JPS60103078A - Electroconductive zirconia base sintering material and manufacture - Google Patents

Electroconductive zirconia base sintering material and manufacture

Info

Publication number
JPS60103078A
JPS60103078A JP58211440A JP21144083A JPS60103078A JP S60103078 A JPS60103078 A JP S60103078A JP 58211440 A JP58211440 A JP 58211440A JP 21144083 A JP21144083 A JP 21144083A JP S60103078 A JPS60103078 A JP S60103078A
Authority
JP
Japan
Prior art keywords
sintering
sintered material
based sintered
conductive zirconia
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58211440A
Other languages
Japanese (ja)
Other versions
JPH0351667B2 (en
Inventor
陸人 宮原
満彦 古川
城山 正治
佐々木 豊重
古賀 静樹
高野 泰実
茂樹 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP58211440A priority Critical patent/JPS60103078A/en
Publication of JPS60103078A publication Critical patent/JPS60103078A/en
Publication of JPH0351667B2 publication Critical patent/JPH0351667B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は靭性及び硬度が大で耐食耐摩耗性に優れ、本来
常温域では絶縁材料に属するジルコニアに導電性を付与
することにより多目的に使用し得る導電性ジルコニア基
焼結材料並びtこその製造方法eこ関するものである。
Detailed Description of the Invention The present invention is a conductive zirconia-based sintered material that has high toughness and hardness, has excellent corrosion and wear resistance, and can be used for a variety of purposes by imparting conductivity to zirconia, which is originally an insulating material at room temperature. The arrangement of the binding materials is what concerns the manufacturing method.

近年ジルコニア(以下zr02と示す)系材料は、Y2
O3による部分安定化Zr0z焼結材がg11発されて
以来高強度を要求する構造部材や切削工具等の工具材料
その他に使用が試みられている。
In recent years, zirconia (hereinafter referred to as zr02)-based materials have become known as Y2.
Since the Zr0z sintered material partially stabilized by O3 was released, attempts have been made to use it in structural members that require high strength, tool materials such as cutting tools, and other materials.

しかしながらこれ等の安定化Zr02(部分安に化を含
む以下同じ)は、強度が大である反面硬さが高々HRA
 90程度でありA/−,0,系材料より劣る為切削工
具材として用いた場合耐摩耗性の点でフこ用に供し得な
い場合が多い。又安定化ZrO2は熱伝導率が低く熱膨
張率が大きい9,5徴があり、用途によっては長所とな
る反面、耐熱Blj IN性の点で不充分な特性を有し
ている。次tこ安疋化ZrO,焼結体は白色系材料であ
り装飾部利用材料としての黒色系用途には対応出来ない
欠点があった。
However, these stabilized Zr02 (the same applies hereinafter, including partial weakening) have high strength, but hardness is at most HRA.
It is about 90, which is inferior to A/-, 0, type materials, so when used as a cutting tool material, it often cannot be used for cutting tools due to its wear resistance. Furthermore, stabilized ZrO2 has low thermal conductivity and high coefficient of thermal expansion, which are advantages depending on the application, but have insufficient characteristics in terms of heat resistance Blj IN. The annealed ZrO sintered body is a white material and has the disadvantage that it cannot be used as a material for decorative parts.

更に安定化ZrO□は1III温域ではヒータ材料とし
て用いられているが、低温域では比抵抗値が非常tこ大
であり絶縁材料tこ属する為、自己発熱体として使用出
来ない欠点があると共に、安定化Z r02は他のセラ
ミック材料に比べ研削加工性が劣り、かつ孔あけ加工及
び複雑形状に加工する場合絶縁材料である為加工効率の
良い放電加工法を採用することが出来ず、もっばら超音
波加工法に頼らざるを得ない欠点があった。
Furthermore, stabilized ZrO□ is used as a heater material in the 1III temperature range, but in the low temperature range the specific resistance value is very large and it is less than the insulating material, so it has the disadvantage that it cannot be used as a self-heating element. , Stabilized Z r02 has inferior grindability compared to other ceramic materials, and when drilling holes or processing into complex shapes, it is an insulating material, so it is not possible to use the electrical discharge machining method, which has high machining efficiency. The drawback was that it had to rely on bulk ultrasonic processing.

本発明材料は上述した安定化ZrO2の欠点を解消する
為炭化物成分を配合して導7u性を付与することにより
、靭性及び硬度が大で耐食酊」摩耗性に優れ、かつ耐熱
ひJ撃性をも高めたZ r02基焼結祠料となし、自己
発熱可能なヒーター材料の他各種用途製品に加工する場
合に放電加工法の採用を可能となし、加工コストを大幅
に低減出来る材料を得んとするものであり、以下に本願
発明を構成する特徴tこついて詳述する。
In order to eliminate the drawbacks of stabilized ZrO2 mentioned above, the material of the present invention has high toughness and hardness, excellent corrosion resistance, wear resistance, and heat and shock resistance by adding a carbide component and imparting conductivity. The Zr02-based sintering material has also been improved, making it possible to adopt electrical discharge machining when processing it into self-heating heater materials and various other products, resulting in a material that can significantly reduce processing costs. The features constituting the present invention will be described in detail below.

第1に時計側やブレスレットやタイピン及びカフスボタ
ン或いはペンダントその他の各種装飾部材用材料tこつ
いては長期tこ渡り外観が美麗な光沢面を保持すること
が必要で、その為に耐摩耗性、耐食性及び耐破損性に富
むことが要求され、かつその製品製造渦1!I!におけ
る研削加工性並びに複雑な形状或いは孔あけ加工を一行
なり為の放電加工性を有することが高能率加工面で要求
される。
First, materials for watch sides, bracelets, tie pins, cufflinks, pendants, and other various decorative parts need to maintain a glossy surface with a beautiful appearance for a long period of time. It is required to have high breakage resistance, and the product manufacturing process is 1! I! In terms of high efficiency machining, it is required to have grinding workability in the process and electric discharge machinability for complex shapes or drilling in one step.

更にこれらの各1!I(装飾部材tこ要求される特性と
して、高価な製品が破損しない為に充分なるl1jJ山
撃性なすることが製品の信頼性の点で最も要求されるの
は当然のことであり、その他装り11部4QJが]11
過ぎない事も装身共として用いる場合eこ好ましい特性
として要求される。
Furthermore, each one of these! I (Decorative members) It is natural that the most important characteristic required for product reliability is that it has sufficient impact resistance to prevent damage to expensive products, and other Attire 11 part 4QJ] 11
It is also required as a desirable characteristic that it is not excessively large when used as an ornament.

上記諸特性が要求さiする装飾部材用材料として従来超
硬工具系の材料やサーメット系又はステライト等が用い
られているが、強度的には優れているものの、重量が大
なものが多く、かつ金属成分を含む為にいずれの材料も
金属光沢をイアする材ネIとなっており、黒色系の材料
をfLIることは不可能であった。
Conventionally, carbide tool materials, cermet materials, stellite, etc. have been used as materials for decorative members that require the above characteristics, but although they have excellent strength, many of them are heavy. In addition, since all of the materials contain metal components, they exhibit a metallic luster, and it has been impossible to perform fLI on black materials.

一方美麗な色を有する着色装飾部祠として金r(を含有
しないセラミ、り系材料が種々先受けられるが、この種
の材料は導電性が無い為に複雑な形状或いは孔加工を行
なう場合tこ多大な加工工数を要する他、強度が一般的
に低い為耐破損性に劣る欠点があった。
On the other hand, various ceramics and phosphorus materials that do not contain gold are being used as colored decorative shrines with beautiful colors, but since these types of materials do not have electrical conductivity, they cannot be used when making complex shapes or holes. In addition to requiring a large number of processing steps, it also had the disadvantage of poor breakage resistance due to its generally low strength.

なお強度の強いセラミック材料としてY、0.等で安定
化(部分安定化を含む)されたZ rO2が報告されて
いるが、その研削加工性は非常に急く、かつ白色系の材
料となり装飾部材としての利用価値は少ないものであっ
た。
In addition, as a strong ceramic material, Y, 0. ZrO2 stabilized (including partial stabilization) by et al. has been reported, but its grindability is very rapid and the material is white, so it has little utility as a decorative member.

第2に抵抗発熱体(ヒーター材料)として一般に金属系
材料が主に用いられており、セラミック系抵抗発熱体と
しては絶縁性セラミック材料に導電発熱経路を接合した
ものや発熱体を埋込んだものの他SiC系発熱体及び高
温用としてZrO,系発熱体が使用されている。
Secondly, metal-based materials are generally mainly used as resistance heating elements (heater materials), and ceramic resistance heating elements include those with conductive heating paths bonded to insulating ceramic materials, or those with heating elements embedded. In addition, SiC-based heating elements and ZrO-based heating elements are used for high temperature applications.

上記各種発熱体のうち金属系材料は耐食性、耐酸化性及
び耐摩耗性の点で劣る為、酸化性雰囲気や酸及びアルカ
リ性物’t′L或いは塩分等に浸さjする傾向があると
共に硬度が低い為1こ摩擦条件1で使用する発熱体とし
ては摩耗tこよる寿命短縮の線内となり、SiC系発熱
体については強度が低い為に折損原因となる他41す成
結晶粒子が粗大で組織が緻密でない為摩擦条件下での使
用に際しては平71°i ff面が得られず粒子脱落摩
ルを及び相手材にイハを付ける等の欠点がある。又Z 
r02糸抵抗抵抗体は低ル1域での導電性が殆んどdi
j(い為自己発熱体とはなり?Uず、他のヒーターで高
温t−4まで予(48加熱しなければ発熱体として使用
出来ない欠点があった。
Among the various heating elements mentioned above, metal materials are inferior in corrosion resistance, oxidation resistance, and wear resistance, so they tend to be immersed in oxidizing atmospheres, acids, alkaline substances, salt, etc., and their hardness decreases. Because of the low friction, a heating element used under friction condition 1 would be within the range of shortening its life due to wear, and SiC heating elements have low strength, which may cause breakage, and the crystal grains are coarse and the structure is low. Because it is not dense, when used under friction conditions, a flat 71° i ff surface cannot be obtained, resulting in drawbacks such as particle shedding and wear, and damage to the mating material. Mata Z
The r02 thread resistance resistor has almost di conductivity in the low R1 range.
However, it had the disadvantage that it could not be used as a heat generating element unless it was preheated to a high temperature of t-48 with another heater.

第3に切削工具、冷間及び熱1「i]加工用ダイス工具
、金型やベルトクリーナーその他の耐摩耗]:JI、等
の工具材料としては、相識が均一微細でFji’!=で
あり、硬度が高くて耐摩耗性があり、かつ強度が大で欠
損したり破損したりしないこと、更にはGeJ熱急冷条
件下で使用1する場合の耐熱ljロ8r−性に優れるこ
とが必要であり、こhらの特性も兼ね備えた材料が長寿
命で信頼性のある工具材料となる。
Thirdly, cutting tools, cold and heat 1 ``i'' Machining die tools, molds, belt cleaners, and other wear resistant]: JI, etc. tool materials are uniformly fine and Fji'! It must have high hardness and wear resistance, and high strength so that it will not chip or break, and it must also have excellent heat resistance when used under GeJ thermal quenching conditions. Materials that also have these characteristics are long-life and reliable tool materials.

これらの工具材料として超硬工具材料やサーメット系材
料が拡く用いられているが、これらの材料は主成分がW
CやTiC等の炭化物で、かつ金属成分を含有している
ために、鉄剣材料或いは非鉄金属系の被加工物との親和
性が強い欠点がある他、耐摩耗性の点でも劣る場合があ
り、その解決策としてセラミック工具材料が効果的に利
用されると共に需要景は確実に増加して行く傾向にある
Carbide tool materials and cermet materials are widely used as these tool materials, but these materials have W as their main component.
Because it is a carbide such as C or TiC and contains metal components, it has the disadvantage of having a strong affinity with iron sword materials or non-ferrous metal workpieces, and may also have inferior wear resistance. As a solution to this problem, ceramic tool materials are being effectively used, and demand is steadily increasing.

本発明材料の特徴として装飾部材用材料會こ於いては、
本来白色系材料でかつ絶縁材料である安定化Z r02
に適正量の炭化物を配合することtこより黒褐色系又は
黄色系でしかも強靭で耐摩耗性のある材料とすると共に
導電性を付与することtこより複雑形状に加工したり孔
あけ加工等を行なうに際し超音波加工よりも加工能率が
大幅に大である放電加工法を採用可能とするものであり
、又ヒーター材料に於いては前述の欠点を改良した材料
即ち耐食耐摩耗性に優れ、強靭でかつ耐熱8J撃性にも
αとれ、更には構成結晶粒子が微細で平滑な面がiUら
れると共に低温域でも自己発熱可能な材料と成し、材料
加工に際してはヒータ一端子取付孔加工等の特殊形状加
工を能率の良い放電加工法を採用可能とし、工具材料及
び耐摩耗耐食材料に対してはM、0.系セラ疋ツク材料
より強靭で耐衝撃性r−殴れる他従来の安定化ZrO2
よりも耐摩耗性を改善し、かつ材料加工に際しては放f
lf加工法或いは電解fi+)側法を採用可能とするこ
とぐこより加工コストを大幅に低減し得る材料特性なイ
]するものである。
Characteristics of the material of the present invention include:
Stabilized Z r02 which is originally a white material and an insulating material
By adding an appropriate amount of carbide to the material, it is necessary to make the material dark brown or yellowish, tough, and wear-resistant, as well as imparting electrical conductivity. This makes it possible to adopt electrical discharge machining, which has much higher machining efficiency than ultrasonic machining, and also makes it possible to use materials that have improved the above-mentioned drawbacks in terms of heater materials, that is, they have excellent corrosion and wear resistance, are strong, and It has excellent heat resistance and impact resistance of 8J, and the constituent crystal grains are fine and smooth, making it a material that can self-heat even in low temperature ranges.When processing the material, it has a special shape such as drilling a heater terminal mounting hole. It is possible to adopt the highly efficient electric discharge machining method for machining, and M, 0. Tougher and more impact resistant than other ZrO2-based ceramic materials than conventional stabilized ZrO2
Improves wear resistance and reduces f-radiation during material processing.
It has material properties that can significantly reduce processing costs by making it possible to employ the lf processing method or the electrolytic fi + method.

前述の各種用途にセラミ、り系材料の需要が拡大しつつ
あり、特tこ高硬度で耐摩耗性があるAl、0゜或いは
強靭性の安定化Z r02等のセラミ、り相t−1はそ
の硬さが大な為にダイヤモンド砥石による研削加工が主
流をなしているが、ダイヤモンド砥石による研削加工で
複?lCな外形成いは内径加工や孔あけ加工等を行なう
tこは自ら一定の限度があり、放電加工や超音波加工に
よらざるを得ない場合が多ので放電加工法を採用すると
いう訳には行かず上述の如き複雑、特殊形状物の加工は
超音波加工法tこ頼らざるを得なかった。しかしその加
工能率は非常tこ悪いため、製品は必然的に高価なもの
となり、用途即発を行なう上において価格的に対応出来
ないことがある。
The demand for ceramic and lithium-based materials is increasing for the various uses mentioned above, and in particular, ceramics such as Al, which has high hardness and wear resistance, 0° or stabilized toughness Zr02, and lithium-phase T-1. Due to its great hardness, grinding using a diamond whetstone is the mainstream. There are certain limits when performing IC external forming, internal diameter machining, drilling, etc., and there are many cases where electric discharge machining or ultrasonic machining has to be used, so electric discharge machining is adopted. However, the machining of complex and special-shaped objects such as those mentioned above had no choice but to rely on ultrasonic machining methods. However, since the processing efficiency is very poor, the product is necessarily expensive, and it may not be possible to meet the cost for immediate production.

一方放電加工方法は超硬工具材料等に一般的に採用され
ており、超音波加工方法tこ比べ数倍以上の加工能率を
有しており、加工費面からはより良い加工方法であるが
、被加工物が導電性を有する小が必須条件である。
On the other hand, the electrical discharge machining method is generally used for carbide tool materials, etc., and has a machining efficiency several times higher than that of the ultrasonic machining method, and is a better machining method in terms of machining costs. , it is an essential condition that the workpiece has electrical conductivity.

本発明は上記現状に鑑みジルコニア質セラミックに導電
性を付与し、放電加工法を採用可能となす導電性ジルコ
ニア基焼結材料並びζ・こその製造方法を提供せんとす
るものであり、その要旨は特許請求の範囲に記載してい
るが如き導電性ジルコニア基焼結材料及びその製造方法
である。
In view of the above-mentioned current situation, the present invention aims to provide a conductive zirconia-based sintered material and a manufacturing method for ζ, which imparts conductivity to zirconia ceramics and makes it possible to employ electrical discharge machining. is a conductive zirconia-based sintered material and a method for producing the same as described in the claims.

なお部分安定化ZrO,粉末はその製造方法によって異
なるが不純物としてのAl2O3が0.05亀j、+’
+: 96 q:1度のものが通常PJられる純度の尚
いfili 類fこ属するが、その粉砕工程tこおいて
アルミナボールな使用する場合はAt20.が1 ij
’、+量夕C捏度此人するのが通例である。
Although the partially stabilized ZrO powder differs depending on its manufacturing method, it contains 0.05% of Al2O3 as an impurity, +'
+: 96 q: 1 degree is usually used for PJ, but if alumina balls are used in the grinding process, At20. is 1 ij
It is customary for this person to do this.

本発明では安に化(全部及び1111分安定化) 1r
o2の一部なA403で置換した場合の作力J効果を6
’lj Mj l。
In the present invention, it is made cheaper (all and 1111 minutes stabilized) 1r
The working force J effect when replacing part of o2 with A403 is 6
'lj Mj l.

た結果、後で詳記する如<At、O,による1すC換J
+tが2足置%以下においてはIY性1rOではとんど
λ−遁°がないことが判明したのでZ r02の21(
Ji1%以−トをA−120sで置換したものをJbい
る小もある。
As a result, as will be described in detail later, 1C exchange J by
It was found that when +t is less than 2%, there is almost no λ-ton degree in IY property 1rO, so 21(
Some small companies use Jb with 1% or more of Ji replaced with A-120s.

以下本発明を開発するtこ至った実験と実施例及びその
結果を示す。
The experiments and examples that led to the development of the present invention and their results will be shown below.

く実験1〉 安定化剤としてのY2O,以外の不純物が0.1%以下
の安定化(部分安定化を含む)処理さ九、かつ平均粒子
径が0.3μmである第1表記載の各抽ZrO,粉末に
、純度が99%で平均粒子径が1llTrLのTiC及
びWC粉末を各々25容量%になるように秤量し、湿式
ボールミルで混合粉砕した後、必要に応じて成型用バイ
ンダを配合して乾燥整粒することにより焼結用原料を得
た。
Experiment 1> Each sample listed in Table 1 has been stabilized (including partial stabilization) with impurities other than Y2O as a stabilizer of 0.1% or less and has an average particle size of 0.3 μm. TiC and WC powders with a purity of 99% and an average particle size of 11TrL are each weighed to 25% by volume to the extracted ZrO powder, mixed and ground in a wet ball mill, and then a molding binder is added as necessary. A raw material for sintering was obtained by drying and sizing.

上記焼結用原料を金型プレス成型機により50CkVW
以上の圧力で成型した後、非酸化性雰囲気(Arガス)
炉で1300〜1650℃の温度下に1時間保持して、
相対密度が94.5〜98%の予備焼結体を得た。
The above raw material for sintering is processed by a mold press molding machine at 50 CkVW.
After molding at the above pressure, non-oxidizing atmosphere (Ar gas)
Maintained in a furnace at a temperature of 1300-1650°C for 1 hour,
A preliminary sintered body having a relative density of 94.5 to 98% was obtained.

なお上記予備焼結温度は各試料点毎に最適焼結温度が異
なる為、試料毎に相対密度が94.5〜98%になる温
度条件下で予備焼結体を得た。
Since the optimal sintering temperature differs for each sample point, the pre-sintered bodies were obtained under temperature conditions that gave a relative density of 94.5 to 98% for each sample.

次いで該予備焼結晶をHIP装置で不活性ガス(Ar)
圧を1500気圧とし、温度は各試料点の予備焼結温度
より150℃低目の温度条件で1時間保持することによ
り焼結素材を得た。
Next, the pre-fired crystal is heated with an inert gas (Ar) using a HIP device.
A sintered material was obtained by holding the pressure at 1500 atm and the temperature at 150° C. lower than the preliminary sintering temperature at each sample point for 1 hour.

上記焼結体の特性調査試料としては、ダイヤモンド砥石
tこよる5X5X25朝の研削試片とし第1表tこ示す
各種データを得た。− なお気孔率につい°〔は各試片をQ曲うップ仕上げした
後、画他解析機tこより微細なスポットから大きなスポ
ットまで全てを解析することによりデータを得た。
As a sample for investigating the characteristics of the sintered body, a 5×5×25 specimen was ground using a diamond grinding wheel, and the various data shown in Table 1 were obtained. - Regarding the porosity, data was obtained by finishing each sample with a Q-bend and then analyzing everything from minute spots to large spots using an image analyzer.

第1表 ありだ。Table 1 Yes.

〈実験2〉 S)iきイし 実aiの試料ム3に用いたのと同じZ r02粉末tこ
八 純度が99%以上で平均粒子径が0.8〜1.0μmの
各種カーバイド粉末を第2表記載の容量%になるように
秤量し、実験1と同様の方法で焼結用原料、予備焼結体
、HIP焼結素材を得同様の方法で第2表記載の諸特性
値を得た。
<Experiment 2> S) The same Zr02 powder as used in sample 3 of Ikiishi Ai, various carbide powders with a purity of 99% or more and an average particle size of 0.8 to 1.0 μm were used. The raw materials for sintering, the preliminary sintered body, and the HIP sintered material were weighed so that the volume percentages listed in Table 2 were obtained, and the various characteristic values listed in Table 2 were obtained in the same manner as in Experiment 1. Obtained.

なお本実験におけるHIP条件は予備焼結温度より10
0℃低目の温度で、不活性ガス(Ar)圧は1300気
圧とし1時間保持を行なった。
The HIP conditions in this experiment were 10% lower than the pre-sintering temperature.
The inert gas (Ar) pressure was set to 1300 atm and maintained at a temperature of 0° C. for 1 hour.

また加圧力50kg /cmL以上、温度1300〜1
650 ℃の範囲円でg2密焼tfj体が得られるm適
条件で第2表の全試猫をホットプレス(以下即)法によ
りR4IQした材料についても調査した結果、いづれも
第2表に示したのとほとんど同じ特性を得た。
Also, the pressure is 50kg/cmL or more, the temperature is 1300~1
We also investigated the materials that were R4IQed using the hot press method (hereinafter referred to hereinafter) for all test specimens listed in Table 2 under suitable conditions for obtaining G2 densely fired TFJ bodies in the range of 650°C, and the results are shown in Table 2. Almost the same characteristics were obtained.

実験1の試料A3に用いたのと同じZrO,粉末にA 純度が99%以上で平均粒子径が0.8〜1.0μmの
各回カーバイド粉末を第3表記載の容量 X r−なる
ように秤新し、実験1と同様の方法で焼結用原料、予備
焼結素材、HIPi結素材を得、同様の方法で第4表記
載の諸特性を得た。
The same ZrO powder as used in Sample A3 of Experiment 1, A carbide powder with a purity of 99% or more and an average particle size of 0.8 to 1.0 μm was added to the capacity X r- as shown in Table 3. A new scale was used, and a raw material for sintering, a pre-sintered material, and a HIPi material were obtained in the same manner as in Experiment 1, and the properties listed in Table 4 were obtained in the same manner.

なお本実験におけるH工P条件は、最適予備焼結温度よ
り50℃低目の温度とし、不活性ガス圧(Ar)は10
00気圧とし1時間保持を行なった。
The H-process P conditions in this experiment were a temperature 50°C lower than the optimum pre-sintering temperature, and an inert gas pressure (Ar) of 10
The pressure was set at 00 atm and maintained for 1 hour.

j(+ 3表 第4表 実験1の試料ル3に月」いたのと同じZ r02粉末に
純度が99%以上で平均粒子径が0.8〜1.07+m
の各種複合炭化物粉末を第5表記4((の容九%tこな
るよ5tこ秤量し、実験1とl1lJ様の方法で焼結用
原料、予イ〈11焼結素材、HIP焼結素材を得、同様
の方法で第5表記載のM特性をtUた。
The same Zr02 powder as that in Sample 3 of Experiment 1 with a purity of 99% or more and an average particle size of 0.8 to 1.07 + m
Weighed 5 tons of various composite carbide powders (5 tons) and prepared them as raw materials for sintering, pre-11 sintering materials, and HIP sintering materials using the method similar to Experiment 1 and 111J. was obtained, and the M characteristics listed in Table 5 were obtained using the same method.

な」6本実験におけるHIP条件は、温度が1200℃
で不活性ガス圧(Ar)は1800気圧とし1時間CI
″、持を行なった。
6 The HIP conditions in this experiment were a temperature of 1200°C.
The inert gas pressure (Ar) was 1800 atm and CI for 1 hour.
'', held.

第5表 注) A=WC:TiC=50:50 純度=99%平
均粒子径= 1.OpnB=WC: TiC:TaC=
50:30:20純度=99X平均粒子?&=1.O1
1mC=WC:NbC=30ニア0 純度=99X平均
粒子径=1.2μm(以下同じ) 用いたZ r 02は3モル%Y2O3含有のもの〈実
験5〉 全m+ Hしくは部分安定〜化されたZ ro、へのh
t2o3の添加による作用効果を調べる為に、第6表に
示鈴 第6表 〔実施例1〕 装飾部材用材料の代表例として時1側を前記実MlのA
2.4.7.9、実験2のA2.3.4.5.9.14
.20.26.31.35、実験3の崖2.5.6.1
2.15、及び実験4の黒2.5.9.16の各材料で
試作し、内側及び段付部を放電加工した後仕上、加工を
行ないかつ外表面は研削ラップ仕上した時計側を高さ1
.5mの位置から木製床に繰返し落下テストした結果、
いずり、もI&択することなく又ラップ曲の外観は(J
K31が黄金色に近い色である他は)黒褐色系で均一美
麗な光沢面を有するものが得られた。
Table 5 Note) A=WC:TiC=50:50 Purity=99% Average particle size=1. OpenB=WC: TiC:TaC=
50:30:20 Purity = 99X average particle? &=1. O1
1mC=WC:NbC=30Nia0 Purity=99X Average particle diameter=1.2μm (same below) Zr02 used contains 3 mol% Y2O3 (Experiment 5) Total m+H or partially stabilized Z ro, to h
In order to investigate the effects of adding t2o3, Table 6 shows Table 6 [Example 1] As a representative example of the material for decorative members, the A of the actual Ml on the side 1 was used.
2.4.7.9, Experiment 2 A2.3.4.5.9.14
.. 20.26.31.35, Experiment 3 cliff 2.5.6.1
2.15 and black 2.5.9.16 from Experiment 4, the inner side and stepped part were finished and machined after electrical discharge machining, and the outer surface was finished with a grinding lap. Sa1
.. As a result of a repeated drop test on a wooden floor from a position of 5m,
Izuri, mo I & the appearance of the rap song is (J
Except for the color of K31, which was close to golden yellow, a blackish-brown color with a uniform and beautiful glossy surface was obtained.

〔実施例2〕 前述の実施例1に示したのと同じ試料JFLに相当する
材料でセラミックヒータ−として10X1.5X100
司の形状品を作り、長手方向に5個直列に放電加工孔を
介して結線した後10ボルトの電圧で昇温した結果いず
れも5分間以内で400℃に達し10個配列した各々の
ヒーター単、体も同一温度であり、かつ熱硬化性接着剤
の加熱炉の代りtこ被接岩物を直接ヒーターに乗せ加熱
した結果、電気炉による間接加熱方式に比ベエネルギー
消費率は1096程度tこ節減出来る小が判IIIJシ
た。
[Example 2] A 10X1.5X100 ceramic heater was made of the same material corresponding to the sample JFL shown in Example 1 above.
After making 5 heaters in the longitudinal direction and connecting them in series through electrical discharge holes, the temperature was raised with a voltage of 10 volts, and the temperature reached 400℃ within 5 minutes. , the body temperature is the same, and instead of using a heating furnace for thermosetting adhesives, the rock object to be attached is placed directly on the heater and heated, resulting in an energy consumption rate of about 1096 tons compared to the indirect heating method using an electric furnace. The small size that can save this money is size IIIJ.

〔実施例3〕 前述の実験1〜4により肯た各種l18結体を切削工具
形状5PGN432に研削加工し、切削条件を切削速度
450v鋪、送り0,2評の、切込み0.5g/rev
とし、10%Si含有At合金を10分向旋削した結果
、従来の3九Y20. iこよる部分安定化ZrO2は
逃げ面肋耗11ノが0.25smであるのに対し、本発
明範囲外はいずれも0.1〜0.15+n+nと少なく
超硬質合金KIOと同程度であったが、旋削面の状11
WはKIOが溶着現象によりわ1面であるのtこ対し本
発明品による面はいずれも光沢があり優れた性能を示し
た。
[Example 3] The various l18 bodies confirmed by the above-mentioned experiments 1 to 4 were ground into a cutting tool shape of 5PGN432, and the cutting conditions were a cutting speed of 450v, a feed rate of 0.2, and a depth of cut of 0.5g/rev.
As a result of turning a 10% Si-containing At alloy for 10 minutes, the conventional 39Y20. Partially stabilized ZrO2 has a flank rib 11 of 0.25 sm, whereas all outside the scope of the present invention are 0.1 to 0.15+n+n, which is the same as that of the superhard alloy KIO. However, the shape of the turned surface 11
Whereas KIO's W surface was only wrinkled due to welding, all surfaces formed by the products of the present invention were glossy and exhibited excellent performance.

なお本発明範囲外のものは異當摩耗或いは欠損等のトラ
ブルを発生することが多く不満足な納采を示した。
It should be noted that products outside the scope of the present invention often caused troubles such as abnormal wear or chipping, and exhibited unsatisfactory performance.

〔実施例4〕 工具材料の一例として、押し出し成形用金型(ノズル)
を前記実験の試料滅14の組成で作成し、外周部は研削
加工仕上げし、内径部は放電加工後、研削及びラップ仕
上げを施しベアリング部を$ 1,501副とし、押し
出し成形機に装着し試験した結果、従来使用していた焼
入れ鋼製ノズルは成型圧力80ki7でAt、O,にポ
リビニルアルコール10%を配合混練した材料を重量1
0に9押し出し成型した後のベアリング部径は$1,6
07mと摩耗し大きくなったが、本発明品は同条件下で
j;1,504咽となり、非常に耐摩耗性に優れた押し
出し成形用金型が得られた。
[Example 4] As an example of tool material, extrusion mold (nozzle)
was made with the composition of Sample No. 14 in the above experiment, the outer circumferential part was ground and finished, the inner diameter part was ground and lapped after electrical discharge machining, the bearing part was made into a $1,501 vice, and it was installed in an extrusion molding machine. As a result of the test, the conventionally used hardened steel nozzle was made by mixing and kneading At, O, and 10% polyvinyl alcohol at a molding pressure of 80ki7.
The diameter of the bearing after extrusion molding is $1.6
However, under the same conditions, the product of the present invention had a wear resistance of 1,504 mm, and an extrusion mold with extremely excellent wear resistance was obtained.

〔実施例5〕 耐摩耗材料用として超硬質合金に10と99X At2
0s及び本発明の実験2の48、実験3の57、実験4
の崖8で鉄鉱石ベルトコンベア用ベルトクリーナーを作
成し、実用テストに供した結果、本発明品はKIOに対
して5倍、99%A40. に対し”〔3むグの寿命を
示し非爪?こ耐摩耗性に2;工むことが判す」した。
[Example 5] 10 and 99X At2 in cemented carbide for wear-resistant materials
0s and 48 of Experiment 2 of the present invention, 57 of Experiment 3, Experiment 4
As a result of making a belt cleaner for iron ore belt conveyor at Cliff 8 and subjecting it to a practical test, the product of the present invention was 5 times that of KIO and 99% A40. "It shows a lifespan of 3 mm, indicating that the wear resistance of non-claws is improved by 2 mm."

〔実施例6〕 実験2のA3.420による材料でダイス径2.6開の
伸線用ダイスを作成し実用に供した結果、几′I岐質合
金材皿G1が伸線j+k 20 トンの寿命であるのに
対し本発明品は羨3が32トン、A20が30トンの伸
i野命を示しかつ不発l1lJ品による線材表面光沢は
非常に美麗であり、従来の超硬合金G】による線材に比
べ著しく商品価値がWSまる結果をtりた。
[Example 6] As a result of making a wire drawing die with a die diameter of 2.6 from the material according to A3.420 of Experiment 2 and putting it into practical use, it was found that the wire-drawing die G1 had a wire drawing capacity of j+k 20 tons. In contrast, the product of the present invention has a long service life of 32 tons for En3 and 30 tons for A20, and the surface luster of the wire is very beautiful due to the unexploded 111J product, compared to that of the conventional cemented carbide G. The product value has been significantly increased compared to wire rods.

又上記と同じ試才iAによるl1ii径1インチ肉厚2
割の鉤バイブ加工用ダイスに於いても従来のjJ′16
’i4質合金より1.3倍以上の寿命を示すことが判明
した。
Also, l1ii diameter 1 inch wall thickness 2 by the same trial iA as above
The conventional jJ'16 dies for the split hook vibe processing are also used.
It was found that the lifespan was 1.3 times longer than that of i4 quality alloy.

以上示した実験結果及び実1!lII例を参酌し乍ら本
発明の導電性ジルコニア基焼結材料の組成や諸1.?性
並びにそれを得る為の製造方法条件について以下考察す
る。
The experimental results and results shown above! With reference to Example 1, the composition and various aspects of the conductive zirconia-based sintered material of the present invention will be explained. ? The characteristics and the manufacturing method conditions for obtaining them will be discussed below.

近年部分安定化ZrO□関係の文献が多(、MgOやY
、0.で安定化されたZrO□焼結体の高強度特性がほ
ぼ解明されており、本発明においてもこれらの安定化剤
が2モル%未満においては、焼結体に単斜晶相が多く存
在し、微細クラ、り等が生じやすい為に強度の強い材料
が得難く、逆に5モル%を越える場合は結晶相転移によ
る強度取得効果が少なく、耐破損性の点で不満足な結果
を与える材料となることが判明した。
In recent years, there are many documents related to partially stabilized ZrO□ (, MgO, Y
,0. The high strength properties of the ZrO□ sintered body stabilized with , it is difficult to obtain a material with strong strength because fine cracks, cracks, etc. are likely to occur, and conversely, if it exceeds 5 mol%, the effect of obtaining strength due to crystal phase transition is small, resulting in unsatisfactory results in terms of breakage resistance. It turned out that.

次lこ材料の結晶粒子径については、平均粒子径が2.
5μmを越えると、強度は比較的に高い材料においても
、室温から数百℃まで加熱冷却サイクルを受ける使用条
件下では長期間の内に自然に単斜晶相が増加する場合が
あり、強度が自然劣化することがある。特?こ、この自
然劣化現象を防止するにはZ r02結晶粒子径を1μ
m以下に抑えると共tこ、材料の平均結晶粒子径を2.
5μm以下より好ましくは2.0μm以下に抑えること
により達成される。
Regarding the crystal grain size of this material, the average grain size is 2.
If the thickness exceeds 5 μm, even if the material has relatively high strength, the monoclinic phase may naturally increase over a long period of time under usage conditions where it is subjected to heating and cooling cycles from room temperature to several hundred degrees Celsius, and the strength will deteriorate. Natural deterioration may occur. Special? To prevent this natural deterioration phenomenon, the Zr02 crystal particle size should be reduced to 1 μm.
In addition to suppressing the average crystal grain size of the material to 2.
This is achieved by suppressing the thickness to 5 μm or less, preferably 2.0 μm or less.

更に2.5 ltmを越える場合は、本発明品も一般的
に強度が低くなる傾向lこあり一1機械的山撃をこうむ
る工具材料の使用糸r1−下では割れが発生したり欠損
或いは破損する可能性があり、かつ結晶粒径が大きい程
スポットが増加する傾向tこあり、又硬さも低下する傾
向があるため、〆■」摩耗性が劣るようになると共にラ
ップ仕上げした面が美麗でなくなる他、ダイス工具等の
場合はスポットを起点として溶着或いは摩耗が進行する
ことになる。
Furthermore, if the strength exceeds 2.5 ltm, the strength of the products of the present invention generally tends to decrease.11 The thread used in the tool material, which is subject to mechanical damage, may be cracked, chipped, or damaged. In addition, the larger the crystal grain size, the more spots tend to increase, and the hardness also tends to decrease. In addition, in the case of die tools, etc., welding or wear progresses starting from the spot.

又焼結材料の気孔率が1客足%を越えると、低強度に起
因する損耗や、スポットによる美麗なラップ仕上面が得
られない等の弊害が多くなりkr−1:しくない。
If the porosity of the sintered material exceeds 1%, there will be many disadvantages such as wear due to low strength and failure to obtain a beautiful lapped surface due to spots, resulting in poor kr-1.

特に金型材料等においては機械幻術撃力を受ける場合が
多いため、強度の低いもの程破損しやすいことは当然の
ことである。
In particular, mold materials and the like are often subjected to mechanical magic impact forces, so it is natural that materials with lower strength are more likely to break.

発明者等は上記現象における耐破損性は、セラミンク材
料に通常用いられている曲げ強さよりもシャルピー値の
方が耐破損性と関連性が高いこと、更tこはシャルピー
値が0.1kgfml−未満の場合は、装飾部材用材料
や切削工具材料や冷間、熱間加工用ダイス工具等におい
て破損する可能性があることを見出したものである。
The inventors have found that the Charpy value has a higher correlation with the breakage resistance in the above phenomenon than the bending strength normally used for ceramic materials, and that the Charpy value is 0.1 kgfml- It has been found that if it is less than 20%, there is a possibility that materials for decorative members, cutting tool materials, die tools for cold and hot working, etc. will be damaged.

この耐破損性は装飾部材用材料を落下テストによりlr
a をした結果からも得た結論であり、その落下距離は
人が取扱う高さ即ち1rrLから最高2mの範囲とした
This breakage resistance was confirmed by a drop test of materials for decorative parts.
This is the conclusion obtained from the results of step a, and the falling distance was set in the range of 2 m at the maximum from the height that humans can handle, that is, 1 rrL.

次に材料の電気伝尋度1こついて、比抵抗値の大きさで
考察すれば、比抵抗値は低い方が放電加工性は容易とな
るが本願発明材料においては、カーバイド成分の配合紙
により必然的に限界がありカーバイド成分が、40容愈
%の場合0.5mΩ@σに相当する。
Next, if we consider the electrical conductivity of the material by 1 and consider the specific resistance value, the lower the specific resistance value, the easier the electrical discharge machinability will be. There is inevitably a limit, and when the carbide component is 40% by volume, it corresponds to 0.5 mΩ@σ.

なおり−バイド成分を40容景%配合した場合でも8!
i!造方法によっては0.5WLQIIcnT以下の材
料を得ることが出来るが、その4.++にして得た材料
はZrO2の斧、゛。
Even when 40% of Naori-byde ingredients are combined, it is 8!
i! Depending on the manufacturing method, it is possible to obtain a material of 0.5WLQIIcnT or less, but 4. The material obtained from ++ is a ZrO2 axe.

晶粒を粗大化させた試ネ1tこおいて認められる現象で
あり、強度及び頻度低下に伴なう破損や摩耗を急激に困
難となり特殊な形状に加工する場合に対応出来なくなる
This is a phenomenon that is observed in test pieces where the crystal grains are coarsened, and as the strength and frequency decrease, damage and wear become rapidly difficult to deal with, making it impossible to process into special shapes.

なお実験5及びその結果を示す’86表からも明らかな
如く、一部あるいは全部がY2O3やΔ4gOの少なく
とも1種で安定化されたZ rO2の2 jit ++
15ざ以1をM2O3でト1換しても、その祠も1のq
)性向は殆んど変化の無い小が判明した。
Furthermore, as is clear from Experiment 5 and the '86 table showing the results, Z rO2 2 jit ++ partially or entirely stabilized with at least one of Y2O3 and Δ4gO.
Even if you exchange 15 Zai 1 with M2O3, the shrine will also be 1 q
) The propensity was found to be small with almost no change.

次に製造方法時の条件につき考察すれはHP時の加圧力
が501v’m未満の場合は、加圧力不足に什う緻密度
不足品が出来る頻度か多くなり、金型材料や装飾部材用
材料tこ於いてはラッピング面がくもったりナシ畑状と
なったり、スポットが存在する等の不良品が発生しやす
くなる他、工具材料に於いては外向低下の原因となる。
Next, considering the conditions of the manufacturing method, if the pressurizing force during HP is less than 501 V'm, products with insufficient density due to insufficient pressurizing force will be produced more frequently. In this case, the lapping surface becomes cloudy or has a pear field shape, and defective products such as spots are likely to occur, and the tool material becomes a cause of a decrease in outward direction.

又加圧力の上限は)IP型として用いる黒鉛等の材料強
度tこ左右されるのは当然のことである。又焼結温度が
1300℃未満の場合は緻密焼結体が得られ難<、又緻
密に焼結する為には長時間の保持を要する等経済的では
ない。
It goes without saying that the upper limit of the pressing force depends on the strength of the material t used for the IP type, such as graphite. Further, if the sintering temperature is less than 1300° C., it is difficult to obtain a dense sintered body, and it is not economical because it requires holding for a long time to achieve dense sintering.

一方焼結温度が1650℃を越える場合はモールドとの
反応接着等を起し、割れ不良品勢が発生しやすくなる他
、結晶粒径の均一微細な材料が得られず強度低下原因と
なる他、装飾部材用材料の外観及びダイス工具により加
工された製品の外観は美麗な光沢向が得にくくなる。
On the other hand, if the sintering temperature exceeds 1650°C, reaction adhesion with the mold will occur, which will likely result in cracked and defective products, as well as making it impossible to obtain a material with uniform and fine grain size, resulting in a decrease in strength. In this case, it becomes difficult to obtain a beautiful luster in the appearance of the material for decorative members and the appearance of the product processed with the die tool.

次に、HIPに供する予備焼結体の相対密度が94.5
56未満の場合は、予備焼結体に局部的な密度ムラが存
在する場合があり、 HIP処理しても局部的な緻密度
不足品が得られることになり、均質な材料を得るために
は少なくとも94.5%の相対密度を有する必要がある
Next, the relative density of the preliminary sintered body to be subjected to HIP is 94.5.
If it is less than 56, there may be local density unevenness in the pre-sintered body, and even if the HIP treatment is performed, a locally insufficient density product will be obtained, and it is necessary to obtain a homogeneous material. Must have a relative density of at least 94.5%.

又、HI’P時の保持圧力が500気圧未満の場合は加
圧力不足に伴う緻密度不足品が出来る頻度が多くなり、
ラッピング161がくもったりナシ畑状となったり、ス
ポットが存在する等の不良品が発生し均や 質なラッピング簡を委求するダイス金型祠II及びハ 装飾部材用材料としては不満足なものとなる。
In addition, if the holding pressure during HI'P is less than 500 atm, products with insufficient density due to insufficient pressure will be produced more frequently.
The wrapping 161 is cloudy, looks like a pear field, or has spots, resulting in defective products, making it unsatisfactory as a material for decorative parts. Become.

HIP時の温度が1200℃未満の場合は、温瓜不足に
伴うHIP効果即ち緻密化が不足することrこなる。
If the temperature during HIP is less than 1200° C., the HIP effect, that is, densification, will be insufficient due to insufficient warming.

一方温度が1650℃を越えると、過焼結のため結晶粒
径が大きくなり、強度の高い製品カー1ノられなくなる
On the other hand, if the temperature exceeds 1650°C, the crystal grain size increases due to oversintering, making it impossible to form a high-strength product.

以上詳細に述べて来た如く、本発明材料はrr+ 6’
J度で高強靭性である為長期tこ良り装飾部拐用月ネー
]の表面及び被加工物表面の美IM、な光沢面をf(1
+持出来、しかも破損や欠損しrrl < 、かつ均−
徽細な7+1織を有し、しかも黒褐色系及び黄金色系の
色調を旧 現出せしめる事が出来る為に各種装飾品に1F4〆した
場合、それ単独で用いても、又は他の色調な呈する部材
との組合せで用いてもすこぶる美的効果が大である他、
ヒーター材料や耐摩耗耐食材料や工具材料用として非常
に長寿命を示すと共tこ加工能率の良い放電加工法や電
解研削加工が可能となるため経済的効果が非常tこ大で
ある。
As described in detail above, the material of the present invention has rr+6'
Due to its high strength and toughness, it can be used for long periods of time to protect the surface of decorative parts and the surface of the workpiece.
+ Durable, and not damaged or missing.
It has a fine 7+1 weave and can produce blackish-brown and golden tones, so when applied to various ornaments, it can be used alone or with other tones. In addition to having a great aesthetic effect when used in combination with other materials,
It has a very long life as a heater material, wear-resistant and corrosion-resistant material, and tool material, and it also has great economical effects because it enables highly efficient electrical discharge machining and electrolytic grinding.

そして特に配合せしめるTiCや他の炭化物及びその配
合量を上述の如く規制する串により導電性を(=J与し
ているので放電加工をなす串が出来、′61Rst形状
品や孔あけ加工が可能となり各種装飾品の累月及びヒー
ター材料として省エネルギー効果を与え、かつ従来の部
分安定化Z r02より硬度を高くすることが可能で、
工具材料を長寿命化する焼結材料として優れている。
In particular, the skewer that regulates the blended TiC and other carbides and their blending amount as described above gives conductivity (=J), making it possible to perform electrical discharge machining, and to perform '61Rst shaped products and drilling. It has an energy-saving effect as a heating material for various decorative items, and has higher hardness than the conventional partially stabilized Zr02.
Excellent as a sintered material that extends the life of tool materials.

特許出願人 日本タングステン株式会社第1頁の続き 0発 明 者 佐 々木 豊重 福岡市南区清;社内 0発 明 者 古 賀 静 樹 福岡市南区清;社内 0発 明 者 高 野 泰 実 福岡市南区清;社内 0発 明 者 毛 利 茂 樹 福岡市南区清し社内Patent applicant: Nippon Tungsten Co., Ltd. Continued from page 1 0 shots Akira Toyoshige Sasaki Kiyoshi, Minami-ku, Fukuoka City; In-house 0 shots Akira Koga Shizuki Kiyoshi, Minami-ku, Fukuoka City; In-house 0 shots Akira Yasumi Takano Kiyoshi, Minami-ku, Fukuoka City; In-house 0 shots by Shigeru Mori, Kiyoshi company, Minami-ku, Fukuoka city

Claims (1)

【特許請求の範囲】 L Tic 、 NbC、Tic 、 Cr、C,、Z
rC、Mo2C、WCの中の少なくともlNi以上から
成る炭化物成分が17.5〜40.0容量%と、残部が
Y2O,及び又はMgOの2〜5モル%で安定化された
ZrO2成分とから成り、しかもその比抵抗値が(0,
5〜60)XIO”’Ω−αであることを特徴とする導
電性ジルコニア基焼結材料。 2 平均粒子径が2.5filn以下で、気孔率が1容
量%以下であることを特徴とする特許請求範囲第1項記
載の導電性ジルコニア基焼結材料。 λ シャルピー杓撃値が0.1ks#IVafL以上で
あることを特徴とする特許請求範囲第1項若しくは第2
項記載の導電性ジルコニア基焼結材料。 の少なくとも1種から成る炭化物成分が17,5〜40
.0容量%と、残部がY、0.及び又はMgOの2〜5
がAA20.で置換された組成を有し、しかもその比抵
抗値が(0,5〜60 )XIO″Ω・αであることを
特徴とする導電性ジルコニア基焼結祠料。 & 平均粒子径が251tm以下で、気孔率が工容Rタ
C以下であることを特rIVIとする特許請求師囲第4
項記載の導電性ジルコニア基焼結材料。 α シャルピー衝撃値が0,1kgfmAm以上である
こと− を特徴とする特r「請求範囲第4項若しくは第、4′項
記載の2!)電性ジルコニアh(焼結材料。 7、TiC、NbC、TaC、Or、C2,ZrC、λ
・10□C9〜νCの中の少なくとも1種以上から成る
炭化物成分が17.5〜40.0容量%と、残部がY2
O,及び又はMgO02〜5モル%で安定化されたZ 
r02成分とから成−f佃士7−1佑−お^す4〜主か
 所匹亀壮の型内で非酸化性雰囲気下でホットプレス焼
結することを特徴とする導電性ジルコニア基焼結材料の
製造方法。 a ホットプレス焼結条件が、加圧力50kiJ以上、
温度1300〜1650℃であることを特徴とする特許
請求の範囲第7項記載の導電性ジルコニア基焼結材料の
製造方法。 9、TiC、NbC、TaC、Cr、C,、ZrC、N
o2C、WCの少なくとも1種から成る炭化成分が17
.5〜40.0容量%と、残部がY2O,及び又はMg
Oの2〜5モル%で安定化されたZrO2成分とから成
る組成の均一混合粉末を所要形状に成型し、次いで該成
型体を非酸化性雰囲気で相対密度が94.5%以上とな
るべく予備焼結した後、非酸化性雰囲気下で等方等圧加
圧焼結(HIP)することを特徴とする導電性ジルコニ
ア基焼結材料の製造方法。 la 等方等圧加圧焼結(HIP)条件が加圧力500
kg/r、ni以上、温度1200〜165σ℃である
ことを特徴とする特許請求の範囲第9項記載の導電性ジ
ルコニア基焼結材料の製造方法。 L TiC、NbC、TaC、Cr5C2、ZrC、M
o2C、WCの少なくとも1種から成る炭化物成分が1
75〜4011容Hp(と、残部がY2O,及び又はM
gOの2〜5モル%で安定化されたZrO,成分とから
成り、かつそA1203で植換された組成の均一混合粉
末を、所要形状の型内で非酸化性雰囲気下でホットプレ
ス焼結することを特徴とする導電性ジルコニア基焼結材
料の製造方法。 12 ホットプレス焼結条件が、加圧力50kq/cr
A以」−1温度1300〜1650℃であることを特徴
とする特;゛1請求の範囲第11J工゛l記載の導1R
性ジルコニア^(4缶、結材料の製造方法。 la TiC、NbC、’I’aC、Cr3C2,Zr
C、Mo2C、WCの少なくとも1ε1(から成る炭化
成分が175〜40.0容量%と、残部がY2O,及び
又はMgOの2〜5モル%で安定化されたZ r02成
分とから成り、かつ七A403で置換された組成の均一
配合粉末を所要形状に成型し、次いで該成型体を非酸化
性雰囲気で相対密度が94.5%以上となるべく予備焼
結した後、非酸化性雰囲気下で等方等圧加圧焼結(HI
P)することを特徴とする導電性ジルコニア基焼結材料
の製造方法。 14等方等圧加圧焼結(HIP)条件が加圧力500k
iJ以上、温度1200〜1650℃であることを特徴
とする特許請求の範囲第13項記載の導電性ジルコニア
基焼結材料の製造方法。
[Claims] L Tic, NbC, Tic, Cr, C,, Z
The carbide component consisting of at least lNi among rC, Mo2C, and WC accounts for 17.5 to 40.0% by volume, and the remainder consists of a ZrO2 component stabilized with 2 to 5 mol% of Y2O and/or MgO. , and its specific resistance value is (0,
5-60) A conductive zirconia-based sintered material characterized by being XIO'''Ω-α. 2 Characterized by having an average particle diameter of 2.5 filn or less and a porosity of 1 volume % or less The conductive zirconia-based sintered material according to claim 1. The λ Charpy impact value is 0.1ks#IVafL or more.
The conductive zirconia-based sintered material described in . The carbide component consisting of at least one of 17,5 to 40
.. 0% by volume, the remainder is Y, 0. and or MgO 2-5
is AA20. A conductive zirconia-based sintering material having a composition substituted with Patent claim No. 4, which specifies that the porosity is less than or equal to the work volume RtaC
The conductive zirconia-based sintered material described in . α Charpy impact value is 0.1 kgfmAm or higher , TaC, Or, C2, ZrC, λ
・The carbide component consisting of at least one kind among 10□C9 to νC is 17.5 to 40.0% by volume, and the balance is Y2.
Z stabilized with O, and or MgO02-5 mol%
Conductive zirconia-based sintering characterized by hot press sintering in a non-oxidizing atmosphere in a mold with a large diameter and a r02 component. Method for producing binding material. a The hot press sintering conditions are a pressure of 50 kiJ or more,
8. The method for producing a conductive zirconia-based sintered material according to claim 7, wherein the temperature is 1300 to 1650°C. 9, TiC, NbC, TaC, Cr, C,, ZrC, N
The carbonized component consisting of at least one of o2C and WC is 17
.. 5 to 40.0% by volume, the balance being Y2O and or Mg
A homogeneous mixed powder with a composition consisting of a ZrO2 component stabilized with 2 to 5 mol% of O is molded into a desired shape, and then the molded body is prepared in a non-oxidizing atmosphere to a relative density of 94.5% or more. A method for producing a conductive zirconia-based sintered material, which comprises sintering and then isostatic pressure sintering (HIP) in a non-oxidizing atmosphere. la Isostatic pressure sintering (HIP) conditions are pressure 500
10. The method for producing a conductive zirconia-based sintered material according to claim 9, characterized in that the conductive zirconia-based sintered material is produced at a temperature of 1200 to 165[sigma]C. L TiC, NbC, TaC, Cr5C2, ZrC, M
The carbide component consisting of at least one of o2C and WC is 1
75 to 4011 volumes Hp (and the remainder is Y2O, and or M
A homogeneous mixed powder consisting of ZrO stabilized with 2 to 5 mol% of gO and a component replanted with Katso A1203 is hot-press sintered in a mold of the desired shape under a non-oxidizing atmosphere. A method for producing a conductive zirconia-based sintered material. 12 Hot press sintering conditions are a pressing force of 50 kq/cr
A-1 Features characterized in that the temperature is 1300 to 1650°C;
Zirconia^ (4 cans, method for producing binder material. la TiC, NbC, 'I'aC, Cr3C2, Zr
A carbonized component consisting of at least 1ε1 (C, Mo2C, WC) of 175 to 40.0% by volume, and the balance consisting of a Zr02 component stabilized with 2 to 5 mol% of Y2O and/or MgO, and A uniformly blended powder with a composition substituted with A403 is molded into a desired shape, and then the molded body is pre-sintered in a non-oxidizing atmosphere to a relative density of 94.5% or more, and then sintered in a non-oxidizing atmosphere. Direct isopressure sintering (HI
P) A method for producing a conductive zirconia-based sintered material. 14 Isostatic pressure sintering (HIP) conditions are pressure 500k
14. The method for producing a conductive zirconia-based sintered material according to claim 13, wherein the temperature is 1200 to 1650°C.
JP58211440A 1983-11-09 1983-11-09 Electroconductive zirconia base sintering material and manufacture Granted JPS60103078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58211440A JPS60103078A (en) 1983-11-09 1983-11-09 Electroconductive zirconia base sintering material and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58211440A JPS60103078A (en) 1983-11-09 1983-11-09 Electroconductive zirconia base sintering material and manufacture

Publications (2)

Publication Number Publication Date
JPS60103078A true JPS60103078A (en) 1985-06-07
JPH0351667B2 JPH0351667B2 (en) 1991-08-07

Family

ID=16605986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58211440A Granted JPS60103078A (en) 1983-11-09 1983-11-09 Electroconductive zirconia base sintering material and manufacture

Country Status (1)

Country Link
JP (1) JPS60103078A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288162A (en) * 1986-06-03 1987-12-15 東芝タンガロイ株式会社 High hardness high strength ceramic sintered body and manufacture
WO1988000578A1 (en) * 1986-07-10 1988-01-28 Commonwealth Scientific And Industrial Research Or Method of forming a ceramic product
WO1989004390A1 (en) * 1987-11-11 1989-05-18 Nippon Tungsten Co., Ltd. Auxiliary sub-nozzle for fluid jet type loom and production thereof
JPH01237950A (en) * 1988-03-18 1989-09-22 Sharp Corp Magnetic recorder
US5068072A (en) * 1988-12-13 1991-11-26 Sumitomo Chemical Company, Limited Electrically conductive zirconia-based sintered body and process for the production thereof
JPH05117938A (en) * 1992-03-26 1993-05-14 Kyocera Corp Air jet nozzle for loom
WO2005092587A1 (en) * 2004-03-26 2005-10-06 Towa Corporation Method of evaluating adherence, material of low adherence and resin shaping die
CN111848163A (en) * 2020-07-30 2020-10-30 山东东大新材料研究院有限公司 Zirconia ceramic with adjustable resistivity, porosity and color and preparation method thereof
CN114737075A (en) * 2021-01-07 2022-07-12 湖南工业大学 Light wear-resistant conductive NbCr2Preparation method of/Mg composite material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700217B2 (en) * 2001-04-26 2011-06-15 日本タングステン株式会社 WC-ZrO2-based composite ceramic sintered body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188453A (en) * 1981-05-11 1982-11-19 Sumitomo Electric Industries Discharge-workable ceramic sintered body
JPS58120571A (en) * 1982-01-09 1983-07-18 日本特殊陶業株式会社 High-tenacity ceramic sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188453A (en) * 1981-05-11 1982-11-19 Sumitomo Electric Industries Discharge-workable ceramic sintered body
JPS58120571A (en) * 1982-01-09 1983-07-18 日本特殊陶業株式会社 High-tenacity ceramic sintered body

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288162A (en) * 1986-06-03 1987-12-15 東芝タンガロイ株式会社 High hardness high strength ceramic sintered body and manufacture
WO1988000578A1 (en) * 1986-07-10 1988-01-28 Commonwealth Scientific And Industrial Research Or Method of forming a ceramic product
WO1989004390A1 (en) * 1987-11-11 1989-05-18 Nippon Tungsten Co., Ltd. Auxiliary sub-nozzle for fluid jet type loom and production thereof
JPH01237950A (en) * 1988-03-18 1989-09-22 Sharp Corp Magnetic recorder
US5068072A (en) * 1988-12-13 1991-11-26 Sumitomo Chemical Company, Limited Electrically conductive zirconia-based sintered body and process for the production thereof
JPH05117938A (en) * 1992-03-26 1993-05-14 Kyocera Corp Air jet nozzle for loom
WO2005092587A1 (en) * 2004-03-26 2005-10-06 Towa Corporation Method of evaluating adherence, material of low adherence and resin shaping die
KR100796883B1 (en) * 2004-03-26 2008-01-22 토와 가부시기가이샤 Method of evaluating adherence
KR100840831B1 (en) * 2004-03-26 2008-06-23 토와 가부시기가이샤 Resin shaping die
US7614293B2 (en) 2004-03-26 2009-11-10 Towa Corporation Method of evaluating adhesion property, low-adhesion material, and mold for molding resin
US20120076886A1 (en) * 2004-03-26 2012-03-29 Takaki Kuno Method of evaluating adhesion property, low-adhesion material, and mold for molding resin
CN111848163A (en) * 2020-07-30 2020-10-30 山东东大新材料研究院有限公司 Zirconia ceramic with adjustable resistivity, porosity and color and preparation method thereof
CN114737075A (en) * 2021-01-07 2022-07-12 湖南工业大学 Light wear-resistant conductive NbCr2Preparation method of/Mg composite material
CN114737075B (en) * 2021-01-07 2024-02-09 东莞市万优电子科技有限公司 Light wear-resistant conductive NbCr 2 Preparation method of Mg composite material

Also Published As

Publication number Publication date
JPH0351667B2 (en) 1991-08-07

Similar Documents

Publication Publication Date Title
US5697994A (en) PCD or PCBN cutting tools for woodworking applications
JP2660455B2 (en) Heat resistant hard sintered alloy
JPS60103078A (en) Electroconductive zirconia base sintering material and manufacture
KR101951316B1 (en) Cutting tools coated with hard film for heat resistant super alloy
JP4297987B2 (en) High-strength fine-grain diamond sintered body and tool using the same
US5409868A (en) Ceramic articles made of compositions containing borides and nitrides
EP1146025B1 (en) Wc-base composite ceramic sintered compact
CN112080678B (en) Ternary boride alloy screw material and production process thereof
JP4177468B2 (en) High hardness hard alloy and its manufacturing method
JPS5928628B2 (en) Surface coated cemented carbide tools
JP4409067B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
US5352533A (en) Ceramic composite body, process for producing a ceramic composite
JPH10310840A (en) Superhard composite member and its production
JPH11181540A (en) Hyperfine-grained cemented carbide
JPH0328172A (en) High toughness-and high hardness-sintered material
JP2627090B2 (en) Bonded body of boride ceramics and metal-based structural member and bonding method
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JP4428805B2 (en) Aluminum oxide-containing composite ceramic sintered body and coated composite ceramic sintered body
JPH0357066B2 (en)
JP3020663B2 (en) Seal
JP2009209022A (en) WC-SiC-Mo2C-BASED SINTERED BODY AND ITS MANUFACTURING METHOD
JPS6348825B2 (en)
JPH075384B2 (en) Cubic boron nitride based sintered body
JPS5928542A (en) Manufacture of sintered hard material for cutting tool
JP2003055729A (en) Sintered alloy material with excellent corrosion resistance and wear resistance, its manufacturing method, and member for machine structure using them

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees