction chamber 1, and a vacuum pump 3 is connected to the buffer chamber 2. A flat plate electrode 4 is airtightly provided below the reaction chamber 1 and penetrates the bottom surface of the buffer chamber 2. The plate electrode 4 is insulated by an insulating block 6. The plate electrode 4 also serves as an object table, and an object to be processed 5 such as a wafer or a glass substrate is placed on the plate electrode 4, and the plate electrode 4 is connected to a high frequency power supply 8 through a matching unit 7. ing. A waveguide 9 having a rectangular cross section is connected above the reaction chamber 1, and a microwave power source 10 is provided at the start end of the waveguide 9. The inside of the waveguide 9 and the reaction chamber 1 are airtightly separated by a quartz ceiling plate 11.
[0005]
The side wall 12 surrounding the reaction chamber 1 has a water cooling structure, and a water conduit 13 communicates with the inside of the side wall 12 so that cooling water flows. A reaction gas introduction pipe 14 communicates with the reaction chamber 1 to introduce a reaction gas into the reaction chamber 1.
[0006]
A magnetic field generating coil 15 is provided around the reaction chamber 1, and a correction coil 17 is provided in the buffer chamber 2.
[0007]
The pressure is reduced to a predetermined pressure by the vacuum pump 3, the reaction gas is introduced into the reaction chamber 1 through the reaction gas introduction pipe 14, and the pressure is set by a pressure control device (not shown). The microwave output from the microwave power source 10 is guided to the waveguide 9 and guided to the reaction chamber 1 through the ceiling plate 11. In the reaction chamber 1, high-density plasma 16 is generated by utilizing electron cyclotron resonance (ECR) by a static magnetic field generated by the microwave and the magnetic field generating coil 15.
[0008]
At the same time, high-frequency power is applied to the plate electrode 4 to generate a DC bias voltage on the plate electrode 4, and ions in the plasma 16 are moved in a large amount toward the object 5 to be processed on the plate electrode 4. The object 5 is etched.
[0009]
In addition, as a device using electron cyclotron resonance, there is a plasma CVD device or the like.
[0010]
[Problems to be solved by the invention]
In the above conventional example, a microwave source, a waveguide for introducing microwaves into the reaction chamber, a magnetic field generating coil 15 for generating a magnetic field in the reaction chamber, and a coil are cooled as a configuration for satisfying the conditions of electron cyclotron resonance. Therefore, a water cooling mechanism or the like is required, which increases the size of the apparatus and increases the cost.
[0011]
Further, it is difficult to make the intensity of the magnetic field generated by the magnetic field generating coil 15 uniform on the upper portion of the object 5 to be processed, so that the plasma density becomes non-uniform and a problem occurs in processing such as etching. This tendency becomes more prominent as the size of the sample increases, and it is difficult to process a large sample. Furthermore, since plasma is generated with microwaves at a constant frequency of 2.45 GHz, the plasma generation state is controlled. There was a problem that it was difficult.
[0012]
In view of such circumstances, the present invention aims to simplify the size of the apparatus and change the plasma generation state in the plasma processing apparatus.
[0013]
[Means for Solving the Problems]
The present invention relates to a plasma processing apparatus for processing an object charged in one vacuum chamber with a plasma generated in the one vacuum chamber, wherein at least a part of the vacuum chamber is made of an insulating material. is formed by, a plurality of plasma generating coil for exciting the reaction gas around the tubular, the connect each high-frequency power source to each of the plasma generating coil, among the high-frequency power source of said plurality of at least one high-frequency power output the manner varying the frequency of the power, the those of the plasma processing apparatus was set to a plasma treatment at the vacuum chamber with respect to the object to be treated.
[0014]
[Action]
By applying a high frequency power to the plasma generating coil, a dynamic magnetic field and a dynamic electric field are formed, and plasma is generated in the vacuum chamber by the action of the dynamic magnetic field and the dynamic electric field. The generation state of the plasma is controlled by controlling the application state of the high frequency power to
[0015]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0016]
A cylinder 22 made of an insulating material such as quartz or ceramic is connected to the ceiling of the reaction chamber 21 made of a conductive material and having a vacuum structure concentrically with the reaction chamber 21. The reaction chamber 21, the cylinder 22, and the lid 23 form an airtight vacuum chamber 31 that is closed by a conductor lid 23.
[0017]
A gas introduction pipe 24 communicates with the lid 23, and an exhaust pump 26 communicates with the bottom surface of the reaction chamber 21 via an exhaust pipe 25. A flat plate electrode 28 is provided inside the reaction chamber 21 via an insulating material 27, and a workpiece 5 such as a wafer can be placed on the flat plate electrode 28. A high-frequency power source 30 is connected via a device 29.
[0018]
Around the cylinder 22, a first coil 32 and a second coil 33 for generating plasma are wound up and down, and one end of the first coil 32 is connected to an output terminal of a first matching unit 34. The other end of the coil 32 is connected to the return side of the first high frequency power source 35 connected to the first matching unit 34. One end of the second coil 33 is connected to the output terminal of the second matching unit 36, and the other end of the second coil 33 is connected to the return side of the second high frequency power source 37 connected to the second matching unit 36. It is connected.
[0019]
Thus, the first high-frequency power source 35 causes the first coil 32 to pass through the first matching unit 34, and the second high-frequency power source 37 causes the second coil 33 to pass through the second matching unit 36. High frequency power can be applied.
[0020]
A phase shifter 38 is connected to the first high frequency power supply 35 and the second high frequency power supply 37, and the phase shifter 38 can arbitrarily set the phase difference of the high frequency power output from each high frequency power supply. .
[0021]
The operation will be described below.
[0022]
The vacuum chamber 31 is evacuated by the exhaust pump 26, a reaction gas is introduced from the gas introduction pipe 24 while maintaining a predetermined pressure by a pressure control device (not shown), and the first high-frequency power source 35 supplies the first coil 32. High-frequency power is applied to the second coil 33 via the first matching unit 34 and simultaneously via the second matching unit 36 by the second high-frequency power source 37. The reaction gas is dissociated by the action of the electric field and magnetic field formed by the first coil 32 and the second coil 33, and plasma 16 is generated in the vacuum chamber 31.
[0023]
At this time, the phase shifter 38 adjusts the phase difference between the high-frequency power output from the first high-frequency power source 35 and the high-frequency power output from the second high-frequency power source 37, thereby causing a stirring action in the electric and magnetic fields. The generation state of is controlled.
[0024]
The frequency of the high frequency power applied to the first coil 32 and the second coil 33 is the same, but the value of the frequency is appropriately selected according to the type of the object 5 to be processed and the processing specifications, and is usually in the range of 1 MHz to 100 MHz. An appropriate value is selected at.
[0025]
At the same time as the high frequency power is applied to the first coil 32 and the second coil 33, the high frequency power is also applied to the plate electrode 28 via the matching unit 29 by the high frequency power supply 30. The high frequency power applied to the plate electrode 28 generates a DC bias voltage on the plate electrode 28 or vibrates ions in the plasma 16 to control the processing state of the workpiece 5. As for the frequency of the high frequency power applied to the flat plate electrode 28, an appropriate value is selected and set in accordance with the type of the object 5 to be processed and the specification of the process, and usually an appropriate value is selected in the range of 100 KHz to 10 MHz. Is done.
[0026]
In the above embodiment, there are two sets of plasma generating coils, but three or more sets may be used.
[0027]
Next, FIG. 3 shows another embodiment. In the other embodiment, the phase shifter 38 is not provided, but one first high-frequency power source 35 is a fixed frequency type and the other second The high frequency power supply 37 is a variable frequency type. The frequency value of the fixed frequency type first high frequency power supply 35 is appropriately selected according to the type of the object 5 to be processed and the processing specifications, and is usually set to an appropriate value in the range of 1 MHz to 100 MHz.
[0028]
By generating plasma by making the frequency of the second high-frequency power source 37 different from the frequency of the first high-frequency power source 35, a stirring action is generated in the electric and magnetic fields, and the plasma generation state is controlled.
[0029]
The difference between the frequency of the second high-frequency power source 37 and the frequency of the first high-frequency power source 35 is determined according to the target processing conditions.
[0030]
The first high-frequency power source 35 and the second high-frequency power source 37 may both be of a variable frequency type, and when one frequency is fixed, the other frequency may be continuously varied within a required range. The number of coils for generation is set to 3 or more, and the number of turns of the coils can be appropriately selected.
[0031]
【The invention's effect】
As described above, according to the present invention, since a microwave power source, a waveguide, and a cooling wall are not required, the configuration is simplified, the manufacturing cost can be reduced, and an electric field and a magnetic field are formed by high frequency power. The plasma density generated by the electric field and the dynamic magnetic field can be made uniform, and the plasma generation state can be controlled, so that the application range of the plasma treatment can be expanded.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing an embodiment of the present invention.
FIG. 2 is an explanatory view showing a schematic cross section of the previous embodiment.
FIG. 3 is a schematic perspective view showing another embodiment of the present invention.
FIG. 4 is an explanatory view showing a schematic cross section of a conventional plasma processing apparatus.
[Explanation of symbols]
5 Workpiece 16 Plasma 22 Cylinder 28 Flat Plate Electrode 30 High Frequency Power Supply 31 Vacuum Chamber 32 First Coil 33 Second Coil 35 First High Frequency Power Supply 37 Second High Frequency Power Supply 38 Phase Shifter

Claims (1)

1つの真空室に装入された被処理物を前記1つの真空室内に発生させたプラズマにより処理するプラズマ処理装置に於いて、少なくとも前記真空室の一部が絶縁材から成る筒により形成され、該筒の周りに反応ガスを励起するプラズマ発生コイルを複数設け、それぞれのプラズマ発生コイルにそれぞれ高周波電源を接続し、該複数の高周波電源の内、少なくとも1つの高周波電源の出力電力の周波数を異ならせる様にし、前記被処理物に対して前記真空室内に於いてプラズマ処理する様にしたことを特徴とするプラズマ処理装置。In a plasma processing apparatus for processing an object charged in one vacuum chamber with plasma generated in the one vacuum chamber, at least a part of the vacuum chamber is formed by a cylinder made of an insulating material, providing a plurality of plasma generating coil for exciting the reaction gas around the tubular, connect each high-frequency power source to the respective plasma generating coil, among the high-frequency power source of the plurality of the frequency of the output power of the at least one high-frequency power supply The plasma processing apparatus is characterized in that the plasma processing is performed on the object to be processed in the vacuum chamber.
JP30727393A 1993-11-12 1993-11-12 Plasma processing equipment Expired - Lifetime JP3685461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30727393A JP3685461B2 (en) 1993-11-12 1993-11-12 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30727393A JP3685461B2 (en) 1993-11-12 1993-11-12 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JPH07135096A JPH07135096A (en) 1995-05-23
JP3685461B2 true JP3685461B2 (en) 2005-08-17

Family

ID=17967142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30727393A Expired - Lifetime JP3685461B2 (en) 1993-11-12 1993-11-12 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP3685461B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578651B2 (en) * 1999-09-13 2010-11-10 東京エレクトロン株式会社 Plasma processing method, plasma processing apparatus, and plasma etching method
KR101094919B1 (en) 2005-09-27 2011-12-16 삼성전자주식회사 Plasma accelerator
JP5666991B2 (en) * 2011-06-08 2015-02-12 東京エレクトロン株式会社 Inductively coupled plasma antenna unit and inductively coupled plasma processing apparatus

Also Published As

Publication number Publication date
JPH07135096A (en) 1995-05-23

Similar Documents

Publication Publication Date Title
KR100188076B1 (en) Method and apparatus for producing magnetically-coupled planar plasma
US6679981B1 (en) Inductive plasma loop enhancing magnetron sputtering
US6165377A (en) Plasma etching method and apparatus
US5851600A (en) Plasma process method and apparatus
TW312815B (en)
JP3220394B2 (en) Plasma processing equipment
JPH0770532B2 (en) Plasma processing device
KR930005132A (en) Plasma treatment apparatus and method
KR980012066A (en) Plasma processing equipment
JPH04354867A (en) Plasma treating device
JP3254069B2 (en) Plasma equipment
US6573190B1 (en) Dry etching device and dry etching method
KR100972371B1 (en) Compound plasma source and method for dissociating gases using the same
KR20010108968A (en) Plasma processing apparatus
JP2000164583A (en) Method and system for plasma processing
JP3685461B2 (en) Plasma processing equipment
JP3832934B2 (en) Reactive ion etching system
JPH07142453A (en) Plasma etching system
JP3294839B2 (en) Plasma processing method
JPH0888218A (en) Method and device for plasma etching
JP2001015297A (en) Plasma device
JP3704894B2 (en) Plasma processing method and apparatus
JPH06177058A (en) Plasma generator
JP2595128B2 (en) Microwave plasma processing equipment
KR100391180B1 (en) Method and apparatus for plasma chemical treatment of a substrate surface

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 9

EXPY Cancellation because of completion of term