JPS60103138A - Method for recovering gold and silver from aqueous solution containing thiourea as well as gold and silver - Google Patents

Method for recovering gold and silver from aqueous solution containing thiourea as well as gold and silver

Info

Publication number
JPS60103138A
JPS60103138A JP58212242A JP21224283A JPS60103138A JP S60103138 A JPS60103138 A JP S60103138A JP 58212242 A JP58212242 A JP 58212242A JP 21224283 A JP21224283 A JP 21224283A JP S60103138 A JPS60103138 A JP S60103138A
Authority
JP
Japan
Prior art keywords
gold
silver
aqueous solution
thiourea
solution containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58212242A
Other languages
Japanese (ja)
Inventor
Takeo Odaka
小高 竹男
Sakichi Goto
後藤 佐吉
Iwazo Asakura
朝倉 岩三
Genichi Nakazawa
中沢 元一
Hidekazu Yasutake
安武 英一
Tokuo Okawa
大川 徳男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP58212242A priority Critical patent/JPS60103138A/en
Publication of JPS60103138A publication Critical patent/JPS60103138A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To recover gold and silver at a good yield by adding an alkali to an aq. soln. contg. thiourea compd. of gold and silver to specific pH in the presence of iron ion and separating the formed precipitate. CONSTITUTION:An alkali hydroxide and potassium carbonate or calcium carbonate are added to an aq. soln. contg. thiourea compd. of gold and silver to adjust the pH thereof to >=6.5 without adding ferric sulfate or ferric chloride thereto if the substantial amt. (about 10-100 times the gold) of trivalent or vivalent iron ion exists or after adding preferably a suitable amt. of ferric fulfate or ferric chloride thereto if the soln. contains the iron ion in the smaller amt. The soln. is preferably aerated to adjust the pH to >=4.0. The precipitate formed by such addition is separated by a filtering and washing method or the like by which gold is recovered directly at an actual yield of about 90-92wt% and silver at about 90-95wt%.

Description

【発明の詳細な説明】 本発明は、金、銀のチオ尿素化合物を含有する水溶液よ
り金、銀を回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering gold and silver from an aqueous solution containing a thiourea compound of gold and silver.

更に詳しくは、金、銀のチオ尿素化合物を含有する水溶
液に、必要に」:り鉄イオンを添加したのち、該水溶液
のPhiを上昇させ、金、銀を鉄と共沈させて分離する
方法に関するものである。
More specifically, a method in which iron ions are added to an aqueous solution containing a thiourea compound of gold and silver as necessary, the Phi of the aqueous solution is increased, and gold and silver are co-precipitated with iron to separate them. It is related to.

従来、金、銀を含有する鉱石等から、湿式製錬法によっ
て金、銀を回収する方法としては、該鉱石を粉砕後シア
ン化ナトリウム水溶液を用いて金、銀を浸出し、浸出さ
れた金、銀を亜鉛末で還元するいわゆる骨化製錬法が広
く工業的に行なわれている。
Conventionally, as a method for recovering gold and silver from ores containing gold and silver by hydrometallurgy, the ore is crushed and then the gold and silver are leached using a sodium cyanide aqueous solution. The so-called ossification smelting method, in which silver is reduced with zinc powder, is widely used industrially.

しかし、上記のシアン化ナトリウムは、周知の如く人畜
に有害な薬品であり、操業に際しては・廃水中に/ p
pm以下となるようにして放流すること、また浸出後の
鉱石には、シアン分が残留しないように充分洗滌するこ
と等公害、環境面から厳重な管理が要求される。
However, as is well known, the above sodium cyanide is a chemical that is harmful to humans and animals, and during operation, it must be contained in wastewater.
Strict management is required in terms of pollution and the environment, such as discharging the ore so that it is below pm and thoroughly washing the ore after leaching so that no cyanide remains.

これに対し近年、シアン化ナトリウムを使用しない無公
害プロセスとして、鉱石に含有される金、銀をチオツ尿
素で浸出させる方法が国内外でイυ[究されている。
On the other hand, in recent years, a method of leaching gold and silver contained in ores with thiourea has been investigated domestically and internationally as a pollution-free process that does not use sodium cyanide.

この方法は、金、銀浸出剤としてチオ尿素を、酸化剤と
して例えば第λ鉄塩などを用いるもので、反応は下記の
ように考えられている。
This method uses thiourea as a gold and silver leaching agent and, for example, a ferric salt as an oxidizing agent, and the reaction is considered as follows.

Au−1−Fe +、2 Cps (Nl2) 2→A
u (as (Nl2) 2)2’、−1−1t’s本
願発明者等は上記の方法に基いて、金、銀を含む鉱石か
ら金の浸出法を追試したところ、チオ尿素による鉱石中
の金の浸出は浸出条件にもよるが、チオ尿素の初期濃度
10g/lの場合3時間で、Auの浸出率は約93重量
%が得られ、青化製錬法の浸出時間xti−tttg時
間で、Auの浸出率70〜93重量%と比較して極めて
浸出速度が速いことが判った。
Au-1-Fe +, 2 Cps (Nl2) 2→A
u (as (Nl2) 2)2', -1-1t's The inventors of the present application conducted a second experiment on the method of leaching gold from ores containing gold and silver based on the above method, and found that thiourea leached gold into ores. The leaching of gold depends on the leaching conditions, but when the initial concentration of thiourea is 10 g/l, the leaching rate of Au is about 93% by weight in 3 hours, and the leaching time of the blue smelting method is xti-tttg. It was found that the leaching rate was extremely high compared to the leaching rate of 70 to 93% by weight of Au.

チオ尿素法によって、浸出された金、銀はチオ尿素の錯
化合物として水溶液中に溶解しているが、これより金、
銀を回収する方法として、/)亜鉛末、ヒドラジン、’
1llc f+ric酸ナトリウムのような還元剤を添
加して金、銀を析出させる方法、λ)活性炭にJ:る金
、銀の吸着法などが提案されている。
By the thiourea method, the leached gold and silver are dissolved in an aqueous solution as a thiourea complex;
As a method for recovering silver, /) zinc dust, hydrazine, '
A method of precipitating gold and silver by adding a reducing agent such as sodium ric acid, and a method of adsorbing gold and silver on activated carbon have been proposed.

しかしながら上記/)の方法の場合は、金、銀を含有す
る微粉状の鉱石に、チオ尿素(10g/7 ’)、硫酸
(10g/l)、硫酸第一鉄(Fe として/ gll
 )を夫々添加して3時間攪拌した後、固液分離して得
た2、3 mg/lの金、/、 11m9/lの銀を含
むPH,2,3の水溶液/7!に、亜鉛末の添加毒を変
えて加え、金、銀を還元させたところ、第1図に示すよ
うに約3〜17 +++v′7程度の金、銀を回収する
ためには、711以上の亜鉛を必要とし、且つ直接実収
率も不充分という問題点があった。
However, in the case of the above method /), thiourea (10 g/7'), sulfuric acid (10 g/l), ferrous sulfate (Fe/gll) is added to the fine powder ore containing gold and silver.
) were added and stirred for 3 hours, followed by solid-liquid separation to obtain an aqueous solution of PH, 2,3 containing 2,3 mg/l of gold, /, 11 m9/l of silver/7! When adding zinc powder with different poisons to reduce gold and silver, as shown in Figure 1, it takes more than 711 to recover gold and silver of about 3 to 17 +++v'7. There were problems in that zinc was required and the direct yield was insufficient.

還元剤の使用量が多い主な理由は\チオ尿素による金、
銀の抽出が、P、H”2程度の酸性で行なわれる(PH
2より高いPliでは金、銀の抽出不良)ためで、亜鉛
以外の還元剤を使用しても同様の結果となる。
The main reason for the large amount of reducing agent used is \Gold from thiourea,
Extraction of silver is carried out in acidic conditions of about P, H”2 (PH
This is due to poor extraction of gold and silver when Pli is higher than 2, and similar results are obtained even if a reducing agent other than zinc is used.

また2)の方法の場合には第2図に示した微量の金を含
むシアン水溶液と、同じく微量の金を含むチオ尿素水溶
液夫々の活性炭への等温吸着線を見て判るように、チオ
尿素水溶液の方が金の吸着量はかなり不良であり、且つ
この場合活性炭は殆んどのチオ尿素を吸着してしまうと
いうコスト上の欠点もある。
In addition, in the case of method 2), as shown in Fig. 2, the isothermal adsorption lines for the cyanide aqueous solution containing a trace amount of gold and the thiourea aqueous solution containing a trace amount of gold, respectively, on activated carbon. The aqueous solution has a considerably lower adsorption amount of gold, and in this case activated carbon also has a cost disadvantage, as it adsorbs most of the thiourea.

第2図の縦軸は活性炭/g当り金の吸着量1119を示
したものである。
The vertical axis in FIG. 2 shows the amount of gold adsorbed per gram of activated carbon (1119).

本発明の目的は、前述の欠点を解消したチオ尿素水溶液
中の金、銀回収方法を提供することにある。
An object of the present invention is to provide a method for recovering gold and silver in an aqueous thiourea solution that eliminates the above-mentioned drawbacks.

この目的を達成するため、本願発明者等は、鋭意検討の
結果、金、銀を含有したチオ尿素水溶液中に、鉄分を存
在させた状態で該水溶液のPHを上昇させると、生成す
る水酸化鉄の沈殿中に金、銀の殆んどを共沈させ得るこ
とを実験的に見出し本発明に到達した。
In order to achieve this objective, the inventors of the present application have conducted intensive studies and discovered that when the pH of a thiourea aqueous solution containing gold and silver is increased in the presence of iron, hydroxyl oxide is generated. The present invention was achieved by experimentally discovering that most of gold and silver can be co-precipitated during iron precipitation.

即ち、本発明の方法は金、銀を溶解したチオ尿素の水溶
液中に、3価の鉄イオン又は2価の鉄イオンの相当量(
金に対し10〜700倍程度が好ましい)を含有すると
きは、そのま\、鉄イオンが少ないときは好ましくは硫
酸第一鉄又は塩化第λ鉄の適当量を添加し、好ましくは
エアレーションしたのち、例えば水酸化アルカリと炭酸
カルシウムとを併用してPHをグ、θ以上とし、生成し
た沈殿を濾過洗滌法痔によって分離し、金、銀を回収す
るというものである。
That is, the method of the present invention involves adding an equivalent amount of trivalent iron ions or divalent iron ions (
(preferably about 10 to 700 times the amount of gold), it can be used as is, or when iron ions are low, it is preferable to add an appropriate amount of ferrous sulfate or ferric chloride, preferably after aeration. For example, a combination of alkali hydroxide and calcium carbonate is used to raise the pH to ≧≧0, and the resulting precipitate is separated by a filtration washing method to recover gold and silver.

本発明の方法においてチオ尿素含有水溶液中に鉄イオン
を、該水溶液中の金、銀量に対し相当IJ1存在させる
のは、ひ、銀をほぼ完全に共沈させるために必須である
In the method of the present invention, it is essential to have iron ions present in the thiourea-containing aqueous solution equivalent to IJ1 relative to the amount of gold and silver in the aqueous solution in order to almost completely coprecipitate the silver.

鉱石中の金、銀を/θg/l程度のチオ尿素の水溶液で
浸出する際に酸化剤として硫酸第2鉄又は塩化第2鉄を
、Fe として通常0.7〜/ g/l程度添加するの
で、このような場合には特に鉄イオンを追加して加える
必要はない。
When leaching gold and silver in ores with an aqueous solution of thiourea at about /θg/l, ferric sulfate or ferric chloride is added as an oxidizing agent, usually about 0.7 to /g/l as Fe. Therefore, in such cases, there is no need to add additional iron ions.

しかし上記の場合、添加されたFe は金、銀浸出中に
酸化剤として働くために、浸出終了液の鉄イオンは還元
されてFe として存在するから、アルカリを加える前
にエアレーションするのが好ましい。
However, in the above case, since the added Fe acts as an oxidizing agent during leaching of gold and silver, the iron ions in the leaching solution are reduced and exist as Fe, so it is preferable to carry out aeration before adding the alkali.

エアレーションの操作を省略してアルカリを添加すると
第3図(Au 3 mg/l )のBに示したように、
金、銀を90重量%以上回収する為にはPHA、、に好
ましくはPH7以上とする必要があるが、エアレーショ
ン後のアルカリ添加の場合のAは、PII4以上で、は
ぼ同等の収率が得られる。高弟、2図のAの場合のPH
はt〜乙の範囲で良く、それ以上PHを高くしても金、
銀回収率の向上は見られない0 次に該浸出液に添加するアルカリとしては、水酸化ナト
リウム、水酸化カリウム、炭酸カルシウム、水酸化カル
シウム等を使用することができるが、単に水酸化アルカ
リのみを使用するよりも、水酸化アルカリと例えば炭酸
カルシウムを併用する方が水酸化鉄沈殿の濾過性の面か
ら望ましい。
If the aeration operation is omitted and alkali is added, as shown in B in Figure 3 (Au 3 mg/l),
In order to recover 90% by weight or more of gold and silver, it is necessary to set the PHA preferably to pH 7 or higher, but in the case of alkali addition after aeration, A is PII 4 or higher, which gives almost the same yield. can get. High student, PH in case of A in Figure 2
is fine within the range of t to ot, and even if the pH is higher than that, gold,
No improvement in silver recovery rate is observed 0 Next, as the alkali to be added to the leachate, sodium hydroxide, potassium hydroxide, calcium carbonate, calcium hydroxide, etc. can be used, but it is possible to use only alkali hydroxide. It is preferable to use alkali hydroxide and, for example, calcium carbonate in combination, from the viewpoint of filterability of the iron hydroxide precipitate.

以上の操作は通常常温で行なうことができる。The above operations can usually be performed at room temperature.

所望の場合30〜SθCに保温することもできるが、中
和後の沈殿物のフロック生長と、曲過性が若干向上する
だけで、金、銀の実収率向上には特に貢献しない。
If desired, the temperature can be maintained at 30 to SθC, but this only slightly improves the floc growth and bendability of the precipitate after neutralization, and does not particularly contribute to improving the actual yield of gold and silver.

本発明の方法によれば、該水溶液にアルカリを添加して
鉄の沈殿物を生成させ、これを分離すると云うtlを純
な操作で金′10−η重駁%・銀ワ。〜ワS車11:%
のI&接実収ご・tくで夫々回収することができる。
According to the method of the present invention, an alkali is added to the aqueous solution to form an iron precipitate, and the iron precipitate is separated. ~WaS car 11:%
They can be collected by I&T.

金、銀を含有する鉱石をチオ尿素と鉄イオンを含イfす
る水溶液で処理し、得られた浸出液に本発明法を適用す
れば、浸出時の酸化剤として使用した鉄分は更に金、銀
の共沈剤として使用できるので、コストの面だけでなく
操業が簡素化されるという利点が得られる。
If ores containing gold and silver are treated with an aqueous solution containing thiourea and iron ions, and the method of the present invention is applied to the resulting leachate, the iron used as an oxidizing agent during leaching will be further converted to gold and silver. Since it can be used as a coprecipitant, it has the advantage of not only cost but also simplified operation.

又実際の操業では、該鉱石は鉄製のボートミル等で粉砕
されるため、少量の鉄粉が混入することも考えられるが
、このような場合にも混入した鉄粉は鉄分として有効に
利用される。
In addition, in actual operations, the ore is crushed using iron boat mills, etc., so it is possible that a small amount of iron powder may be mixed in, but even in such cases, the mixed iron powder can be effectively used as iron. .

本発明法における酸化剤としては第コ鉄塩について説明
したが、通常の酸化剤である過酸化水素、臭素、過マン
ガン酸カリウム等も同様にして使用することができるの
は勿論である。但し、鉄イオン以外の酸化剤を使用した
場合には処理後の浸出液に適当量の鉄分を添加する必要
がある。
Although ferrous salt has been described as the oxidizing agent in the method of the present invention, it goes without saying that ordinary oxidizing agents such as hydrogen peroxide, bromine, potassium permanganate, etc. can also be used in the same manner. However, if an oxidizing agent other than iron ions is used, it is necessary to add an appropriate amount of iron to the treated leachate.

本発明法で得られる沈殿物は焙焼したのち分銀炉等で処
理、ろ液はそのま\放流することができる。
The precipitate obtained by the method of the present invention can be roasted and then treated in a silver fractionating furnace or the like, and the filtrate can be discharged as it is.

以下実施例について説明する。Examples will be described below.

実施例/ 32タメツシユ以下がqg重量%になるように粉砕した
金30尾g7’t%銀2.3.0 g/lを含有する鉱
石5゜gを、チオ尿素3g71 、硫酸第一鉄をFe 
として0.3 g/l 、硫酸3 g//l (何れも
試薬7級を使用)を含む水溶液りsome(常温)に入
れ、乙oθrpmのプロペラ式攪拌機でS時間攪拌した
のち、/lo、 !; Bの218紙を用いて吸引i1
M過したところ、金7.7りmfノ銀/、 、2g m
ti/lの浸出液g2θmlを得た。金、銀の24jl
は原子吸光法で行なった。
Example / 30 g of gold, 7't%, which was crushed to qg% by weight of 32 tons or less, 5゜g of ore containing 2.3.0 g/l of silver, 3g of thiourea, 71 g of ferrous sulfate, Fe
0.3 g/l of sulfuric acid and 3 g//l of sulfuric acid (both grade 7 reagents were used). ! ; Suction i1 using 218 paper of B
When passing M, gold 7.7 mf no silver/, , 2g m
A leachate g2θml of ti/l was obtained. Gold, silver 24jl
was performed using atomic absorption spectrometry.

次に上記の浸出液に、0.g 11分の割合で空気を3
0分間吹き込み、次いで試M IMrの水酸什カルシウ
ムo、sgを乳液とし−C加え、更に/規定の水酸化す
トリウム水溶液を徐々に添加してPH’f’!、5とし
たのち、上記の攪拌機で20分間攪拌して力)ら、ir
 S O12に紙を用いて吸引濾過したところ、金0.
 /2’1mg/l 、銀o、 / /3 malの濾
液900meが得られ、こ\での直接収率はAuη、2
%、Ag90./%とほぼ満足する結果が得られた。
Next, add 0.0% to the above exudate. g 3 air at a rate of 11 minutes
Blow in for 0 minutes, then add trial M IMr calcium hydroxide o, sg as an emulsion to -C, and gradually add / specified sthorium hydroxide aqueous solution to PH'f'! , 5, and then stirred for 20 minutes with the above stirrer.
When SO12 was suction filtered using paper, 0.0 gold was found.
/2'1 mg/l, silver o, / /3 mal filtrate 900me was obtained, the direct yield here was Auη,2
%, Ag90. /%, which is an almost satisfactory result.

実施例コ 実施例/で使用した鉱石を試薬7級0.2gの過マンガ
ン酸カリウムを酸化剤として使用し、鉄イオンは添加し
ない以外は実施例/と同様にして金、銀の浸出を行ない
、得られた浸出液に塩化第1鉄→2 を加えた300 mg/lのIce 、/、/)3 m
g/lのAu、0.32m4(/lのAgを含有する水
溶液300rneをマグネチツクスクーラーで攪拌しな
がらこれに常温で試薬7級の炭酸カルシウム0..2 
gを加え、更に/規定の水酸化ナトリウムをピコ−レッ
トから徐々Gこ添加してP1i7..2とした。
Example - Gold and silver were leached from the ore used in Example 7 in the same manner as in Example 1, except that 0.2 g of potassium permanganate (grade 7) was used as the oxidizing agent and no iron ions were added. , ferrous chloride→2 was added to the obtained leachate to give 300 mg/l Ice, /, /) 3 m
While stirring 300 rne of an aqueous solution containing g/l of Au and 0.32 m4 (/l of Ag) with a magnetic cooler, add 0.2 m of calcium carbonate of reagent grade 7 at room temperature.
g and then gradually added a specified amount of sodium hydroxide starting from picolet to obtain P1i7. .. It was set as 2.

該水溶液は引続いて20分間攪拌したのち、ASC濾紙
を用いて吸引濾過洗滌し一沈殿物中に金、銀を回収し、
濾液330 meに残留するAu、A、gを夫夫原子吸
光法で測定したところAuO,/θnIt)/l % 
AgO,02rr?lであり夫々の回収率は、Au73
.3%、Agワ3.7%でありほぼ満足すべき結果が得
られた。
The aqueous solution was subsequently stirred for 20 minutes, and then suction filtered and washed using ASC filter paper to recover gold and silver in a precipitate.
Au, A, and g remaining in the filtrate 330 me were measured by Fufu atomic absorption spectrometry and found to be AuO,/θnIt)/l %
AgO,02rr? l, and the respective recovery rates are Au73
.. 3%, Ag content was 3.7%, and almost satisfactory results were obtained.

本発明法は微量の金、銀を含むスクラップ等からの金、
銀回収にも適用することができる。
The method of the present invention can be used to collect gold from scraps containing trace amounts of gold or silver.
It can also be applied to silver recovery.

なお本発明に従って金のみ、銀のみを含有するチオ尿素
化合物含有水溶液を処理する場合も、本発明の範囲に含
まれることは勿論である。
It goes without saying that the scope of the present invention also includes a case where an aqueous solution containing a thiourea compound containing only gold or silver is treated according to the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は金、銀、チオ尿素、硫酸、硫酸第一鉄含有水溶
液への亜鉛添加量に対する金、銀回収率を示す図、第2
図は金を含有する。■化液A1及び金を含有するチオ尿
素液Bの活性炭に対する等温吸着線を示す図、第3図は
PHと金、銀回収率との関係を示す図である。 A・・エアーレーションを行なったもの。 B・・エアーレーションを行なわなかったもの。 出願人 住友金属鉱山株式会社 代理人 弁理土中村勝成 第1図 ■ 亜鉛添加量(ガ) 全残留濃度(m輪) H
Figure 1 is a diagram showing the recovery rates of gold and silver with respect to the amount of zinc added to an aqueous solution containing gold, silver, thiourea, sulfuric acid, and ferrous sulfate.
Figure contains gold. Figure 3 is a diagram showing isothermal adsorption lines for activated carbon of chemical solution A1 and gold-containing thiourea solution B, and Figure 3 is a diagram showing the relationship between PH and recovery rates of gold and silver. A: Those that have been aerated. B: Those that were not aerated. Applicant Sumitomo Metal Mining Co., Ltd. Agent Katsunari Nakamura Figure 1 ■ Amount of zinc added (ga) Total residual concentration (m) H

Claims (4)

【特許請求の範囲】[Claims] (1)金A銀のチオ尿素化合物を含む水溶液に、鉄イオ
ンの存在下でアルカリを添加してPH6,S以上とし、
生成する沈殿を分離することを特徴とする、チオ尿素お
よび金、銀を含イjする水溶液から金、銀を回収する方
法。
(1) Add an alkali to an aqueous solution containing a thiourea compound of gold A and silver in the presence of iron ions to adjust the pH to 6.S or higher,
A method for recovering gold and silver from an aqueous solution containing thiourea and gold and silver, the method comprising separating a generated precipitate.
(2) アルカリは水酸化アルカリと水酸化カルシウム
又は炭酸カルシウムからなることを特徴とする特許請求
の範囲(1)項記載のチオ尿素および金、銀を含有する
水溶液から金、銀を回収する方法。
(2) A method for recovering gold and silver from an aqueous solution containing thiourea and gold and silver according to claim (1), wherein the alkali consists of an alkali hydroxide and calcium hydroxide or calcium carbonate. .
(3) 金、銀をチオ尿素化合物として含有する水溶液
に鉄イオンの存在下で、エアレーションしたのち該水溶
液にアルカリを添加してpH’1.0以上とすることを
特徴とするチオ尿素および金、銀を含有する水溶液から
金、銀を回収する方法。
(3) Thiourea and gold, characterized in that an aqueous solution containing gold and silver as a thiourea compound is aerated in the presence of iron ions, and then an alkali is added to the aqueous solution to adjust the pH to 1.0 or higher. , a method for recovering gold and silver from an aqueous solution containing silver.
(4) アルカリは水酸化アルカリと水酸化カルシウム
又は炭酸カルシウムからなることを特徴とする特許請求
の範囲(3)項に記載のチオ尿素および金、銀を含有す
る水溶液から金、銀を回収する方法。
(4) Recovering gold and silver from an aqueous solution containing thiourea and gold and silver according to claim (3), wherein the alkali consists of alkali hydroxide and calcium hydroxide or calcium carbonate. Method.
JP58212242A 1983-11-10 1983-11-10 Method for recovering gold and silver from aqueous solution containing thiourea as well as gold and silver Pending JPS60103138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58212242A JPS60103138A (en) 1983-11-10 1983-11-10 Method for recovering gold and silver from aqueous solution containing thiourea as well as gold and silver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58212242A JPS60103138A (en) 1983-11-10 1983-11-10 Method for recovering gold and silver from aqueous solution containing thiourea as well as gold and silver

Publications (1)

Publication Number Publication Date
JPS60103138A true JPS60103138A (en) 1985-06-07

Family

ID=16619322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58212242A Pending JPS60103138A (en) 1983-11-10 1983-11-10 Method for recovering gold and silver from aqueous solution containing thiourea as well as gold and silver

Country Status (1)

Country Link
JP (1) JPS60103138A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428229A (en) * 1987-07-23 1989-01-30 Sumitomo Chemical Co Method for recovering gold
JPH02209434A (en) * 1989-02-09 1990-08-20 Tanaka Kikinzoku Kogyo Kk Method for recovering plantinum group metal from metallic carrier catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428229A (en) * 1987-07-23 1989-01-30 Sumitomo Chemical Co Method for recovering gold
JPH02209434A (en) * 1989-02-09 1990-08-20 Tanaka Kikinzoku Kogyo Kk Method for recovering plantinum group metal from metallic carrier catalyst

Similar Documents

Publication Publication Date Title
KR101021454B1 (en) Method for recovering rare metals in a zinc leaching process
US5932086A (en) Process for making manganese
EP1339883B1 (en) Method for the hydrolytic precitpitation of iron
KR100953289B1 (en) A method for precipitating iron from a zinc sulphate solution as hematite
US9194023B2 (en) Recovery of gold from roaster calcine leach tailings
JP5495418B2 (en) Method for recovering manganese
CA1061572A (en) Method of selectively bringing into solution the non-ferrous metals contained in sulphurized ores and concentrates
JP2003512160A (en) Method for reducing the concentration of dissolved metal and metalloid in aqueous solution
JP2005512939A6 (en) Precipitation method of iron as hematite from zinc sulfate solution
CN113444886B (en) Valuable element leaching and recycling method for copper smelting smoke dust
JP2016507637A (en) Method for producing scandium-containing solid material with high scandium content
US5401296A (en) Precious metal extraction process
US5762891A (en) Process for stabilization of arsenic
JPH11277075A (en) Method for removing/fixing arsenic existing in iron sulfate solution
JP4215547B2 (en) Cobalt recovery method
JP3411320B2 (en) Zinc smelting method
JPH09315819A (en) Method for recovering arsenic from sulfide containing arsenic and production of calcium arsenate
CN111018212B (en) Method for removing arsenic and chlorine from waste acid wastewater of metallurgical enterprise
JP4439804B2 (en) Cobalt recovery method
JPS60103138A (en) Method for recovering gold and silver from aqueous solution containing thiourea as well as gold and silver
US3849269A (en) Processing ores containing nickel and copper oxides
US4384940A (en) Chlorine leaching of nickel-cobalt-iron sulphides
US3980752A (en) Precipitation of nickel, cobalt, lead sulphides in presence of iron oxides or hydroxides
EA007859B1 (en) Method for removing thallium from a zinc-containing solution
US1167701A (en) Process of recovering zinc from its ores.