JPS60106156A - Lead wire for diode - Google Patents
Lead wire for diodeInfo
- Publication number
- JPS60106156A JPS60106156A JP58215178A JP21517883A JPS60106156A JP S60106156 A JPS60106156 A JP S60106156A JP 58215178 A JP58215178 A JP 58215178A JP 21517883 A JP21517883 A JP 21517883A JP S60106156 A JPS60106156 A JP S60106156A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- copper
- wire
- core
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45155—Nickel (Ni) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/4554—Coating
- H01L2224/4557—Plural coating layers
- H01L2224/45572—Two-layer stack coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/4554—Coating
- H01L2224/45599—Material
- H01L2224/456—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45638—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/4566—Iron (Fe) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01014—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01025—Manganese [Mn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01028—Nickel [Ni]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)技術分野
この発明は大容量用の小型ダイオードに用いるリード線
であって、特に熱放散性を向上させた小型ダイオード用
リード線に関するものである。DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to a lead wire for use in a small diode for large capacity, and particularly to a lead wire for a small diode with improved heat dissipation properties.
(ロ)技術背景
現在市販されている大官吊用小型ダイオードは第1図に
示すように両端部に熱放散性を向上させるために例えば
ジルコニウム銅のリード線1を具備した電極2,2間に
半導体素子3を装着し、電極2.2の周囲を封止ガラス
4で封止することによって構′成されている。(b) Technical Background As shown in Figure 1, the small diode for general use currently on the market is equipped with lead wires 1 made of, for example, zirconium copper at both ends to improve heat dissipation between the electrodes 2 and 2. A semiconductor element 3 is attached to the electrode 2.2, and the periphery of the electrode 2.2 is sealed with a sealing glass 4.
ところがこのダイオードにおけるジルコニウム銅のリー
ド線は磁気吸着しないため、製造時の搬送や保管の出し
入れの際にリード線が曲ったり、あるいはリード線が絡
み合って次工程でトラブルを生じたりする゛ことが多い
。However, the zirconium copper lead wires in these diodes do not attract magnetically, so the lead wires often get bent during transportation during manufacturing or when they are put in and taken out of storage, or the lead wires get tangled, causing problems in the next process. .
このため、リード線としてはジルコニウム銅線に代って
第2図に断面図として示すような軟鋼線芯線5の上に重
量比で80%以上の銅層6を被覆した高銅比銅被覆鋼線
が用いられるようになってきている。Therefore, instead of using a zirconium copper wire as a lead wire, a high copper ratio copper-coated steel wire is used, in which a copper layer 6 with a weight ratio of 80% or more is coated on a mild steel wire core wire 5 as shown in the cross-sectional view in FIG. Lines are starting to be used.
しかしながら、このような高銅比銅被覆鋼線ではその銅
被覆率が重量比で85%以上ともなると、芯線として使
用する軟鋼線の硬いという性質がほとんど失なわれ、そ
の抗張力が銅線の抗張力にほぼ近づくこととなり、この
ために外部からの力によってリード線が曲ったすすると
いう問題が生じている。However, in such a high copper ratio copper-coated steel wire, when the copper coverage reaches 85% or more by weight, the hardness of the mild steel wire used as the core wire is almost lost, and its tensile strength is lower than the tensile strength of the copper wire. This causes the problem of lead wires becoming bent due to external forces.
そこで、上記の問題を解決するために銅層を被覆させる
芯線の方を軟鋼線(0,05〜0.15%C)から高炭
素鋼線(0,6〜0.8%C)に変えることも検討され
たが、高炭素鋼では伸線加工をするために鉛溜液中での
パテンティング処理などといった特別な熱処理工程を必
要とし、その製造が極めて困難である。Therefore, in order to solve the above problem, the core wire covered with the copper layer was changed from a mild steel wire (0.05 to 0.15% C) to a high carbon steel wire (0.6 to 0.8% C). However, high-carbon steel requires a special heat treatment process such as patenting in a lead solution in order to be wire-drawn, making it extremely difficult to manufacture.
このようなことから芯線にFe −NL合金線を用いる
ことも検討されているが、Fe NL合金線では磁気力
が同重吊比鉄線よりも弱いため、磁気吸着力を利用する
ダイオード用リード線としては好ましくない。For this reason, the use of Fe-NL alloy wire for the core wire is being considered, but since the magnetic force of Fe-NL alloy wire is weaker than that of the same weight suspension steel wire, it is difficult to use lead wire for diodes that utilizes magnetic attraction force. It is not desirable as such.
くハ)発明の開示
この発明は上記したこれまでのダイオード用リード線に
お()る問題点を解消すべく鋭意検討を行なった結果、
得られたものであつ−C1鉄被覆層を有するニッケル合
金芯線よりなる複合線の上に重量比で80〜90重石%
の銅被覆を行ない、これによって磁気吸着力を落とさず
に高強度を維持することのできるリード線を提供しよう
とするものである。c) Disclosure of the Invention This invention was developed as a result of intensive studies to solve the above-mentioned problems with conventional diode lead wires.
80 to 90% by weight of the obtained composite wire consisting of a nickel alloy core wire with a C1 iron coating layer.
The present invention aims to provide a lead wire that can maintain high strength without reducing magnetic attraction force by coating the lead wire with copper.
以下、この発明のダイオード用リード線の構成を図面に
基づいて説明する。Hereinafter, the structure of the diode lead wire of the present invention will be explained based on the drawings.
まず第3図において、N1合金芯線7よりなる第1層部
は30〜50%ニッケルおよび微量元素としてSL、K
nを含み、残部が鉄よりなる組成のNj金合金またはM
n1〜3%、SL 1〜3%の何れか一方あるいは両者
を含み、残部がN、よりなるNL金合金用いられる。こ
のような組成どすることによってNし合金芯線は軟化後
も50〜65kiJの抗張力を有するのである。このN
L合金芯線7上に第2層部として設ける軟鋼質(0,0
5〜0.15C)層8は芯線重量比で芯線を1とした時
1: 0.5が好ましく、またその上に第3層として被
覆する銅層9は80〜90%重量比の無酸素銅を被覆し
て構成される。First, in FIG. 3, the first layer portion consisting of the N1 alloy core wire 7 contains 30 to 50% nickel and trace elements such as SL and K.
Nj gold alloy with a composition containing n and the balance consisting of iron or M
An NL gold alloy containing one or both of n1 to 3% and SL 1 to 3%, with the balance being N, is used. With such a composition, the N-alloy core wire has a tensile strength of 50 to 65 kiJ even after softening. This N
Mild steel (0,0
5 to 0.15C) The layer 8 preferably has a core wire weight ratio of 1:0.5 when the core wire is 1, and the copper layer 9 coated thereon as a third layer is an oxygen-free layer with a weight ratio of 80 to 90%. Constructed of copper coating.
上記においてN1合金芯線7上の軟鋼質層8の重量割合
を芯線に対して0.5〜1.0とするのは、0.5以下
では磁化力が弱く、また 1.0以上、特に1.5以上
にすると強度が弱くなるためである。In the above, the weight ratio of the mild steel layer 8 on the N1 alloy core wire 7 to the core wire is set to 0.5 to 1.0 because if it is less than 0.5, the magnetizing force is weak, and if it is 1.0 or more, especially 1. This is because if the value is .5 or more, the strength will be weakened.
このようなこの発明のリード線と従来のリード線につい
て磁化力や抗張力などを比較したところ第1表の如くな
り、この発明のリード線が導電率および磁化率の点です
ぐれ、かつ強度も強いことが実証された。A comparison of the magnetizing force, tensile strength, etc. of the lead wire of the present invention and the conventional lead wire shows the results shown in Table 1, which shows that the lead wire of the present invention is superior in terms of electrical conductivity and magnetic susceptibility, and is also strong. This has been proven.
またこの発明のリード線を0.8mm1llとし、電極
として 1.5mm11]、長さ2.Ommのジュメッ
ト線を用いてダイオードとして組立てたところ、従来の
ダイオードとI6;等の許容損失1ワット以上が得られ
ることが認められた。In addition, the lead wire of this invention is 0.8 mm1ll, and the electrode has a length of 1.5 mm11] and a length of 2. When assembled as a diode using 0mm Dumet wire, it was found that a power dissipation of 1 watt or more could be obtained compared to a conventional diode such as I6.
第 1 表
)
但し、(1)の磁化力は鉄を100とした5場合の値で
ある。(Table 1) However, the magnetizing force in (1) is the value when iron is taken as 100.
上表から一磁化力は13以上、抗張力は30に9J以上
のものが好ましい。From the above table, it is preferable that the magnetizing force is 13 or more and the tensile strength is 30 to 9 J or more.
第1図はD HD型ガラス封止ダイオードの正面図、第
2図は軟鋼線芯線の断面図、第3図はこの発明のリード
線の断面図である。
7・・・ニッケル合金芯線 8・・・軟鋼質被覆層9・
・・銅または銅合金被覆層
特許出願人 住友電気工業株式会社
代 理 人 弁理士 和 1) 昭FIG. 1 is a front view of a DHD type glass-sealed diode, FIG. 2 is a sectional view of a mild steel core wire, and FIG. 3 is a sectional view of a lead wire of the present invention. 7... Nickel alloy core wire 8... Mild steel coating layer 9.
... Copper or copper alloy coating layer patent applicant Sumitomo Electric Industries Co., Ltd. Representative Patent attorney Kazu 1) Akira
Claims (2)
0〜90重u%の銅または銅合金被覆層を設けたことを
特徴どするダイオード用リード線。(1) 8 on the outer surface of a nickel alloy core wire with an iron coating layer
A lead wire for a diode, characterized in that a copper or copper alloy coating layer of 0 to 90% by weight is provided.
.0の重量比であることを特徴とする特i′F請求の範
囲第1項記載のダイオード用リード線。(2) The iron coating layer is 0.5 to 1 with respect to the nickel alloy core wire.
.. A lead wire for a diode according to claim 1, characterized in that the weight ratio is 0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58215178A JPS60106156A (en) | 1983-11-15 | 1983-11-15 | Lead wire for diode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58215178A JPS60106156A (en) | 1983-11-15 | 1983-11-15 | Lead wire for diode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60106156A true JPS60106156A (en) | 1985-06-11 |
Family
ID=16667957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58215178A Pending JPS60106156A (en) | 1983-11-15 | 1983-11-15 | Lead wire for diode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60106156A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009191479A (en) * | 2008-02-13 | 2009-08-27 | Toyota Motor Corp | Building |
-
1983
- 1983-11-15 JP JP58215178A patent/JPS60106156A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009191479A (en) * | 2008-02-13 | 2009-08-27 | Toyota Motor Corp | Building |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61253384A (en) | Method for plating amorphous alloy | |
JPS62148121A (en) | Cut wire for electric discharge machining | |
JPS60106156A (en) | Lead wire for diode | |
JPS6152333A (en) | Bonding wire | |
JPS5958833A (en) | Semiconductor device | |
JPS61281542A (en) | Lead wire for diode | |
JPH10321919A (en) | Thermoelectric material having ni-alloy coating film | |
JP3312235B2 (en) | Beryllium copper alloy spring material and its manufacturing method | |
JPH0298012A (en) | Elastic, vibration-proof flexible conductor | |
JP2583317B2 (en) | Superconductor with oxide film | |
US3475144A (en) | Composite metal conductor sealed to glass | |
JPS6296642A (en) | Aluminum alloy for bonding wire | |
JPS5596665A (en) | Lead component for semiconductor element | |
JPH03184210A (en) | Cable conductor for automobile | |
JPS60118343A (en) | Manufacture of composite wire | |
JPH08337980A (en) | High-strength 8-strand-type wire rope | |
JPH05320842A (en) | Production of material for reed switch | |
JPH02148513A (en) | Flexible, vibration resistant bendable conductor | |
JPH0621127Y2 (en) | Flexible conductor | |
JPS5828115A (en) | Method of producing contact for lead switch | |
JPH0574508A (en) | Superconductive wire connecting method | |
JPH09141324A (en) | Manufacture of aluminum steel composite wire | |
JPH02227912A (en) | Flexible and vibration resistant conductor | |
JPS63224595A (en) | Copper foil thread wire for speaker | |
JPS6273648A (en) | Hermetic glass terminal |