JPS6114722A - Manufacturing device of semiconductor - Google Patents

Manufacturing device of semiconductor

Info

Publication number
JPS6114722A
JPS6114722A JP13462584A JP13462584A JPS6114722A JP S6114722 A JPS6114722 A JP S6114722A JP 13462584 A JP13462584 A JP 13462584A JP 13462584 A JP13462584 A JP 13462584A JP S6114722 A JPS6114722 A JP S6114722A
Authority
JP
Japan
Prior art keywords
reaction chamber
quartz tube
reactive gas
gas
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13462584A
Other languages
Japanese (ja)
Inventor
Narihiro Hasegawa
功宏 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13462584A priority Critical patent/JPS6114722A/en
Publication of JPS6114722A publication Critical patent/JPS6114722A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To simplify the structure of the titled apparatus and to increase etching speed enlarging plasma density by a method wherein a source of light, which projects the light with wavelength of promote ionization of reactive gas, is installed. CONSTITUTION:A torus state quartz tube 8 is installed between discoid electrode 2 and 3. Mercury-vapor is enclosed in this quartz tube 8 and a reflection film 8' are formed in the interior of this outside. This quartz tube 8 itselft has not any electrode to discharge, however, mercury is excited and radiates ultraviolet ray by means of field effect generated between the electrode 2 and 3. This ultraviolet ray is irradiated evenly to the inside of the quartz tube through the reflection film 8' and then promotes ionization of reactive gas such as CCl4 and the like which is introduced a reaction chamber 1. By this fact, plasma density in the reaction chamber 1 evenly is raised, thus etching speed is increased. If the gases, which is enclosed in the quartz tube 8, discharge light whose wavelength adsorbs discharged energy and promotes ionization of the reactive gas, any gas may be used other than mercury.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は半導体製造装置、特に半導体装置の反応性イオ
ンエツチング(PIF)を行なうための半導体製造装置
に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to semiconductor manufacturing equipment, and more particularly to a semiconductor manufacturing equipment for performing reactive ion etching (PIF) on semiconductor devices.

〔発明の技術的背景〕[Technical background of the invention]

従来のRIE装置の一例を第4図に示す。反応室1内に
は一対のN極2および3が設けられる。
An example of a conventional RIE apparatus is shown in FIG. A pair of north poles 2 and 3 are provided within the reaction chamber 1 .

これらの電極は例えば円盤状をしており、電極2は反応
室1の本体に接続され接地される。一方電極3は、イン
ピーダンスを整合するためのマツチングネットワーク4
を介してRF電源5に接続される。エツチングすべき半
導体装置6は電極3の土におかれ、反応室1内は導出入
管7よりCCJI 4等の反応性ガスが導びかれ減圧さ
れる。
These electrodes have a disk shape, for example, and the electrode 2 is connected to the main body of the reaction chamber 1 and grounded. On the other hand, the electrode 3 is connected to a matching network 4 for impedance matching.
It is connected to the RF power supply 5 via. The semiconductor device 6 to be etched is placed on the surface of the electrode 3, and a reactive gas such as CCJI 4 is introduced into the reaction chamber 1 through the inlet/outlet pipe 7 to reduce the pressure.

その1々RF電源5で弁士した^周波電圧によって電極
2および電極3間に放電が起こり、反応性ガスがイオン
化し、プラズマ状態となる。このような状態下で半導体
装置6の表面がエツチングされる。
A discharge occurs between the electrodes 2 and 3 due to the frequency voltage generated by the RF power source 5, and the reactive gas is ionized to become a plasma state. Under such conditions, the surface of the semiconductor device 6 is etched.

(背景技術の問題点) 1述のようなRIFHNにおいて、エツチング速度を速
めるには、電極闇の電界を強める方法と、プラズマ密度
を高める方法とがある。しかしながら前者の方法は半導
体装置6に強い衝撃を与えるため、通常te者の方法が
採られる。従来、このプラズマ密亀を^めるためには、
外部より磁界を加えて電子の運動を直線運動からら線運
動に変え、原子との衝突確率を^める方法が行なわれて
いる。
(Problems with Background Art) In order to increase the etching rate in RIFHN as described in 1, there are two methods: increasing the electric field of the electrode darkness, and increasing the plasma density. However, since the former method applies a strong impact to the semiconductor device 6, the former method is usually adopted. Conventionally, in order to close this plasma secret turtle,
One method is to apply an external magnetic field to change the motion of electrons from linear motion to linear motion, increasing the probability of collision with atoms.

このような磁界を作り出すために、外部に強力な磁極を
複数個設定することになるが、この場合、磁束密度分布
が一様でないと、プラズマ密度分布に不均一を生じ、結
果的にエツチングにも不均一を及ぼすことになる。しか
し均一す磁界を作り出すためには、特殊な形状の磁石を
複数個相合せて配胃する必要があり、ノ1常に困ガを伴
なう。また第4図に示すように磁石12を矢1]に承り
ように移動さiiながらエツチングをtlない、全Tツ
ブング時間を通しての平均磁界が均一になるようにJる
方法もあるが、そのためのm u l;L非常に?!!
11になる。
In order to create such a magnetic field, multiple strong magnetic poles are set externally, but in this case, if the magnetic flux density distribution is not uniform, the plasma density distribution will be uneven, resulting in etching. This will also cause non-uniformity. However, in order to create a uniform magnetic field, it is necessary to arrange a plurality of specially shaped magnets together, which always causes problems. Alternatively, as shown in Fig. 4, there is a method in which the magnet 12 is moved in the direction of the arrow 1 without etching, and the average magnetic field is made uniform throughout the entire etching time. m u l; L very much? ! !
Becomes 11.

〔発明の目的〕[Purpose of the invention]

そこで本発明(ま、曲中<1構造で反応室内のプラズマ
密度分布の均−v1を緒持しつつ、プラズマ密位を高め
エツチング速度を速めることのできる反応性イAン■ツ
チング用半導体’IJ i&装置を提供Jることを目的
とづる。
Therefore, the present invention (a semiconductor for etching) which can increase the plasma density and increase the etching rate while maintaining a uniform plasma density distribution in the reaction chamber with a <1 structure. The purpose is to provide IJ & equipment.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、半導体装置を収容する反応室と、この
反応室内に、前記半導体装置をJツブングするための反
応性ガスを導入するガス導入装置と、前記反応性ガスか
ら活性イオン種をつくるための放電を行う一対の電極と
、を右する半導体製造S4丙において、前記反応性ガス
のイオン化を促進させる波長の光を前記反応室内に照射
する光源装詔をin、反応室内のプラズマ密度を一様分
布のまま高め、エツチング速度を速めるようにした点に
ある。
The present invention is characterized by a reaction chamber that accommodates a semiconductor device, a gas introduction device that introduces a reactive gas into the reaction chamber for J-bunking the semiconductor device, and a method that generates active ionic species from the reactive gas. In the semiconductor manufacturing S4 C, which includes a pair of electrodes for generating a discharge, a light source device that irradiates the reaction chamber with light of a wavelength that promotes the ionization of the reactive gas is installed to reduce the plasma density in the reaction chamber. The point is that the uniform distribution is kept high and the etching speed is increased.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を第1図に示す実施例に基づいて説明づる。 The present invention will be explained below based on the embodiment shown in FIG.

なお第1図で、第4図に示した従来例と同一構成要素に
ついては同一符号を付し説明を省略Jる。円盤状の電極
2および3の間には、円環状の6英管8(第1図では断
面のみが示されている)が設けられる。この石英管8に
は水銀の蒸気が封入されており、その外側内面には反射
膜8′が形成されている。この石英管8自身は何ら放電
のための電極は有しないが、電極2および3の間に発生
する電界により、水銀は励起され紫外光を発する。反射
膜8′によりこの紫外光は石英管の内側に一様に照射さ
れ、反応室1内に導入され/jCCfJ4等の反応性ガ
スのイオン化を促進する。
In FIG. 1, the same components as those in the conventional example shown in FIG. 4 are designated by the same reference numerals, and the explanation thereof will be omitted. Between the disk-shaped electrodes 2 and 3, an annular six-tube tube 8 (only a cross section is shown in FIG. 1) is provided. This quartz tube 8 is filled with mercury vapor and has a reflective film 8' formed on its outer inner surface. Although the quartz tube 8 itself does not have any electrodes for discharge, the electric field generated between the electrodes 2 and 3 excites the mercury and emits ultraviolet light. This ultraviolet light is uniformly irradiated to the inside of the quartz tube by the reflective film 8' and introduced into the reaction chamber 1 to promote the ionization of the reactive gas such as /jCCfJ4.

これによって反応室1内のプラズマ密度が一様に高まり
、エツチング速度が速まる。石英管8内に封入するガス
は、放電[ネルギを吸収して反応性ガスのイオン化を促
進させる波長の光を放出づるものであれば、水銀以外の
ガスでもよい。
This uniformly increases the plasma density within the reaction chamber 1 and increases the etching rate. The gas sealed in the quartz tube 8 may be any gas other than mercury as long as it emits light with a wavelength that absorbs discharge energy and promotes ionization of the reactive gas.

第2図および第3図に本発明の別な実施例を示す。これ
らの図において、第1図に示した実施例と同一構成要素
については同一符号を付し説明を省略する。第2図の実
施例は反応室1に窓9を開け、この外側に設けた水銀ラ
ンプ10から紫外光を反応室1内に照射するものである
。また、第3図の構成例は反応室1に窓9を開け、この
外側に水銀を封入した石英管11を設け、RFIi源5
′により発生した^周波電圧によってこの石英管内に放
電を起こし、紫外光を発生させ反応室1内に照射するも
のである。どちらの場合も光源が反応室外に置かれるた
め、反応室内の紫外光強度は前述の実施例に比べ弱くな
る。また、第2図の実施例では、水銀ランプ10がフィ
ラメントを用いているため、発光強度の安定性に欠ける
という欠点があり、第3図の実施例では石英管11内の
放電を行わせるための新たなRF電源5′が必要になる
という欠点がある。前述の第1図に示す実施例は、余分
な電源を必要とすることなく、第2図、第3図に示す実
施例に比べて10倍程度の紫外光強度を術ることかでき
、数10%^いプラズマ密度を得ることができるため、
より好ましい実施例である。
Another embodiment of the invention is shown in FIGS. 2 and 3. In these figures, the same components as those in the embodiment shown in FIG. 1 are denoted by the same reference numerals, and the explanation thereof will be omitted. In the embodiment shown in FIG. 2, a window 9 is opened in the reaction chamber 1, and ultraviolet light is irradiated into the reaction chamber 1 from a mercury lamp 10 provided outside the window 9. In addition, in the configuration example shown in FIG. 3, a window 9 is opened in the reaction chamber 1, a quartz tube 11 filled with mercury is provided outside the window 9, and an RFIi source 5 is provided.
The ^-frequency voltage generated by ' causes a discharge in this quartz tube, generates ultraviolet light, and irradiates the inside of the reaction chamber 1. In both cases, the light source is placed outside the reaction chamber, so the intensity of ultraviolet light inside the reaction chamber is weaker than in the previous example. Furthermore, in the embodiment shown in FIG. 2, since the mercury lamp 10 uses a filament, there is a drawback that the stability of the emitted light intensity is lacking.In the embodiment shown in FIG. There is a disadvantage that a new RF power source 5' is required. The embodiment shown in FIG. 1 described above can generate about 10 times the ultraviolet light intensity compared to the embodiments shown in FIGS. 2 and 3 without requiring an extra power source, and has several Because it is possible to obtain a 10% higher plasma density,
This is a more preferred embodiment.

(発明の効果) 以上のとおり本発明によれば反応性イオンエツチング用
半導体製造装置において、反応性ガスのイオン化を促進
してプラズマ密度を高めるようにしたため、簡I11な
構造でエツチング速度を速めることが可能となる。
(Effects of the Invention) As described above, according to the present invention, in the semiconductor manufacturing apparatus for reactive ion etching, the ionization of the reactive gas is promoted to increase the plasma density, so that the etching speed can be increased with a simple structure. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る半導体製造装置の一実施例の説明
図、第2図および第3図は本発明の別な実施例の説明図
、第4図は従来の半導体特進装置の説明図である。 1・・・反応室、2.3・・・?[ffi、4・・・マ
ツチングネッ1へワーク、5・・・RF電源、6・・・
半導体装両、7・・・ガス導出入管、8・・・石英管、
8′・・・反射膜、9・・・窓、10・・・水銀ランプ
、11・・・石英管、12・・・磁石。
FIG. 1 is an explanatory diagram of one embodiment of a semiconductor manufacturing device according to the present invention, FIGS. 2 and 3 are explanatory diagrams of another embodiment of the present invention, and FIG. 4 is an explanatory diagram of a conventional semiconductor processing device. It is. 1...reaction chamber, 2.3...? [ffi, 4... Work to matching net 1, 5... RF power supply, 6...
Semiconductor device, 7... Gas inlet/outlet pipe, 8... Quartz tube,
8'... Reflective film, 9... Window, 10... Mercury lamp, 11... Quartz tube, 12... Magnet.

Claims (5)

【特許請求の範囲】[Claims] 1.半導体装置を収容する反応室と、この反応室内に、
前記半導体装置をエッチングするための反応性ガスを導
入するガス導入装置と、前記反応性ガスから活性イオン
種をつくるための放電を行う一対の電極と、を有する半
導体製造装置において、前記反応性ガスのイオン化を促
進させる波長の光を前記反応室内に照射する光源装置を
設けたことを特徴とする半導体製造装置。
1. A reaction chamber that accommodates a semiconductor device, and within this reaction chamber,
A semiconductor manufacturing apparatus comprising: a gas introduction device for introducing a reactive gas for etching the semiconductor device; and a pair of electrodes for performing discharge for producing active ion species from the reactive gas; A semiconductor manufacturing apparatus comprising a light source device that irradiates the inside of the reaction chamber with light having a wavelength that promotes ionization of the semiconductor.
2.光源装置が、放電のエネルギを吸収して反応性ガス
のイオン化を促進させる波長の光を放出するガスを封入
した管であり、かつ、一対の電極の間に設けられている
ことを特徴とする特許請求の範囲第1項記載の半導体製
造装置。
2. The light source device is a tube filled with a gas that absorbs discharge energy and emits light with a wavelength that promotes ionization of the reactive gas, and is provided between a pair of electrodes. A semiconductor manufacturing apparatus according to claim 1.
3.反応性ガスがハロゲン化合物で、光を放出するガス
が水銀であることを特徴とする特許請求の範囲第2項記
載の半導体製造装置。
3. 3. The semiconductor manufacturing apparatus according to claim 2, wherein the reactive gas is a halogen compound and the light-emitting gas is mercury.
4.一対の電極がそれぞれ円盤状をしており、光を放出
するガスを封入した管が円環状をしていることを特徴と
する特許請求の範囲第2項または第3項記載の半導体製
造装置。
4. 4. The semiconductor manufacturing apparatus according to claim 2, wherein each of the pair of electrodes has a disk shape, and the tube filled with a gas that emits light has an annular shape.
5.円環状をした管の外側内面に反射膜が形成されてい
ることを特徴とする特許請求の範囲第4項記載の半導体
製造装置。
5. 5. The semiconductor manufacturing apparatus according to claim 4, wherein a reflective film is formed on the outer inner surface of the annular tube.
JP13462584A 1984-06-29 1984-06-29 Manufacturing device of semiconductor Pending JPS6114722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13462584A JPS6114722A (en) 1984-06-29 1984-06-29 Manufacturing device of semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13462584A JPS6114722A (en) 1984-06-29 1984-06-29 Manufacturing device of semiconductor

Publications (1)

Publication Number Publication Date
JPS6114722A true JPS6114722A (en) 1986-01-22

Family

ID=15132747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13462584A Pending JPS6114722A (en) 1984-06-29 1984-06-29 Manufacturing device of semiconductor

Country Status (1)

Country Link
JP (1) JPS6114722A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0474244A2 (en) * 1990-09-07 1992-03-11 Tokyo Electron Limited Plasma processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0474244A2 (en) * 1990-09-07 1992-03-11 Tokyo Electron Limited Plasma processing method
US5246529A (en) * 1990-09-07 1993-09-21 Tokyo Electron Limited Plasma processing method

Similar Documents

Publication Publication Date Title
US3911318A (en) Method and apparatus for generating electromagnetic radiation
JP3642809B2 (en) Low pressure inductively coupled plasma ignition device
WO2002080254A1 (en) Microwave plasma process device, plasma ignition method, plasma forming method, and plasma process method
JP2007535103A (en) Light source by electron cyclotron resonance
US5696428A (en) Apparatus and method using optical energy for specifying and quantitatively controlling chemically-reactive components of semiconductor processing plasma etching gas
JPH09115694A (en) Plasma treatment device
JPH0469415B2 (en)
JPS6114722A (en) Manufacturing device of semiconductor
JP2000012293A (en) Neutral beam generating device
JPH0367455A (en) Electric discharge tube device
JPS60153127A (en) Plasma etching device
JPS6244936A (en) Ion beam generating method and device therefor
JPH05243160A (en) Plasma cvd device for manufacturing semiconductor device
KR20000063075A (en) Method for reducing topography dependent charging effects in a plasma enhanced semiconductor wafer processing system
JP2515885B2 (en) Plasma processing device
JP3045619B2 (en) Plasma generator
JPH06349776A (en) Semiconductor manufacturing apparatus
JPH1050269A (en) Electrodeless discharge lamp, electrodeless discharge lamp device, electrodeless discharge lamp lighting device, and fluid treating device
JP3981240B2 (en) Apparatus and method for generating microwave plasma
JPH07169743A (en) Surface treating method
JPS61245526A (en) Plasma light source
JPH0638391B2 (en) X-ray exposure device
JP3158911B2 (en) Dielectric barrier discharge lamp device
JPS63104423A (en) Apparatus for plasma treatment
JPH0758694B2 (en) Plasma deposition equipment