JPH11277075A - Method for removing/fixing arsenic existing in iron sulfate solution - Google Patents

Method for removing/fixing arsenic existing in iron sulfate solution

Info

Publication number
JPH11277075A
JPH11277075A JP12521198A JP12521198A JPH11277075A JP H11277075 A JPH11277075 A JP H11277075A JP 12521198 A JP12521198 A JP 12521198A JP 12521198 A JP12521198 A JP 12521198A JP H11277075 A JPH11277075 A JP H11277075A
Authority
JP
Japan
Prior art keywords
arsenic
iron
sulfate solution
iron sulfate
fixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12521198A
Other languages
Japanese (ja)
Other versions
JP4126415B2 (en
Inventor
Yutaka Shibachi
豊 芝地
Kensaku Fukuda
健作 福田
Kaoru Saruta
薫 猿田
Ryoichi Taguchi
良一 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Akita Seiren KK
Original Assignee
Akita Seiren KK
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Seiren KK, Dowa Mining Co Ltd filed Critical Akita Seiren KK
Priority to JP12521198A priority Critical patent/JP4126415B2/en
Publication of JPH11277075A publication Critical patent/JPH11277075A/en
Application granted granted Critical
Publication of JP4126415B2 publication Critical patent/JP4126415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To eliminate the loss of valued metals and to be adapted to a practical wet zinc smelting process by removing/fixing arsenic existing in an iron sulfate solution as an iron-arsenic compound which is stable, crystalline, and inelutable. SOLUTION: A reducing agent, i.e., the metal powder of zinc. iron, or the like is added into an iron sulfate solution containing arsenic for the removal and concentration of arsenic. In this process, arsenic is basically precipitated in the form of iron and iron arsenide and/or a simple substance of arsenic, and is precipitated preferentially as copper arsenide in the presence of copper. The reaction is preferably carried out while the oxidation-reduction potential is being controlled. In the concentration of arsenic, a sulfide such as hydrogen sulfide gas can be used in place of the metal powder reducing agent. In thin case, arsenic is precipitated in the form of arsenic sulfide. Next, iron is added to arsenic-concentrated pulp, mixing is done to be a prescribed Fe/As ratio, the temperature is increased to a prescribed value, oxygen is added to be a prescribed oxygen partial pressure to fix the arsenic as a crystalline, stable iron-arsenic compound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、硫酸鉄溶液中に存
在する砒素の除去及び固定方法に関するものである。
[0001] The present invention relates to a method for removing and fixing arsenic present in an iron sulfate solution.

【0002】[0002]

【従来の技術】従来から、硫酸鉄溶液中に存在する砒素
の除去法としては、多くの技術が提案され、実施されて
いるものもある。その主な方法としては、 (1)硫酸鉄あるいは水酸化鉄との共沈及び/又は吸着
法。 (2)銅イオンを共存させ電解もしくは置換による砒化
銅沈殿法。 (3)硫化水素,硫化ソーダ等の硫化剤を用いた硫化物
沈殿法、などがある。
2. Description of the Related Art Conventionally, many techniques have been proposed and implemented as a method for removing arsenic present in an iron sulfate solution. The main methods are (1) coprecipitation and / or adsorption with iron sulfate or iron hydroxide. (2) Copper arsenide precipitation method by electrolysis or substitution in the presence of copper ions. (3) A sulfide precipitation method using a sulfide agent such as hydrogen sulfide or sodium sulfide.

【0003】上記(1)の方法は、更に次の2つの方法
に大別される。 (イ)砒素を含む硫酸鉄溶液に消石灰等の中和剤を添加
し、大気圧下で砒素鉄化合物沈殿を生成させる方法。
The method (1) is further roughly classified into the following two methods. (A) A method in which a neutralizing agent such as slaked lime is added to an iron sulfate solution containing arsenic to form an arsenic iron compound precipitate under atmospheric pressure.

【0004】(ロ)砒素を含む溶液または固形分と、鉄
を含む溶液または固形分とをオートクレーブに投入し、
200℃程度まで昇温して結晶性の鉄砒素化合物を沈殿
させると同時に、亜鉛や銅等の元素を液中に浸出させる
熱力学的な沈殿方法。
(B) A solution or solid containing arsenic and a solution or solid containing iron are charged into an autoclave,
A thermodynamic precipitation method in which the temperature is raised to about 200 ° C. to precipitate a crystalline iron-arsenic compound and simultaneously leaching elements such as zinc and copper into a liquid.

【0005】上記(イ)の方法は極めて一般的であり、
砒素を含む硫酸鉄溶液に中和剤を添加しpHを4以上と
し、砒酸鉄あるいは水酸化鉄との共沈及び/又は吸着に
より除去している。このとき、砒素が五価でなく、及び
/又は鉄が二価の場合は、空気,酸素及び/又は酸化剤
を用いて酸化処理を行う。
The above method (a) is very general,
A neutralizing agent is added to an iron sulphate solution containing arsenic to adjust the pH to 4 or more, and is removed by coprecipitation with iron arsenate or iron hydroxide and / or adsorption. At this time, when arsenic is not pentavalent and / or iron is divalent, the oxidation treatment is performed using air, oxygen and / or an oxidizing agent.

【0006】この方法によれば、砒素は有効に除去され
るが、中和剤の使用に伴い最終殿物量が膨大になってい
しまうという問題がある。また、この方法で生成された
殿物処理に膨大な費用がかかる。
According to this method, arsenic is effectively removed, but there is a problem that the amount of the final residue becomes enormous with the use of the neutralizing agent. Also, the processing of the artifacts generated by this method is very costly.

【0007】次に、上記(ロ)は装置をよりコンパクト
にするための方法で、砒素の固定と有価金属の回収を同
時にかつ簡単なプロセスで行うことができる方法であ
る。
[0007] Next, (b) is a method for making the apparatus more compact, and is a method in which the fixing of arsenic and the recovery of valuable metals can be performed simultaneously and with a simple process.

【0008】しかしながら、実際の硫酸鉄溶液、例えば
特に湿式亜鉛製錬の亜鉛浸出残渣のSO還元あるいは
高温高酸浸出から得られる硫酸鉄溶液の場合は、含有さ
れる砒素に対して圧倒的に多量の鉄を含んでいるのが常
で、直接該方法を用いて砒素を分離固定することはでき
なかった。
However, in the case of an actual iron sulfate solution, for example, an iron sulfate solution obtained from SO 2 reduction or high-temperature high-acid leaching of a zinc leaching residue in a wet zinc smelting, the arsenic contained is overwhelmingly overwhelming. It usually contains a large amount of iron, and it was not possible to directly separate and fix arsenic using this method.

【0009】上記(2)の方法は、酸性溶液中に存在す
る砒素と共存する銅イオンを還元によって砒化銅として
沈殿除去するものであるが、本反応で得られる最終沈殿
物の砒化銅は内部に多量の銅は勿論、インジウムやガリ
ウム等の有価金属も同時に沈殿させてしまう。
In the above method (2), copper ions coexisting with arsenic present in the acidic solution are precipitated and removed as copper arsenide by reduction. Not only a large amount of copper but also valuable metals such as indium and gallium are simultaneously precipitated.

【0010】上記(3)の方法もまた、上記(2)と同
様である。この方法の場合、最終殿物の廃棄に際して特
公昭56−69627号公報記載の砒素の溶出を防止す
る技術が提案されているが、有価金属損失の問題は解消
されていない。
The method (3) is also the same as the method (2). In the case of this method, a technique for preventing arsenic elution described in Japanese Patent Publication No. 56-69627 upon disposal of the final product has been proposed, but the problem of valuable metal loss has not been solved.

【0011】近年、いわゆる環境問題への関心の高まり
から、上記のような技術の提案がなされているが、脱砒
素及び砒素の固定技術が実操業に取り入れられた例は知
られていない。上記の各プロセスにはそれぞれ各所定条
件下では優れた技術であるが、それらを工業的に実施す
ることは、初期条件の相違あるいは経済的な問題から極
めて困難である。
In recent years, there has been a proposal of the above-mentioned technology due to increasing interest in so-called environmental problems. However, no example has been known in which the technology for removing arsenic and fixing arsenic has been incorporated into actual operation. Although each of the above processes is an excellent technique under each predetermined condition, it is extremely difficult to implement them industrially due to differences in initial conditions or economic problems.

【0012】[0012]

【発明が解決しようとする課題】本発明は、上記のよう
な従来技術に鑑みてなされたものであり、硫酸鉄溶液,
例えば特に湿式亜鉛製錬の亜鉛浸出残渣のSO還元あ
るいは高温高酸浸出から得られる硫酸鉄溶液中に存在す
る砒素をインジウム,ガリウム等の有価金属を損失する
ことなく系内から除去すると共に濃縮し、更には鉄との
安定な結晶性化合物として固定する方法を確立し、実際
の湿式亜鉛製錬プロセスへ適応させることができる技術
を提案するものである。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned prior art, and has been developed by using iron sulfate solution,
For example, arsenic present in an iron sulfate solution obtained from SO 2 reduction or high-temperature high-acid leaching of zinc leaching residue in wet zinc smelting is removed from the system without losing valuable metals such as indium and gallium, and concentrated. Further, a method of fixing the compound as a stable crystalline compound with iron has been established, and a technique that can be adapted to an actual wet zinc smelting process is proposed.

【0013】[0013]

【課題を解決するための手段】第1の発明は、硫酸鉄溶
液中に存在する砒素を鉄との安定な結晶性でかつ不溶出
性の鉄・砒素化合物として除去し、固定することを特徴
とする硫酸鉄溶液中に存在する砒素の除去及び固定方法
である。
The first invention is characterized in that arsenic present in an iron sulfate solution is removed as a stable crystalline and non-elutable iron / arsenic compound with iron and fixed. And removing and fixing arsenic present in the iron sulfate solution.

【0014】第2の発明は、砒素含有硫酸鉄溶液に脱砒
素剤を添加し砒素を除去する第1工程と、第1工程で得
られた砒素濃縮パルプのFe/As比,温度及び酸素分
圧を所定条件に調整することにより結晶性の安定な鉄・
砒素化合物として砒素を固定する第2の工程と、からな
ることを特徴とする硫酸鉄溶液中に存在する砒素の除去
及び固定方法を提供するものである。
According to a second aspect of the present invention, there is provided a first step of removing arsenic by adding a dearsenic agent to an arsenic-containing iron sulfate solution, and an Fe / As ratio, a temperature and an oxygen content of the arsenic-enriched pulp obtained in the first step. By adjusting the pressure to a predetermined condition, it is possible to
And a second step of fixing arsenic as an arsenic compound. A method for removing and fixing arsenic present in an iron sulfate solution, comprising the steps of:

【0015】上記発明において、脱砒素剤は亜鉛末,鉄
粉等の金属粉、あるいは水硫化ソーダ,硫化水素等の硫
化剤であり、第1工程での金属粉を添加し脱砒素反応時
の液温度が40〜100℃で、酸化還元電位が−150
mVに調整することが好ましく、硫化剤の場合は液の酸
化還元電位が150mV程度であることが好ましいので
ある。
In the above invention, the arsenic removing agent is a metal powder such as zinc dust and iron powder, or a sulfide agent such as sodium hydrogen sulfide and hydrogen sulfide. When the solution temperature is 40 to 100 ° C and the oxidation-reduction potential is -150
It is preferably adjusted to mV, and in the case of a sulfurizing agent, the oxidation-reduction potential of the liquid is preferably about 150 mV.

【0016】上記発明において、必要に応じて使用する
銅源は砒素を固定する第2工程から得られる溶液中に浸
出された銅を用いることが好ましく、第2工程でのFe
/As比が1〜3又は10以上であり、使用する鉄源は
湿式亜鉛製錬の亜鉛浸出残渣のSO還元浸出から得ら
れる硫酸鉄溶液が好ましいのである。
In the above invention, it is preferable to use a copper source leached in a solution obtained from the second step of fixing arsenic as a copper source used as necessary.
The / As ratio is 1 to 3 or 10 or more, and the iron source used is preferably an iron sulfate solution obtained from SO 2 reduction leaching of a zinc leaching residue in wet zinc smelting.

【0017】上記発明における第2工程での反応温度は
150〜200℃、酸素分圧は酸素を加え全圧で1.8
〜2.0MPa(メガパスカル)が好ましく、上記硫酸
鉄溶液は湿式亜鉛製錬の亜鉛浸出残渣のSO還元浸出
から得られる砒素を含む溶液であることが好ましいので
ある。
The reaction temperature in the second step in the above invention is 150 to 200 ° C., and the oxygen partial pressure is 1.8 in total oxygen added pressure.
It is preferable that the iron sulfate solution is a solution containing arsenic obtained from SO 2 reduction leaching of a zinc leaching residue in wet zinc smelting.

【0018】[0018]

【作用】以下、本発明を更に詳細に説明する。本発明は
次の2工程から構成され、図1は本発明に係る基本的な
フローを示す概念図、図2は本発明に係る脱砒試薬とし
て金属粉末還元剤を使用した場合の概念図、図3は本発
明をSO還元あるいは高温高酸浸出及びヘマタイト法
による亜鉛浸出残渣処理法に応用した場合のフロー図で
ある。
Hereinafter, the present invention will be described in more detail. The present invention is composed of the following two steps, FIG. 1 is a conceptual diagram showing a basic flow according to the present invention, FIG. 2 is a conceptual diagram when a metal powder reducing agent is used as a dehydration reagent according to the present invention, FIG. 3 is a flow chart in the case where the present invention is applied to a zinc leaching residue treatment method by SO 2 reduction or high temperature high acid leaching and hematite method.

【0019】第1工程:砒素除去及び濃縮工程 本工程には2つの方式があり、いずれの方式を用いても
差し支えない。生成残渣は2法とも沈降濾過性に優れて
いるため、シックナー等で容易に濃縮分離が可能であ
る。
First step: Arsenic removal and concentration step There are two methods in this step, and either method can be used. Since the produced residue has excellent sedimentation filtration properties in both methods, it can be easily concentrated and separated using a thickener or the like.

【0020】(A)脱砒素のために、還元剤すなわち亜
鉛末や鉄粉等の金属粉末を使用する。脱砒素のみが目的
の場合には特に必要ないが、この工程において、インジ
ウム,ガリウム等の有価金属類を沈殿させたくない場合
には、砒化銅の生成に必要な硫酸銅がモル比(銅/砒
素)で2以上、好ましくは3以上存在していた方がよ
い。
(A) To remove arsenic, a reducing agent, that is, a metal powder such as zinc powder or iron powder is used. It is not particularly necessary when only dearsenic is intended, but in this step, if it is not desired to precipitate valuable metals such as indium and gallium, the molar ratio of copper sulfate required for the production of copper arsenide (copper / It is better that two or more, preferably three or more, of arsenic) are present.

【0021】砒素は基本的には鉄と砒化鉄及び/又は単
体砒素の形で沈殿し、銅存在下では砒化銅として優先的
に沈殿する。反応のpHは、還元剤の使用量の増大をい
とわなければ、pH3以下のいかなる低pHでもよく、
また温度は常温でも反応は進行するが、40℃以下では
反応速度が極めて遅くなるので、好ましくは40〜10
0℃である。
Arsenic basically precipitates in the form of iron and iron arsenide and / or simple arsenic, and preferentially precipitates as copper arsenide in the presence of copper. The pH of the reaction may be any low pH of pH 3 or less, unless the use of the reducing agent is increased.
Although the reaction proceeds at room temperature, the reaction rate is extremely slow at 40 ° C. or lower.
0 ° C.

【0022】反応は酸化還元電位を調整しながら進行さ
せる方がよく、飽和塩化銀電極で−150mV以下、好
ましくは−200〜−210mVがよい。
It is preferred that the reaction proceed while adjusting the oxidation-reduction potential. The reaction is carried out at a saturation silver chloride electrode at -150 mV or less, preferably -200 to -210 mV.

【0023】(B)砒素の濃縮には金属粉還元剤の代わ
りに硫化水素ガスのような硫化物を用いてもよい。この
とき、砒素は硫化砒素の形で沈殿する。また、硫化剤使
用の際は、飽和塩化銀電極で150mV程度の電位で反
応を進行させるのがよい。
(B) For arsenic concentration, a sulfide such as hydrogen sulfide gas may be used instead of the metal powder reducing agent. At this time, arsenic precipitates in the form of arsenic sulfide. When a sulphide is used, the reaction is preferably allowed to proceed at a potential of about 150 mV with a saturated silver chloride electrode.

【0024】第2工程:砒素固定及び銅浸出工程 第2工程は、第1工程の2法に対して共通である。すな
わち、鉄源として2価あるいは3価の鉄を加え、鉄と砒
素とのモル比(以下、Fe/Asあるいは砒鉄比とい
う)が1以上となるように混合する。しかし、鉄と砒素
の化合物は3<Fe/As<10の領域では沈殿形成の
速度が遅くなるので、充分な砒素沈殿率を得るために
は、好ましくは1<Fe/As<3あるいはFe/As
>10となるように混合する。
Second Step: Arsenic Fixation and Copper Leaching Step The second step is common to the two methods of the first step. That is, divalent or trivalent iron is added as an iron source and mixed so that the molar ratio of iron to arsenic (hereinafter, referred to as Fe / As or arsenic ratio) becomes 1 or more. However, the compound of iron and arsenic slows down the formation of precipitates in the region of 3 <Fe / As <10. Therefore, in order to obtain a sufficient arsenic precipitation ratio, it is preferable that 1 <Fe / As <3 or Fe / As. As
Mix so that> 10.

【0025】さらに、温度を150〜200℃程度、好
ましくは200℃まで上げ、酸素を加え、全圧が概ね
1.8〜2.0MPa(メガパスカル)となるように調
整する。酸素の供給は鉄及び砒素の酸化に用いるもの
で、両者がFe(III)かつAs(V)のときには必
要がない。この反応によって、砒素は鉄と結晶性の安定
な化合物を作り、容易に濾過分離が可能となる。
Further, the temperature is raised to about 150 to 200 ° C., preferably to 200 ° C., oxygen is added, and the total pressure is adjusted to be approximately 1.8 to 2.0 MPa (megapascal). The supply of oxygen is used for oxidizing iron and arsenic, and is not necessary when both are Fe (III) and As (V). By this reaction, arsenic forms a stable crystalline compound with iron, which can be easily separated by filtration.

【0026】同時に、亜鉛や銅等の砒素あるいは鉄以外
の元素は液中に浸出される。また、例えば特に湿式亜鉛
製錬の亜鉛浸出残渣のSO還元あるいは高温高酸浸出
から得られる硫酸鉄溶液中のように、連続的に脱砒素の
ための銅源を供給することが容易な場合には、この砒素
固定後の液から銅を回収することは容易であるし、回収
を行わずに脱砒素工程の銅源として繰り返し使用しても
よい。
At the same time, elements other than arsenic and iron, such as zinc and copper, are leached into the liquid. Also, when it is easy to continuously supply a copper source for arsenic removal, for example, in an iron sulfate solution obtained from SO 2 reduction or high-temperature high-acid leaching of zinc leaching residue particularly in wet zinc smelting. In this case, it is easy to recover copper from the liquid after the arsenic fixation, and the copper may be repeatedly used as a copper source in the arsenic removal step without performing recovery.

【0027】銅源を繰り返し使用する場合のフローは、
図2(金属粉末還元剤使用の概念図)に明示している。
次に、本発明の実施の形態を実施例と図面により説明す
る。
The flow when the copper source is used repeatedly is as follows:
This is clearly shown in FIG. 2 (conceptual diagram of using a metal powder reducing agent).
Next, embodiments of the present invention will be described with reference to examples and drawings.

【0028】[0028]

【発明の実施の形態】実施例1 本実施例は、脱砒素試薬として亜鉛粉末を用いた実施例
である。特に液中の銅濃度の調整は行っておらず、本発
明の基本的な流れの実施例である。砒素を含む硫酸鉄溶
液(湿式亜鉛残渣のSO還元浸出とヘタマイト法によ
る鉄処理の工程内における1段中和後液)を定量ポンプ
でオーバーフロー管付きの2lガラスビーカーに連続給
液し、攪拌しながら溶液の酸化還元電位が飽和塩化銀電
極で−210mVに一定になるように亜鉛粉末を添加し
て、連続的に脱砒試験を行った。また、液温度は60℃
で、pHは2.7の条件で試験を行った。本試験の条件
では、溶液中の銅と砒素とのモル比は1.84で、砒素
を砒化銅として沈殿させるには銅量は充分ではない条件
であった。試験は、液のビーカー内滞留時間が1時間に
なるように給液量を調整し、液が最終ビーカーからオー
バーフローし始めてから2時間後にサンプリングした。
分析はオーバーフローパルプを瀘別分離して、濾液に対
して行った。試験結果を表1に示す。溶液からの充分な
砒素除去がなされた。一方で、インジウムの沈殿率が高
く、こうしたレアメタルの回収を行う工程への適応は問
題となる可能性がある。
Embodiment 1 This embodiment is an embodiment using zinc powder as a dearsenic reagent. In particular, the adjustment of the copper concentration in the liquid was not performed, and this is an example of the basic flow of the present invention. An arsenic-containing iron sulfate solution (a solution after the one-stage neutralization in the process of iron treatment by the SO 2 reduction leaching of the wet zinc residue and the hetamite method) is continuously supplied to a 2 liter glass beaker with an overflow tube by a quantitative pump and stirred. A zinc powder was added while the oxidation-reduction potential of the solution was kept constant at −210 mV with a saturated silver chloride electrode, and a dehydration test was continuously performed. The liquid temperature is 60 ° C
The test was conducted under the condition of pH 2.7. Under the conditions of this test, the molar ratio of copper to arsenic in the solution was 1.84, and the amount of copper was not sufficient to precipitate arsenic as copper arsenide. In the test, the liquid supply amount was adjusted such that the residence time of the liquid in the beaker was 1 hour, and sampling was performed 2 hours after the liquid started to overflow from the final beaker.
The analysis was performed on the filtrate by separating the overflow pulp by filtration. Table 1 shows the test results. Sufficient arsenic removal from the solution was achieved. On the other hand, the precipitation rate of indium is high, and adaptation to the step of recovering such rare metals may be problematic.

【0029】[0029]

【表1】 [Table 1]

【0030】上記反応を繰り返し行うことで得た脱砒素
殿物パルプを適量回収した後に、鉄源として硫酸鉄溶液
(湿式亜鉛残渣のSO還元浸出とヘタマイト法による
鉄処理の工程内における1段中和後液)を加え、砒鉄比
が概ね4となるように充分に混合した。混合後のパルプ
を定量ポンプで20lオートクレーブに連続給液し、攪
拌しながら3Kg/cmで加圧し200℃まで加熱
し、連続的に脱砒素試験を行った。オートクレーブの滞
留時間を1.5時間とし、連続排出を開始してから3時
間後に排出液をサンプリングし、反応後のパルプを濾別
分離し濾液の分析を行った。その結果を表2に示す。鉄
及び砒素を反応によって充分に沈殿させ、同時に有価金
属である銅を液中に浸出させることができた。
After an appropriate amount of arsenic-deposited pulp obtained by repeating the above-mentioned reaction is collected, an iron sulfate solution (one step in the process of iron leaching of a wet zinc residue by SO 2 reduction and hetamite method) is used as an iron source. (Neutralized solution) was added, and mixed sufficiently so that the arsenic ratio became approximately 4. The mixed pulp was continuously supplied to a 20-liter autoclave with a metering pump, pressurized at 3 kg / cm 2 with stirring, heated to 200 ° C., and continuously subjected to an arsenic test. The residence time of the autoclave was 1.5 hours, and after 3 hours from the start of continuous discharge, the discharged liquid was sampled, the pulp after the reaction was separated by filtration, and the filtrate was analyzed. Table 2 shows the results. Iron and arsenic were sufficiently precipitated by the reaction, and at the same time, copper, which was a valuable metal, could be leached into the liquid.

【0031】[0031]

【表2】 [Table 2]

【0032】実施例2 本実施例は、脱砒素試薬として亜鉛粉末を用い、かつ充
分な量の銅を存在させた場合の実施例である。砒素を含
む硫酸鉄溶液(湿式亜鉛残渣のSO還元浸出とヘタマ
イト法による鉄処理の工程内における1段中和後液)を
当工程内のシックナーオーバーフローからタンクに定量
的に流し込み、タンク内の液滞留時間が1時間となるよ
うに調整した。また、銅源として硫酸銅溶液を反応元液
銅濃度が概ね3.0g/lとなるように定量ポンプを用
いて連続的に添加した。これは、SO還元あるいは高
温高酸浸出においては、単体硫黄あるいは亜鉛精鉱の添
加を行わないことで液中に意図的に銅を残すことがで
き、この際の銅濃度は2.5〜3.0g/l程度になる
ことが確認されているからである。溶液は攪拌しながら
酸化還元電位が飽和塩化銀電極で−210mVに一定に
なるように亜鉛粉末を添加して、連続的に脱砒試験を行
った。
Example 2 This example is an example in which zinc powder is used as a dearsenic reagent and a sufficient amount of copper is present. An iron sulfate solution containing arsenic (a solution after the one-stage neutralization in the process of iron leaching by the SO 2 reduction leaching of the wet zinc residue and the hetamite method) is quantitatively poured into the tank from the thickener overflow in the process, and The liquid residence time was adjusted to be one hour. In addition, a copper sulfate solution was continuously added as a copper source using a metering pump so that the concentration of copper in the reaction solution was approximately 3.0 g / l. This is because in the SO 2 reduction or high temperature and high acid leach, intentionally can leave copper in the liquid by not added elemental sulfur or zinc concentrate, the copper concentration in this case is 2.5 This is because it has been confirmed to be about 3.0 g / l. While stirring the solution, zinc powder was added so that the oxidation-reduction potential was kept constant at -210 mV with a saturated silver chloride electrode, and a dehydration test was continuously performed.

【0033】試験源液は添加時点で70℃あり、反応を
通じて加温の必要はなかった。本反応ではpH2.0で
ほぼ一定に保たれ、特に調整は必要なかった。また、本
試験の場合元液の銅と砒素の比は3.6であり、砒素を
砒化銅として沈殿させるのに充分な銅量が確認されてい
た。試験結果を表3に示す。溶液からの充分な砒素除去
がなされた。また、同時にインジウムの沈殿率を充分に
抑えることができた。これは、液中に砒化銅生成のため
の充分な銅が確保されているためであり、こうした場合
は亜鉛末近傍における局部的な電位低下によるインジウ
ムの沈殿物の生成を防ぐことができるからである。従っ
て、インジウム等のレアメタル回収を伴う工程において
は、本実施例のように元液中に充分な銅が存在していた
方がよい。
The test source solution was at 70 ° C. at the time of addition and did not require heating during the reaction. In this reaction, the pH was kept almost constant at 2.0, and no particular adjustment was required. In this test, the ratio of copper to arsenic in the original solution was 3.6, and a sufficient amount of copper to precipitate arsenic as copper arsenide was confirmed. Table 3 shows the test results. Sufficient arsenic removal from the solution was achieved. At the same time, the indium precipitation rate could be sufficiently suppressed. This is because sufficient copper for copper arsenide generation is ensured in the liquid, and in such a case, it is possible to prevent the formation of indium precipitate due to a local potential drop near the zinc dust. is there. Therefore, in a process involving recovery of rare metals such as indium, it is better that sufficient copper is present in the original solution as in this embodiment.

【0034】[0034]

【表3】 [Table 3]

【0035】上記脱砒素殿物に硫酸鉄溶液(湿式亜鉛残
渣のSO還元浸出とヘタマイト法による鉄処理の工程
内おける2段中和後液)を砒鉄比が概ね1.3となるよ
うに加え、混合後のパルプ3.5lを5lオートクレー
ブに送入し、攪拌しながら200℃まで加熱後、酸素分
圧5Kg/cmで一定となるように酸素を加えながら
3時間反応させた。反応後のパルプは濾別分離して濾液
の分析を行った。その結果を表4に示す。鉄及び砒素を
本反応によって充分に沈殿させ、同時に有価金属である
銅を液中に浸出させることができた。また、反応後の液
は高濃度の硫酸銅溶液であり、この溶液を再び砒素除去
工程において銅源として用いても経済的に充分成り立つ
ことが分る。
An iron sulfate solution (a solution after the two-stage neutralization in the process of iron leaching by the SO 2 reduction leaching of the wet zinc residue and the hetamite method) was added to the above dearsenic residue so that the arsenic ratio became approximately 1.3. Then, 3.5 l of the mixed pulp was fed into a 5 l autoclave, heated to 200 ° C. while stirring, and reacted for 3 hours while adding oxygen so that the oxygen partial pressure was kept constant at 5 kg / cm 2 . The pulp after the reaction was separated by filtration and the filtrate was analyzed. Table 4 shows the results. Iron and arsenic were sufficiently precipitated by this reaction, and at the same time, copper, a valuable metal, could be leached into the liquid. Further, the solution after the reaction is a high-concentration copper sulfate solution, and it can be seen that this solution can be economically satisfied even if this solution is used again as a copper source in the arsenic removal step.

【0036】[0036]

【表4】 [Table 4]

【0037】実施例3 本実施例は、脱砒素試薬として硫化剤を用いることもで
きることを示した実施例である。砒素を含む硫酸鉄溶液
(湿式亜鉛残渣のSO還元浸出とヘタマイト法による
鉄処理の工程内における1段中和後液)1lをガラスビ
ーカーに採取し、攪拌しながら溶液の酸化還元電位が飽
和塩化銀電極で150mVに一定になるように硫化水素
ガスをガラス製ボールフィルターで吹き込み、脱砒試験
を行った。上記ビーカーで1時間反応後にサンプリング
した。分析は反応後パルプを濾別分離して、濾液に対し
て行った。液温度は60℃で、pHは2.7の条件で試
験を行った。試験結果を表5に示す。
Example 3 This example is an example showing that a sulfurizing agent can be used as a dearsenic reagent. One liter of an iron sulfate solution containing arsenic (a solution after one-stage neutralization in a process of iron leaching of a wet zinc residue by SO 2 reduction and a hetamite method) was collected in a glass beaker, and the oxidation-reduction potential of the solution was saturated with stirring. Hydrogen sulfide gas was blown through a glass ball filter so as to be constant at 150 mV with a silver chloride electrode, and a dehydration test was performed. After the reaction in the above-mentioned beaker for 1 hour, sampling was performed. The analysis was performed on the filtrate by separating the pulp by filtration after the reaction. The test was performed under the conditions of a liquid temperature of 60 ° C. and a pH of 2.7. Table 5 shows the test results.

【0038】[0038]

【表5】 [Table 5]

【0039】上記試験を繰り返し行い、得られた適量の
脱砒素殿物に硫酸鉄溶液(湿式亜鉛残渣のSO還元浸
出とヘタマイト法による鉄処理の工程内における1段中
和後液)を加え、砒鉄比が概ね4.5となるように調整
混合し、混合後のパルプ3.5リットルを5lオートク
レーブに送入し、攪拌しながら200℃まで加熱後、酸
素分圧9Kg/cmで一定となるように酸素を加えな
がら1.5時間反応させた。反応後のパルプは濾別分離
し濾液の分析を行った。その結果を表6に示す。鉄及び
砒素を本反応によって充分に沈殿させ、同時に有価金属
である銅を液中に浸出させることができた。本例のよう
に、脱砒素(砒素濃縮)試薬として硫化剤を用いた場合
でも、本発明は適用できる。
The above test was repeated, and an iron sulfate solution (a solution after one-step neutralization in the process of iron leaching of a wet zinc residue by SO 2 reduction and hetamite method) was added to an appropriate amount of the dearsenic residue obtained. The mixture was adjusted and mixed so that the arsenic ratio was approximately 4.5, and 3.5 liters of the mixed pulp were fed into a 5-liter autoclave, heated to 200 ° C. with stirring, and then subjected to an oxygen partial pressure of 9 kg / cm 2 . The reaction was carried out for 1.5 hours while adding oxygen so as to be constant. The pulp after the reaction was separated by filtration and the filtrate was analyzed. Table 6 shows the results. Iron and arsenic were sufficiently precipitated by this reaction, and at the same time, copper, a valuable metal, could be leached into the liquid. As in this example, the present invention can be applied even when a sulfide agent is used as a dearsenic (arsenic enrichment) reagent.

【0040】[0040]

【表6】 [Table 6]

【0041】実施例4 実施例1〜3で得られた砒素と鉄を含有する不溶性結晶
固体の環境安全性を確保するために、国で定めている埋
め立て処分に関わる判定基準に準じて溶出試験を行っ
た。砒素と鉄を含有する不溶性の結晶固体と純水とを重
量体積比10%の割合で混合し、その混合液が500m
l以上となるようにしたものを試料液とし、常温(概ね
20℃)常圧(概ね1気圧)で、予め振とう機を用いて
6時間振とうした。試験後、分析はICP−MASS
(誘導結合ブラズマ質量分析装置)で行った。その結
果、砒素溶出値Tr〜0.07mg/1で規格値の0.
15mg/1を満足した。
Example 4 In order to ensure the environmental safety of the insoluble crystalline solids containing arsenic and iron obtained in Examples 1 to 3, a dissolution test was conducted in accordance with the criteria for landfill disposal established in Japan. Was done. An insoluble crystalline solid containing arsenic and iron and pure water are mixed at a weight / volume ratio of 10%.
1 or more was used as a sample solution, which was shaken at room temperature (about 20 ° C.) and normal pressure (about 1 atm) for 6 hours using a shaker in advance. After the test, the analysis was ICP-MASS
(Inductively coupled plasma mass spectrometer). As a result, the arsenic elution value Tr of 0.07 mg / l and the standard value of 0.
15 mg / 1 was satisfied.

【0042】[0042]

【発明の効果】数ある砒素除去及び固定方法の中で、こ
の分野に応用される可能性をもち、特にコスト面で割り
に合う方法が報告あるいは実施された例はない。しかし
ながら、湿式亜鉛製錬工程における亜鉛浸出残渣処理液
中のように、そのままの脱砒素及び固定が困難な溶液に
対し、本発明により開発された脱砒素技術を砒素の濃縮
技術としても位置付ければ、コスト面でも折り合いのつ
くプロセスとして確立できる。例えば、湿式亜鉛残渣の
SO還元あるいは高温高酸浸出とヘタマイト法による
鉄処理の工程内においても、図3に示すように簡単にプ
ロセスの中に組み込むことが出来る。
Among the many arsenic removal and fixation methods, there is no report of a method which has a possibility of being applied to this field and which is particularly cost-effective. However, for a solution that is difficult to remove and fix as arsenic as it is in a zinc leaching residue treatment solution in a wet zinc smelting process, if the dearsenic technology developed according to the present invention is also positioned as an arsenic enrichment technology, In terms of cost, the process can be established. For example, as shown in FIG. 3, the process can be easily incorporated into the process as shown in FIG. 3 even in the process of SO 2 reduction or high-temperature high-acid leaching of the wet zinc residue and the iron treatment by the hetamite method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る処理工程図の基本的概念図であ
る。
FIG. 1 is a basic conceptual diagram of a processing step diagram according to the present invention.

【図2】本発明に係る処理工程図において脱砒素に際し
て金属粉末還元剤を用いた場合の概念図である。
FIG. 2 is a conceptual diagram in a case where a metal powder reducing agent is used for dearsenic in the treatment process chart according to the present invention.

【図3】本発明法をヘマタイト法に応用した実施例を示
すフロー図である。
FIG. 3 is a flowchart showing an example in which the method of the present invention is applied to a hematite method.

フロントページの続き (72)発明者 猿田 薫 東京都千代田区丸の内1丁目8番2号 秋 田製錬株式会社内 (72)発明者 田口 良一 東京都千代田区丸の内1丁目8番2号 秋 田製錬株式会社内Continued on the front page (72) Inventor Kaoru Saruta 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Akita Smelting & Refining Co., Ltd. (72) Ryoichi Taguchi 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Akita-made Refining Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 硫酸鉄溶液中に存在する砒素を鉄との安
定な結晶性でかつ不溶出性の鉄・砒素化合物として除去
し、固定することを特徴とする硫酸鉄溶液中に存在する
砒素の除去及び固定方法。
1. An arsenic present in an iron sulfate solution, wherein arsenic present in the iron sulfate solution is removed as a stable crystalline and non-elutable iron-arsenic compound with iron and fixed. Removal and fixing method.
【請求項2】 砒素含有硫酸鉄溶液に脱砒素剤を添加し
砒素を除去及び濃縮する第1工程と、第1工程で得られ
た砒素濃縮パルプのFe/As比、温度及び酸素分圧を
所定条件に調整することにより結晶性の安定な鉄・砒素
化合物として砒素を固定する第2工程とからなることを
特徴とする硫酸鉄溶液中に存在する砒素の除去及び固定
方法。
2. A first step in which an arsenic-removing agent is added to an arsenic-containing iron sulfate solution to remove and concentrate arsenic, and the Fe / As ratio, temperature and oxygen partial pressure of the arsenic-enriched pulp obtained in the first step are determined. A method for fixing arsenic as an iron-arsenic compound having stable crystallinity by adjusting to predetermined conditions, comprising the steps of: removing arsenic present in an iron sulfate solution;
【請求項3】 前記脱砒素剤が、亜鉛末,鉄粉等の金属
粉あるいは水硫化ソーダ,硫化水素等の硫化剤である請
求項2記載の硫酸鉄溶液中に存在する砒素の除去及び固
定方法。
3. The removal and fixation of arsenic present in an iron sulfate solution according to claim 2, wherein the arsenic removing agent is a metal powder such as zinc dust or iron powder or a sulfide agent such as sodium hydrogen sulfide or hydrogen sulfide. Method.
【請求項4】 前記第1工程での金属粉を添加し脱砒素
反応時の液温度を40〜100℃に、酸化還元電位を飽
和塩化銀電極で−150mV以下に調整する請求項2又
は3記載の硫酸鉄溶液中に存在する砒素の除去及び固定
方法。
4. The method according to claim 2, wherein the metal powder in the first step is added to adjust the liquid temperature during the dearsenic reaction to 40 to 100 ° C. and the oxidation-reduction potential to -150 mV or less with a saturated silver chloride electrode. A method for removing and fixing arsenic present in an iron sulfate solution as described above.
【請求項5】 前記第1工程での硫化剤を添加し脱砒素
反応時の酸化還元電位が飽和塩化銀電極で150mV程
度である請求項2又は3記載の硫酸鉄溶液中に存在する
砒素の除去及び固定方法。
5. The method according to claim 2, wherein a redox potential at the time of dearsenic reaction by adding a sulfurizing agent in the first step is about 150 mV at a saturated silver chloride electrode. Removal and fixing method.
【請求項6】 前記第2工程での砒素濃縮パルプのFe
/As比が1〜3又は10以上であり、Fe/As比調
整用の鉄源が湿式亜鉛製錬の亜鉛浸出残渣のSO還元
浸出から得られる硫酸鉄溶液である請求項2,3又は4
記載の硫酸鉄溶液中に存在する砒素の除去及び固定方
法。
6. The arsenic-enriched pulp in the second step, Fe
The iron source for adjusting the Fe / As ratio is an iron sulfate solution obtained from SO 2 reduction leaching of a zinc leaching residue of wet zinc smelting, wherein the / As ratio is 1 to 3 or 10 or more. 4
A method for removing and fixing arsenic present in an iron sulfate solution as described above.
【請求項7】 前記第2工程での反応温度が150〜2
00℃であり、酸素分圧が酸素を加え全圧で1.8〜
2.0MPaである請求項2又は6記載の硫酸鉄溶液中
に存在する砒素の除去及び固定方法。
7. The reaction temperature in the second step is 150 to 2
00 ° C, and the oxygen partial pressure is 1.8 to
The method for removing and fixing arsenic present in an iron sulfate solution according to claim 2 or 6, wherein the pressure is 2.0 MPa.
【請求項8】 前記第2工程での砒素固定反応は、オー
トクレーブ内で行う請求項2又は7記載の硫酸鉄溶液中
に存在する砒素の除去及び固定方法。
8. The method for removing and fixing arsenic present in an iron sulfate solution according to claim 2, wherein the arsenic fixing reaction in the second step is performed in an autoclave.
【請求項9】 前記硫酸鉄溶液が湿式亜鉛製錬の亜鉛浸
出残渣のSO還元あるいは高温高酸浸出から得られる
砒素を含む溶液である請求項1〜8記載の硫酸鉄溶液中
に存在する砒素の除去及び固定方法。
9. The iron sulfate solution according to claim 1, wherein the iron sulfate solution is a solution containing arsenic obtained from SO 2 reduction or high-temperature high-acid leaching of a zinc leaching residue in wet zinc smelting. How to remove and fix arsenic.
【請求項10】 前記第1工程で必要に応じて使用する
銅源を、湿式亜鉛製錬における亜鉛浸出残渣のSO
元あるいは高温高酸浸出時に脱銅を行わないことで確保
できる請求項1〜9記載の硫酸鉄溶液中に存在する砒素
の除去及び固定方法。
10. The copper source used as required in the first step can be secured by not performing SO 2 reduction of a zinc leaching residue in wet zinc smelting or decoppering during high-temperature high-acid leaching. 10. The method for removing and fixing arsenic present in an iron sulfate solution according to items 9 to 9.
【請求項11】 前記第1工程で必要に応じて使用する
銅源は砒素を固定する第2工程から得られる溶液中に浸
出された銅を用いる請求項1〜10記載の硫酸鉄溶液中
に存在する砒素の除去及び固定方法。
11. The iron sulfate solution according to claim 1, wherein the copper source used as needed in the first step uses copper leached in the solution obtained from the second step of fixing arsenic. How to remove and fix arsenic present.
JP12521198A 1998-03-31 1998-03-31 Method for removing and fixing arsenic present in iron sulfate solution Expired - Fee Related JP4126415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12521198A JP4126415B2 (en) 1998-03-31 1998-03-31 Method for removing and fixing arsenic present in iron sulfate solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12521198A JP4126415B2 (en) 1998-03-31 1998-03-31 Method for removing and fixing arsenic present in iron sulfate solution

Publications (2)

Publication Number Publication Date
JPH11277075A true JPH11277075A (en) 1999-10-12
JP4126415B2 JP4126415B2 (en) 2008-07-30

Family

ID=14904638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12521198A Expired - Fee Related JP4126415B2 (en) 1998-03-31 1998-03-31 Method for removing and fixing arsenic present in iron sulfate solution

Country Status (1)

Country Link
JP (1) JP4126415B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005040656A (en) * 2003-07-23 2005-02-17 Maezawa Ind Inc Treatment method for arsenic-containing mineral acid
JP2005161123A (en) * 2003-11-28 2005-06-23 Mitsui Mining & Smelting Co Ltd Method for removing arsenic from soot
CN1321200C (en) * 2005-12-23 2007-06-13 朱永文 Method for separating copper, arsenic and zinc from copper-smelting high-arsenic flue dust sulphuric acid leach liquor
CN1321910C (en) * 2004-10-25 2007-06-20 郭胜 Method for treating copper-containing waste acid water
JP2007260660A (en) * 2006-03-02 2007-10-11 Mitsui Mining & Smelting Co Ltd Arsenic removing method and apparatus for arsenic-containing substance, and reaction vessel therefor
WO2007125627A1 (en) 2006-04-28 2007-11-08 Dowa Metals & Mining Co., Ltd. Method of treating arsenic-containing solution
WO2008013124A1 (en) 2006-07-27 2008-01-31 Dowa Metals & Mining Co., Ltd. Iron arsenate powder
JP2008036470A (en) * 2006-08-01 2008-02-21 Dowa Holdings Co Ltd Thallium-containing iron/arsenic compound and its production method, and treatment method of aqueous arsenic/thallium-containing solution
JP2008119690A (en) * 2006-04-28 2008-05-29 Dowa Metals & Mining Co Ltd Method for treating arsenic containing solution
WO2009028636A1 (en) 2007-08-24 2009-03-05 Dowa Metals & Mining Co., Ltd. Ferric arsenate powder
JP2009079237A (en) * 2007-09-25 2009-04-16 Nikko Kinzoku Kk Process for producing scorodite, and process for recycling post-scorodite-synthesis solution
JP2010089976A (en) * 2008-10-06 2010-04-22 Nippon Mining & Metals Co Ltd Method for producing and washing scorodite
JP2010202443A (en) * 2009-03-03 2010-09-16 Dowa Metals & Mining Co Ltd Iron arsenate powder and method for producing the same
CN106621167A (en) * 2016-12-25 2017-05-10 中南林业科技大学 Process and system for electric-field synergy stabilizing treatment of multivalence arsenic-containing waste residue
CN113443690A (en) * 2021-07-05 2021-09-28 上海交通大学 Method for enhancing sulfuration treatment of arsenic-containing wastewater by using sulfur dioxide
CN113912168A (en) * 2021-10-25 2022-01-11 昆明理工大学 Arsenic precipitation agent for removing arsenic from arsenic-containing waste liquid in nonferrous smelting plant
CN115385477A (en) * 2022-08-23 2022-11-25 长春黄金研究院有限公司 Method for removing arsenic in contaminated acid

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567303B2 (en) * 2003-07-23 2010-10-20 前澤工業株式会社 Method for treating arsenic-containing sulfuric acid
JP2005040656A (en) * 2003-07-23 2005-02-17 Maezawa Ind Inc Treatment method for arsenic-containing mineral acid
JP2005161123A (en) * 2003-11-28 2005-06-23 Mitsui Mining & Smelting Co Ltd Method for removing arsenic from soot
CN1321910C (en) * 2004-10-25 2007-06-20 郭胜 Method for treating copper-containing waste acid water
CN1321200C (en) * 2005-12-23 2007-06-13 朱永文 Method for separating copper, arsenic and zinc from copper-smelting high-arsenic flue dust sulphuric acid leach liquor
JP2007260660A (en) * 2006-03-02 2007-10-11 Mitsui Mining & Smelting Co Ltd Arsenic removing method and apparatus for arsenic-containing substance, and reaction vessel therefor
WO2007125627A1 (en) 2006-04-28 2007-11-08 Dowa Metals & Mining Co., Ltd. Method of treating arsenic-containing solution
JP2008119690A (en) * 2006-04-28 2008-05-29 Dowa Metals & Mining Co Ltd Method for treating arsenic containing solution
JP4615561B2 (en) * 2006-04-28 2011-01-19 Dowaメタルマイン株式会社 Arsenic-containing solution processing method
WO2008013124A1 (en) 2006-07-27 2008-01-31 Dowa Metals & Mining Co., Ltd. Iron arsenate powder
JP2008036470A (en) * 2006-08-01 2008-02-21 Dowa Holdings Co Ltd Thallium-containing iron/arsenic compound and its production method, and treatment method of aqueous arsenic/thallium-containing solution
AU2008292349B2 (en) * 2007-08-24 2013-02-21 Dowa Metals & Mining Co., Ltd. Ferric arsenate powder
WO2009028636A1 (en) 2007-08-24 2009-03-05 Dowa Metals & Mining Co., Ltd. Ferric arsenate powder
KR101375033B1 (en) * 2007-08-24 2014-03-14 도와 메탈스 앤드 마이닝 가부시끼가이샤 Ferric arsenate powder
US8075868B2 (en) 2007-08-24 2011-12-13 Dowa Metals & Mining Co., Ltd. Iron arsenate powder
JP2009051689A (en) * 2007-08-24 2009-03-12 Dowa Metals & Mining Co Ltd Iron arsenate powder
JP2009079237A (en) * 2007-09-25 2009-04-16 Nikko Kinzoku Kk Process for producing scorodite, and process for recycling post-scorodite-synthesis solution
US8277633B2 (en) 2007-09-25 2012-10-02 Jx Nippon Mining & Metals Corporation Process for producing scorodite and recycling the post-scorodite-synthesis solution
JP2010089976A (en) * 2008-10-06 2010-04-22 Nippon Mining & Metals Co Ltd Method for producing and washing scorodite
JP2010202443A (en) * 2009-03-03 2010-09-16 Dowa Metals & Mining Co Ltd Iron arsenate powder and method for producing the same
CN106621167A (en) * 2016-12-25 2017-05-10 中南林业科技大学 Process and system for electric-field synergy stabilizing treatment of multivalence arsenic-containing waste residue
CN106621167B (en) * 2016-12-25 2019-04-09 中南林业科技大学 A kind of technique and system of electric field synergistic stabilization processes multivalent state arsenic-containing waste residue
CN113443690A (en) * 2021-07-05 2021-09-28 上海交通大学 Method for enhancing sulfuration treatment of arsenic-containing wastewater by using sulfur dioxide
CN113912168A (en) * 2021-10-25 2022-01-11 昆明理工大学 Arsenic precipitation agent for removing arsenic from arsenic-containing waste liquid in nonferrous smelting plant
CN115385477A (en) * 2022-08-23 2022-11-25 长春黄金研究院有限公司 Method for removing arsenic in contaminated acid

Also Published As

Publication number Publication date
JP4126415B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
KR101021454B1 (en) Method for recovering rare metals in a zinc leaching process
JP4126415B2 (en) Method for removing and fixing arsenic present in iron sulfate solution
JP3756687B2 (en) Method for removing and fixing arsenic from arsenic-containing solutions
US7615199B2 (en) Method for the recovery of valuable metals and arsenic from a solution
AU2007216890B2 (en) Process for treating electrolytically precipitated copper
US7862786B2 (en) Selective precipitation of metal sulfides
JP5645457B2 (en) Method for producing crystalline iron arsenate raw material liquid from smoke ash
JP2003512160A (en) Method for reducing the concentration of dissolved metal and metalloid in aqueous solution
KR20040054821A (en) A method for precipitating iron from a zinc sulphate solution as hematite
FI74046B (en) TILLVARATAGANDE AV ZINK UR ZINK INNEHAOLLANDE SULFIDMATERIAL.
JP3254501B2 (en) Method for removing arsenic from acidic solution containing arsenic and iron
WO1997031861A1 (en) Process for stabilization of arsenic
JP4025841B2 (en) Treatment of wastewater containing arsenic and other heavy metals
JP3052535B2 (en) Treatment of smelting intermediates
JP3627641B2 (en) Method for separating and removing zinc from nickel sulfate solution
EP3395968B1 (en) Method for removing sulfurizing agent
JP3411320B2 (en) Zinc smelting method
JPH09315819A (en) Method for recovering arsenic from sulfide containing arsenic and production of calcium arsenate
JP3955934B2 (en) Wet treatment of zinc leaching residue
JP4439804B2 (en) Cobalt recovery method
JP2004507624A (en) Pressure leaching method for zinc
JP3215066B2 (en) Treatment method for wastewater containing selenium
JPS6345130A (en) Removal of zinc from aqueous solution acidified with sulfuric acid
CN110550786B (en) Waste liquid treatment process
WO1988003912A1 (en) Process for recovering metal values from ferrite wastes

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080425

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees