KR101951316B1 - Cutting tools coated with hard film for heat resistant super alloy - Google Patents

Cutting tools coated with hard film for heat resistant super alloy Download PDF

Info

Publication number
KR101951316B1
KR101951316B1 KR1020170157928A KR20170157928A KR101951316B1 KR 101951316 B1 KR101951316 B1 KR 101951316B1 KR 1020170157928 A KR1020170157928 A KR 1020170157928A KR 20170157928 A KR20170157928 A KR 20170157928A KR 101951316 B1 KR101951316 B1 KR 101951316B1
Authority
KR
South Korea
Prior art keywords
comparative example
layer
minutes
hkl
weight
Prior art date
Application number
KR1020170157928A
Other languages
Korean (ko)
Inventor
이동열
오세웅
조성훈
조성우
안선용
김영흠
Original Assignee
한국야금 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국야금 주식회사 filed Critical 한국야금 주식회사
Priority to KR1020170157928A priority Critical patent/KR101951316B1/en
Application granted granted Critical
Publication of KR101951316B1 publication Critical patent/KR101951316B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23C2222/28Details of hard metal, i.e. cemented carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/10Coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

The present invention relates to a coated sintered alloy for a cutting tool and a cutting tool using the coated sintered alloy, which control components forming the sintered alloy and a microstructure of a binder and deposit coating of thermal resistance and abrasion resistance to be possible to be suitably used for a process of a workpiece having low thermal conductivity, such as Inconel or titanium.

Description

경질피막이 형성된 난삭재용 절삭공구 {CUTTING TOOLS COATED WITH HARD FILM FOR HEAT RESISTANT SUPER ALLOY}TECHNICAL FIELD [0001] The present invention relates to a cutting tool having a hard coating,

본 발명은 경질피막이 형성된 난삭재용 절삭공구에 관한 것으로, 보다 상세하게는 절삭공구의 모재를 형성하는 초경합금을 구성하는 성분, 바인더의 미세조직 등을 제어하고, 상기 초경합금 상에 형성되는 경질피막의 구조 및 조성을 제어함으로써, 인코넬이나 티타늄과 같이 열전도도가 낮은 피삭재의 가공에 적합하게 사용될 수 있도록 한 절삭공구에 관한 것이다.More particularly, the present invention relates to a cutting tool for a hard cutting material having a hard coating layer, and more particularly, to a cutting tool having a hard coating layer formed on the cemented carbide by controlling components constituting the cemented carbide forming the base material of the cutting tool, And a composition thereof, so that it can be suitably used for machining a workpiece having a low thermal conductivity such as inconel or titanium.

금속의 절삭 가공에 사용되는 내마모성 공구나 절삭 공구의 모재로는, 주로 초경합금(WC-Co 합금), TiC나 Ti(C,N) 등을 경질재로 사용하고 Co, Ni, Fe를 바인더로 사용한 써메트(cermet), 기타 세라믹 또는 고속도강 등이 사용된다.As a base material for abrasion-resistant tools and cutting tools used for metal cutting, mainly hard metal (WC-Co alloy), TiC or Ti (C, N) are used as hard materials and Co, Ni and Fe are used as binders Cermet, other ceramics or high-speed steel are used.

이중, 초경합금은 경질의 텅스텐 탄화물(WC) 입자가 인성이 우수한 코발트(Co), 니켈(Ni) 또는 철(Fe)과 같은 바인더 금속에 분산되어 있는 복합재료로, 경도가 높고 인성이 강하여 절삭공구 모재로 널리 사용되고 있다.The cemented carbide is a composite material in which hard tungsten carbide (WC) particles are dispersed in a binder metal such as cobalt (Co), nickel (Ni) or iron (Fe) excellent in toughness, It is widely used as base metal.

이러한 절삭공구용 모재의 내마모성, 인성, 고온특성과 같은 기계적 물성을 향상시키기 위하여 탄화바나듐(VC)과 같은 결정립 성장 억제재를 첨가하여 미립조직을 얻거나, 소결체 표면에 바인더 금속의 농도를 감소시키거나 부화시키는 것과 같은 미세조직 제어가 많이 사용되어 왔다.In order to improve the mechanical properties such as abrasion resistance, toughness and high temperature characteristics of the base metal for cutting tools, a grain growth inhibitor such as vanadium carbide (VC) is added to obtain a microstructure, or the concentration of the binder metal on the surface of the sintered body is reduced Micro-organ control such as incubation has been widely used.

한편, 인코넬(Inconel), 티타늄(Ti)과 같은 난삭재의 가공시에는 피가공재가 갖는 낮은 열전도도 때문에 절삭 가공 중에 공구의 변형이 급격하게 발생할 뿐 아니라, 강(steel), 주철 또는 스테인리스강에 비해 질긴 특성을 갖는 칩이 생성되기 때문에 칩에 의한 용착 탈락이 심해져 공구 수명이 현저하게 줄어드는 문제점이 있다.On the other hand, when machining hard materials such as Inconel and Ti, the deformation of the tool occurs rapidly during the cutting process due to the low thermal conductivity of the material to be processed, A chip having a tough characteristic is produced, so that the adhesion and detachment due to the chip become serious, and the tool life is remarkably reduced.

이러한 문제점을 개선하여 절삭공구의 수명을 연장시키기 위해서는, 절삭공구의 에지부의 표면 개선과 함께, 절삭공구 자체가 우수한 내소성변형성과 내용착성을 가질 필요가 있다.In order to improve such a problem and to prolong the life of the cutting tool, it is necessary that the cutting tool itself has excellent plastic deformation resistance and adhesion resistance together with the surface improvement of the edge portion of the cutting tool.

이를 위해, 하기 특허문헌에 개시된 바와 같이, 루테늄(Ru)과 같은 성분을 바인더에 포함시키는 방법이 제안되어 상당한 효과를 얻고 있으나, 개선의 여지가 많이 있다.To this end, as disclosed in the following Patent Document, a method of incorporating a component such as ruthenium (Ru) into a binder has been proposed, and a considerable effect has been obtained, but there is much room for improvement.

대한민국 공개특허공보 제10-2009-0121351호Korean Patent Publication No. 10-2009-0121351

본 발명은 내소성변형성과 내용착성이 우수한 절삭공구를 제공하는데 있다.An object of the present invention is to provide a cutting tool excellent in plastic deformation resistance and adhesive property.

상기 과제를 해결하기 위해 본 발명은, 초경합금 모재와, 이 초경합금 모재 상에 형성된 내마모층을 포함하고, 상기 초경합금 모재는, WC 70 ~ 92중량%와, W를 제외한 주기율표 중 4족, 5족, 6족 금속으로부터 선택되는 1종 이상의 금속의 탄화물, 탄질화물, 또는 이들의 혼합물을 포함하는 입성장억제제 0.1 ~ 2.0 중량%와, Co, Ni 및 Fe 중에서 선택된 1종 이상의 바인더 7.0 ~ 15.0중량%와, Ru, Gd, Re 중에서 선택된 1종 이상의 첨가제 0.2 ~ 2.0중량%를 포함하고, 상기 바인더는 Co를 포함하고, 상기 Co는 알파상의 면적비율이 70% 이상이고, 상기 Co의 격자상수는 3.6Å 이상이고, 상기 내마모층은 상기 모재 상에 형성되는 하부층과, 이 하부층 상에 형성되는 결합층층과, 상기 결합층 상에 형성된 상부층을 포함하고, 상기 하부층은 TiCxNy(x+y=1, x>0, y>0)층을 포함하여 이루어지고, 상기 결합층은, 상기 하부층 상에 순차적으로 형성되는, Ti1-aAlaCxNyOz(0.1≤a≤0.5, x+y+z=1, x>0, y>0, z>0)층을 포함하고, 상기 상부층은 아래 [식 1]로 표현되는 TC(006)이 2.0 이상인 알파-알루미나층을 포함하는, 절삭공구를 제공한다.In order to solve the above problems, the present invention provides a cemented carbide base material, comprising: a cemented carbide base material; and an abrasion resistant layer formed on the cemented carbide base material, wherein the cemented carbide base material comprises 70 to 92% by weight of WC, 0.1 to 2.0% by weight of a grain growth inhibitor comprising at least one metal selected from the group consisting of carbides, carbonitrides and mixtures thereof, and 7.0 to 15.0% by weight of at least one binder selected from the group consisting of Co, Ni and Fe, And 0.2 to 2.0% by weight of at least one additive selected from the group consisting of Ru, Gd and Re, the binder including Co, the area ratio of Co to the alpha phase being not less than 70%, and the lattice constant of Co being 3.6 and Å or more, the abrasion resistant layer comprises a top layer formed over said coupling layer, and a lower layer formed on the base material, and bonding tiered formed on the lower layer, the lower layer is a TiC x N y (x + y = 1, x > 0, y > 0) layer And, wherein the bond layer, which are sequentially formed on the lower layer, Ti 1-a Al a C x N y O z (0.1≤a≤0.5, x + y + z = 1, x> 0, y> 0 , z > 0) layer, said top layer comprising an alpha-alumina layer having a TC (006) of at least 2.0, expressed in the following formula:

[식 1][Formula 1]

TC(hkl) = I(hkl)/Io(hkl){1/nΣI(hkl)/Io(hkl)}-1 TC (hkl) = I (hkl) / Io (hkl) {1 / nSi (hkl) / Io (hkl)} -1

(여기서, I(hkl) = (hkl) 반사강도, Io(hkl) = JCPDS 카드 46-1212에 따른(Hkl) = (hkl) reflection intensity, Io (hkl) = according to JCPDS card 46-1212

표준 강도, n= 계산에 사용된 반사의 횟수, (hkl) 반사는 (012), (104), (110), (006), (113), (024) 및 (116)을 사용하는 것)Standard intensity, n = number of reflections used in the calculation, (hkl) reflections using (012), (104), (110), (006), (113), (024) and (116)

본 발명에 따른 절삭공구는, 상기와 같이 초경합금을 구성하는 경질상과 바인더의 조성을 한정하고, 바인더을 구성하는 코발트의 미세조직을 제어하고, 상기 초경합금 상에 형성되는 내마모층의 구조, 조성 및 결정구조를 제어함으로써, 인코넬(Inconel), 티타늄(Ti)과 같은 난삭재의 가공시 종래에 비해 향상된 내소성변형성 및 내용착성을 구현할 수 있다.The cutting tool according to the present invention is characterized in that the composition of the hard phase and the binder constituting the cemented carbide as described above is limited and the microstructure of the cobalt constituting the binder is controlled and the structure and composition of the wear resistant layer formed on the cemented carbide By controlling the structure, it is possible to realize improved plastic deformation resistance and resistance to wear when machining hard materials such as inconel (Inconel) and titanium (Ti).

또한, 본 발명의 실시형태에 따른 절삭공구는, 절삭공구의 인선 부분에 형성된 내마모층의 표면조도(Ra)를 4.0um 이하로 유지함으로써, 보다 우수한 내용착성을 얻을 수 있다.Further, in the cutting tool according to the embodiment of the present invention, by maintaining the surface roughness (Ra) of the abrasion-resistant layer formed on the cutting edge of the cutting tool at 4.0 μm or less, more excellent wear resistance can be obtained.

도 1은 Inconel 718 합금으로 이루어진 피삭재를 본 발명의 실시예 1 및 비교예 1에 따른 절삭공구를 사용하여 밀링 가공한 후 절삭공구의 상태를 비교한 것이다.
도 2는 Ti-6Al-4V 합금으로 이루어진 피삭재를 본 발명의 실시예 1 및 비교예 1에 따른 절삭공구를 사용하여 밀링 가공한 후 절삭공구의 상태를 비교한 것이다.
FIG. 1 is a view for comparing the state of a cutting tool after a workpiece made of Inconel 718 alloy is milled using a cutting tool according to Example 1 and Comparative Example 1 of the present invention.
FIG. 2 is a view for comparing the state of a cutting tool after a workpiece made of a Ti-6Al-4V alloy is milled using a cutting tool according to Example 1 and Comparative Example 1 of the present invention.

이하, 첨부 도면을 참조하여 본 발명의 실시예를 상세히 설명한다. 그러나 다음에 예시하는 본 발명의 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 상술하는 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the following embodiments of the present invention may be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.

본 발명에 따른 절삭공구는, 초경합금 모재와, 이 초경합금 모재 상에 형성된 내마모층을 포함하고, 상기 초경합금 모재는, WC 70 ~ 92중량%와, W를 제외한 주기율표 중 4족, 5족, 6족 금속으로부터 선택되는 1종 이상의 금속의 탄화물, 탄질화물, 또는 이들의 혼합물을 포함하는 입성장억제제 0.1 ~ 2.0 중량%와, Co, Ni 및 Fe 중에서 선택된 1종 이상의 바인더 7.0 ~ 15.0중량%와, Ru, Gd, Re 중에서 선택된 1종 이상의 첨가제 0.2 ~ 2.0중량%를 포함하고, 상기 바인더는 Co를 포함하고, 상기 Co는 알파상의 면적비율이 70% 이상이고, 상기 Co의 격자상수는 3.6Å 이상이고, 상기 내마모층은 상기 모재 상에 형성되는 하부층과, 이 하부층 상에 형성되는 결합층층과, 상기 결합층 상에 형성된 상부층을 포함하고, 상기 하부층은 TiCxNy(x+y=1, x>0, y>0)층을 포함하여 이루어지고, 상기 결합층은, 상기 하부층 상에 순차적으로 형성되는, Ti1-aAlaCxNyOz(0.1≤a≤0.5, x+y+z=1, x>0, y>0, z>0)층을 포함하고, 상기 상부층은 아래 [식 1]로 표현되는 TC(006)이 2.0 이상인 알파-알루미나층을 포함하는, 절삭공구를 제공한다.The cutting tool according to the present invention comprises a cemented carbide base material and an abrasion resistant layer formed on the cemented carbide base material, wherein the cemented carbide base material comprises 70 to 92% by weight of WC and 4 to 5, 6 to 6 0.1 to 2.0% by weight of a grain growth inhibitor comprising at least one metal selected from the group consisting of carbides, carbonitrides and mixtures thereof, 7.0 to 15.0% by weight of at least one binder selected from the group consisting of Co, Ni and Fe, 0.2 to 2.0 wt% of at least one additive selected from the group consisting of Ru, Gd and Re, the binder contains Co, the area ratio of Co to the alpha phase is not less than 70%, the lattice constant of Co is not less than 3.6 Å and wherein the abrasion resistant layer is the lower layer is a TiC x N y (x + y = 1, and includes a top layer formed on the coupling-tiered, and the bonding layer formed on the lower layer and this lower layer formed on the base material , x > 0, y > 0) layer, The bonding layer is formed of Ti 1-a Al a C x N y O z (0.1? A? 0.5, x + y + z = 1, x> 0, y> 0, z> 0) layer, and the upper layer comprises an alpha-alumina layer having a TC (006) of 2.0 or greater, expressed as [Equation 1] below.

[식 1][Formula 1]

TC(hkl) = I(hkl)/Io(hkl){1/nΣI(hkl)/Io(hkl)}-1 TC (hkl) = I (hkl) / Io (hkl) {1 / nSi (hkl) / Io (hkl)} -1

(여기서, I(hkl) = (hkl) 반사강도, Io(hkl) = JCPDS 카드 46-1212에 따른(Hkl) = (hkl) reflection intensity, Io (hkl) = according to JCPDS card 46-1212

표준 강도, n= 계산에 사용된 반사의 횟수, (hkl) 반사는 (012), (104), (110), (006), (113), (024) 및 (116)을 사용하는 것)Standard intensity, n = number of reflections used in the calculation, (hkl) reflections using (012), (104), (110), (006), (113), (024) and (116)

또한, 상기 WC는 그 함량이 70중량% 미만일 경우 고속절삭 조건 및 고경도 피삭재가공시 내열성이 부족으로 인하여 절삭공구의 변형이 빨리 올 수 있으며, WC 함량이 92중량%를 초과할 경우 절삭공구가 쉽게 손상될 수 있으므로, 70 ~ 92중량%가 바람직하다.If the content of WC is less than 70 wt%, the cutting tool may be deformed quickly due to insufficient heat resistance during high-speed cutting and high-hardness machining. If the WC content exceeds 92 wt%, the cutting tool It may be easily damaged, so that it is preferably 70 to 92% by weight.

또한, 상기 입성장억제제는 0.1중량% 미만일 경우 입성장 억제 효과 감소 및 고온 내소성변형성이 감소하여 고속, 연속조건에서 절삭공구의 변형이 쉽게 발생하는 단점을 가지게 되며, 2.0중량%를 초과할 경우 WC와 바인더와의 결합력이 떨어져 외부로부터 받는 충격에 WC와 바인더 간의 균열발생이 쉽게 일어나기 때문에 공구수명을 저하시킬 수 있다. 따라서 입성장억제제는 0.1 ~ 2.0중량%가 바람직하다.If the amount of the grain growth inhibitor is less than 0.1% by weight, the effect of inhibiting the growth of the grain is reduced and the plastic deformation resistance at high temperature is decreased. In this case, the cutting tool is easily deformed at high speed and continuous conditions. The bonding strength between the WC and the binder is low, so that the cracks between the WC and the binder easily occur due to the impact from the outside, which may reduce the tool life. Therefore, the amount of the grain growth inhibitor is preferably 0.1 to 2.0% by weight.

또한, 바인더를 구성하는 Co, Ni 및 Fe의 합계 함량이 7.0중량% 미만일 경우, WC 및 입성장억제제와의 결합력이 약하게 되어 절삭공구가 쉽게 손상되는 단점을 갖게 되며, 15.0중량%를 초과할 경우 WC 및 입성장억제제와의 경질상과의 결합력은 우수하나 충분한 내마모성을 확보하기 어려우므로, 7.0 ~ 15.0중량% 범위가 바람직하다.If the total content of Co, Ni and Fe constituting the binder is less than 7.0% by weight, the bonding force between the WC and the grain growth inhibitor becomes weak and the cutting tool is easily damaged. If the content exceeds 15.0% by weight WC and the grain growth inhibitor are excellent, but it is difficult to ensure sufficient abrasion resistance, so that the range of 7.0 to 15.0 wt% is preferable.

또한, 첨가제인 Ru, Gd, Re 중에서 선택된 1종 이상의 성분의 합이 0.2중량% 미만일 경우 결합상 고용강화 효과가 미비하여 내열균성성 억제 효과를 볼수 없고 2.0중량% 초과일 경우 결합상의 경도가 커지게 되어 인성이 저하되는 결과를 초래하므로, 0.2 ~ 2.0중량%가 바람직하다. 보다 바람직한 첨가제 함량은 1.5 ~ 2.0중량%이다.When the sum of one or more components selected from among Ru, Gd and Re as additives is less than 0.2% by weight, the effect of strengthening the solid phase in the solid phase is insufficient and the effect of suppressing the heat-resistant microbial property can not be obtained. And toughness is deteriorated. Therefore, it is preferably 0.2 to 2.0% by weight. A more preferable additive content is 1.5 to 2.0% by weight.

또한, 상기 입성장억제제로는 Cr3C2를 0.45 ~ 0.85중량%로 포함할 수 있는데, Cr3C2의 함량이 0.45중량% 미만일 경우 입성장 억제 효과가 미비하여 결합상의 강도 개선에 효과적이지 못하고, Cr3C2의 함량이 0.85 중량% 초과일 경우 입성장 억제 효과가 급격하게 일어나 경질상인 WC 입자의 미세화로 인한 합금의 취성이 증가하기 때문이다.Further, as the grain growth inhibitors are Cr 3 C 2 0.45 ~ 0.85 may comprise, by weight%, Cr 3 when the content of C 2 0.45% by weight is less than the insufficient the grain growth inhibiting effect be effective in strength improvements in bond If the content of Cr 3 C 2 is more than 0.85% by weight, the effect of inhibiting grain growth occurs sharply and the brittleness of the alloy due to refinement of the WC particles as the hard phase increases.

또한, 상기 바인더를 구성하는 Co는 경도가 우수한 알파상(HCP 구조)의 면적분율이 70% 이상인 것이 바람직하고, 상기 바인더의 격자상수는 3.6Å 이상인 것이 바람직한데, 알파상의 면적분율 및 바인더의 격자상수가 상기 수치 범위를 충족하지 못할 경우, 충분한 내소성변형성과 내용착성을 구현하기 어려울 수 있기 때문이다. 보다 바람직한 알파상의 면적분율은 72% 이상이다.It is preferable that Co constituting the binder has an area fraction of an alpha phase (HCP structure) having an excellent hardness of 70% or more, and the lattice constant of the binder is preferably 3.6 Å or more. The area fraction of the alpha phase and the lattice of the binder If the constant does not satisfy the above numerical range, it may be difficult to realize sufficient plastic deformation resistance and tack resistance. More preferably, the area fraction of the alpha phase is 72% or more.

또한, 상기 초경합금의 포화자화는 100 ~ 160 G·㎠/g인 것이 바람직한데, 포화자화가 상기 범위를 충족하지 못할 경우, 본 발명에서 요구하는 기계적 특성을 구현하기 어려울 수 있기 때문이다.The cemented carbide preferably has a saturation magnetization of 100 to 160 G · cm 2 / g. If the saturation magnetization does not satisfy the above range, it may be difficult to realize the mechanical properties required in the present invention.

또한, 상기 초경합금은 하기 식 1로 구해지는 SMS가 39~55%일 수 있다Further, the cemented carbide may have 39 to 55% of SMS obtained by the following formula

SMS = 소결체의 포화자화값×100/TMSSMS = saturation magnetization value of sintered body x 100 / TMS

(TMS = 2010×Co의 질량비)(TMS = mass ratio of 2010 × Co)

또한, 상기 하부층은 바람직하게 MT-Ti(C,N)층을 포함하여 이루어질 수 있다. 여기서, MT-Ti(C,N)(Moderate temperature-Ti(C,N))층이란 중고온의 750~900℃에서 TiCl4가스와 CH3CN을 포함하는 가스를 이용하여 화학증착반응(CVD)으로 티타늄탄질화물(TiCxNy(x+y=1, x>0, y>0)층을 증착시키는 것을 의미한다.In addition, the lower layer may preferably comprise a MT-Ti (C, N) layer. Here, the MT-Ti (C, N) layer is a chemical vapor deposition (CVD) process using a gas containing TiCl 4 gas and CH 3 CN at a temperature of 750 to 900 ° C. ) Means depositing a layer of titanium carbonitride (TiC x N y (x + y = 1, x> 0, y> 0)

또한, 상기 하부층의 총 두께는 1㎛ 미만일 경우, 절삭가공시 여유면 내마모성이 부족하고, 10㎛ 초과일 경우 인장응력을 가지는 MT-Ti(C,N)층이 너무 두꺼워져서 전체적으로 인성이 부족해지므로, 1 ~ 10㎛가 바람직하고, 2 ~ 5㎛가 보다 바람직하다.If the total thickness of the lower layer is less than 1 mu m, the abrasion resistance of the marginal surface during cutting is insufficient. When the thickness is more than 10 mu m, the MT-Ti (C, N) layer having tensile stress becomes too thick, , Preferably 1 to 10 mu m, and more preferably 2 to 5 mu m.

또한, 상기 하부층과 모재 사이에는, 선택적으로 Ti와 N을 포함하는 두께가 0.1 ~ 1㎛의 하지층이 추가로 형성될 수도 있다.In addition, a ground layer having a thickness of 0.1 to 1 占 퐉 may be additionally formed between the lower layer and the base metal, optionally including Ti and N.

또한, 상기 결합층을 구성하는 Ti1-aAlaCxNyOz(0.1≤a≤0.5, x+y+z=1, x>0, y>0, z>0)층은 그 두께가 0.1㎛ 미만이거나 1.0㎛ 초과일 경우 MT-Ti(C,N)층과 상부층으로 형성되는 알파-알루미나(α-Al2O3)층에 충분한 밀착력을 부여하기 어렵기 때문에 0.1 ~ 1.0㎛이 바람직하며, 보다 바람직한 두께는 0.2 ~ 0.6㎛이다.The layer of Ti 1-a Al a C x N y O z (0.1? A? 0.5, x + y + z = 1, x> 0, y> 0, z> alpha is a thickness of less than or 0.1㎛ when 1.0㎛ exceeds formed by MT-Ti (C, N) layer and the top layer - it is difficult to impart sufficient adhesive force to the layer of alumina (α-Al 2 O 3) 0.1 ~ 1.0㎛ And a more preferable thickness is 0.2 to 0.6 占 퐉.

또한, 상기 알파-알루미나(α-Al2O3)층은 고온에서 상변태가 일어나지 않는 안정한 산화물로 내산화성 향상에 중요한 역할을 하기 때문에 그 역할을 감당할 수 있을 정도의 두께가 되어야 하는데, 과도하게 두꺼워질 경우 인성이 저하되므로, 그 두께는 0.5 ~ 10㎛인 것이 바람직하다.The α-Al 2 O 3 layer is a stable oxide that does not undergo phase transformation at high temperatures and plays an important role in improving the oxidation resistance. Therefore, the thickness of the α-Al 2 O 3 layer should be large enough to cover its role. The toughness is lowered, so that the thickness is preferably 0.5 to 10 mu m.

또한, 상기 알파-알루미나(α-Al2O3)층은 TC(006)이 2.0 이상으로 (006) 방향으로 우선성장된 것이 본 발명에 따른 효과를 얻는데 유리하다.Further, the alpha-alumina layer (α-Al 2 O 3) is advantageously a TC (006), the first growth to a 2.0 or higher (006) orientation to obtain the effect according to the invention.

또한, 상기 내마모층은 절삭공구의 인선 부분에 형성된 내마모층의 표면조도(Ra)가 4.0㎛ 이하로 유지하는 것이 내용착성 향상에 바람직하다.It is preferable that the abrasion-resistant layer has a surface roughness (Ra) of the abrasion-resistant layer formed on the cutting edge of the cutting tool at 4.0 m or less.

이때, 인선 표면조도는 비접촉식 면조도 측정 장비를 이용하여 가로 1mm ×세로 20㎛ 영역에서 측정한 것을 기준으로 한다.At this time, the surface roughness of the wire is based on a measurement made in a region of 1 mm x 20 m using a non-contact surface roughness measuring apparatus.

또한, 상기 절삭공구 인선 부분에 형성된 내마모층의 표면조도(Ra)의 수치범위는 내마모층을 형성한 후 브러싱이나 메디아를 이용한 후처리를 통해 상기 범위의 표면조도(Ra)를 도달할 수 있다.The numerical range of the surface roughness (Ra) of the wear-resistant layer formed on the cutting tool edge portion may be such that the surface roughness Ra in the above range can be reached through brushing or after-treatment using the medium after forming the wear- have.

또한, 상기 알파-알루미나(α-Al2O3)층 상에 절삭공구의 마모여부를 확인할 수 있도록 추가로 TiN층이 형성될 수 있으며, 이때 절삭공구의 인선부에는 TiN층의 산화로 인한 내마모층의 손상을 최소화하기 위하여 상기 TiN층이 제거될 수 있다.In addition, a TiN layer may be further formed on the α-Al 2 O 3 layer so as to confirm wear of the cutting tool. In this case, The TiN layer may be removed to minimize damage to the wear layer.

[실시예][Example]

본 발명의 실시예에 따른 절삭공구에 사용된 모재인 초경합금은 다음과 같은 공정을 통해 제조하였으며, 본 발명의 실시예에 따른 모재와의 비교를 위하여 다양한 조성 및 공정에 따른 초경합금을 함께 제조하였다.The cemented carbide, which is the base material used for the cutting tool according to the embodiment of the present invention, was manufactured through the following process, and cemented carbides according to various compositions and processes were manufactured together for comparison with the base material according to the embodiment of the present invention.

이를 위해, 먼저 아래 표 1 ~ 4의 조성을 갖도록 초경합금 제조용 원료분말을 제조하였다. 아래 표 4에서 Ru+Re+Gd는 3성분이 균등하게 혼합되어 있는 상태를 의미한다.For this purpose, raw material powders for cemented carbide production were first prepared to have the compositions shown in Tables 1 to 4 below. In Table 4 below, Ru + Re + Gd means that the three components are evenly mixed.

구분division 조성 (중량%)Composition (% by weight) WC입도
(㎛)
WC particle size
(탆)
WC WC CoCo Cr3C2 Cr 3 C 2 RuRu 비교예1Comparative Example 1 89.489.4 10.010.0 0.60.6 0.00.0 2~62 to 6 비교예2Comparative Example 2 89.489.4 10.010.0 0.60.6 0.00.0 2~62 to 6 비교예3Comparative Example 3 89.489.4 10.010.0 0.60.6 0.00.0 2~62 to 6 비교예4Comparative Example 4 87.687.6 10.010.0 0.60.6 1.81.8 2~62 to 6 비교예5Comparative Example 5 87.687.6 10.010.0 0.60.6 1.81.8 2~62 to 6 비교예6Comparative Example 6 87.687.6 10.010.0 0.60.6 1.81.8 2~62 to 6 비교예7Comparative Example 7 89.489.4 10.010.0 0.60.6 0.00.0 2~62 to 6 실시예1Example 1 87.687.6 10.010.0 0.60.6 1.81.8 2~62 to 6 실시예2Example 2 87.687.6 10.010.0 0.60.6 1.81.8 2~62 to 6 실시예3Example 3 87.687.6 10.010.0 0.60.6 1.81.8 2~62 to 6 실시예4Example 4 87.687.6 10.010.0 0.60.6 1.81.8 2~62 to 6 비교예8Comparative Example 8 87.387.3 10.010.0 0.60.6 2.12.1 2~62 to 6 비교예9Comparative Example 9 89.389.3 10.010.0 0.60.6 0.10.1 2~62 to 6

구분division 조성 (중량%)Composition (% by weight) WC입도
(㎛)
WC particle size
(탆)
WC WC CoCo Cr3C2 Cr 3 C 2 ReRe 비교예10Comparative Example 10 87.787.7 10.010.0 0.50.5 1.81.8 2~62 to 6 비교예11Comparative Example 11 87.787.7 10.010.0 0.50.5 1.81.8 2~62 to 6 비교예12Comparative Example 12 87.787.7 10.010.0 0.50.5 1.81.8 2~62 to 6 비교예13Comparative Example 13 89.589.5 10.010.0 0.50.5 0.00.0 2~62 to 6 실시예5Example 5 87.787.7 10.010.0 0.50.5 1.81.8 2~62 to 6 실시예6Example 6 87.787.7 10.010.0 0.50.5 1.81.8 2~62 to 6 실시예7Example 7 87.787.7 10.010.0 0.50.5 1.81.8 2~62 to 6 실시예8Example 8 87.787.7 10.010.0 0.50.5 1.81.8 2~62 to 6 비교예14Comparative Example 14 87.487.4 10.010.0 0.50.5 2.12.1 2~62 to 6 비교예15Comparative Example 15 89.489.4 10.010.0 0.50.5 0.10.1 2~62 to 6

구분division 조성 (중량%)Composition (% by weight) WC입도
(㎛)
WC particle size
(탆)
WC WC CoCo Cr3C2 Cr 3 C 2 GdGd 비교예16Comparative Example 16 87.587.5 10.010.0 0.70.7 1.81.8 2~62 to 6 비교예17Comparative Example 17 87.587.5 10.010.0 0.70.7 1.81.8 2~62 to 6 비교예18Comparative Example 18 87.587.5 10.010.0 0.70.7 1.81.8 2~62 to 6 비교예19Comparative Example 19 89.389.3 10.010.0 0.70.7 0.00.0 2~62 to 6 실시예9Example 9 87.587.5 10.010.0 0.70.7 1.81.8 2~62 to 6 실시예10Example 10 87.587.5 10.010.0 0.70.7 1.81.8 2~62 to 6 실시예11Example 11 87.587.5 10.010.0 0.70.7 1.81.8 2~62 to 6 실시예12Example 12 87.587.5 10.010.0 0.70.7 1.81.8 2~62 to 6 비교예20Comparative Example 20 87.287.2 10.010.0 0.70.7 2.12.1 2~62 to 6 비교예21Comparative Example 21 89.289.2 10.010.0 0.70.7 0.10.1 2~62 to 6

구분division 조성 (중량%)Composition (% by weight) WC입도
(㎛)
WC particle size
(탆)
WC WC CoCo Cr3C2 Cr 3 C 2 Ru+Re+GdRu + Re + Gd 비교예22Comparative Example 22 87.587.5 10.010.0 0.70.7 1.81.8 2~62 to 6 비교예23Comparative Example 23 87.587.5 10.010.0 0.70.7 1.81.8 2~62 to 6 비교예24Comparative Example 24 87.587.5 10.010.0 0.70.7 1.81.8 2~62 to 6 비교예25Comparative Example 25 89.389.3 10.010.0 0.70.7 0.00.0 2~62 to 6 실시예11Example 11 87.587.5 10.010.0 0.70.7 1.81.8 2~62 to 6 실시예12Example 12 87.587.5 10.010.0 0.70.7 1.81.8 2~62 to 6 실시예13Example 13 87.587.5 10.010.0 0.70.7 1.81.8 2~62 to 6 실시예14Example 14 87.587.5 10.010.0 0.70.7 1.81.8 2~62 to 6 비교예26Comparative Example 26 87.287.2 10.010.0 0.70.7 2.12.1 2~62 to 6 비교예27Comparative Example 27 89.289.2 10.010.0 0.70.7 0.10.1 2~62 to 6

상기와 같이 준비된 원료분말에 초경 볼과 유기용매를 첨가하여 13시간 혼합 분쇄 이후 건조해 혼합분말을 얻었다. 얻어진 혼합분말을 가지고 RPMT1204-MF의 형상용 금형을 통해 2ton/㎠의 압력으로 프레스를 수행하여 성형체를 제조하였다.The cemented carbide balls and the organic solvent were added to the raw material powder prepared as described above, followed by mixing and grinding for 13 hours to obtain a mixed powder. The obtained mixed powder was pressed through a molding die of RPMT1204-MF at a pressure of 2 ton / cm2 to prepare a molded article.

다음으로, 600℃에서 탈지(dewaxing) 공정을 수행하여, 성형체 제조과정에 투입된 유기 바인더 성분을 제거한 후, 불활성 가스 분위기에서 1 ~ 2시간 동안 소결을 진행하고, 600℃까지 불활성 가스 분위기에서 소정의 냉각속도 냉각시킨 후, 자연냉각시키는 방법으로 소결공정을 수행하였으며, 아래 표 5 ~ 8은 각 실시예 및 비교예 들의 제조 공정조건을 나타낸 것이다.Next, a dewaxing process is performed at 600 ° C. to remove the organic binder component introduced in the process of forming the molded product, sintering the product in an inert gas atmosphere for 1 to 2 hours, The sintering process was carried out by a cooling method after the cooling rate was cooled. The following Tables 5 to 8 show the manufacturing process conditions of each of the Examples and Comparative Examples.

구분division 소결온도(℃)Sintering temperature (℃) 냉각속도(℃/min)Cooling speed (° C / min) 비교예1Comparative Example 1 13801380 33 비교예2Comparative Example 2 13801380 55 비교예3Comparative Example 3 13801380 77 비교예4Comparative Example 4 14201420 33 비교예5Comparative Example 5 14201420 55 비교예6Comparative Example 6 14201420 77 비교예7Comparative Example 7 15001500 77 실시예1Example 1 15001500 33 실시예2Example 2 15001500 55 실시예3Example 3 15001500 77 실시예4Example 4 15001500 1010 비교예8Comparative Example 8 15001500 1010 비교예9Comparative Example 9 15001500 1010

구분division 소결온도(℃)Sintering temperature (℃) 냉각속도(℃/min)Cooling speed (° C / min) 비교예10Comparative Example 10 14201420 33 비교예11Comparative Example 11 14201420 55 비교예12Comparative Example 12 14201420 77 비교예13Comparative Example 13 15001500 77 실시예5Example 5 15001500 33 실시예6Example 6 15001500 55 실시예7Example 7 15001500 77 실시예8Example 8 15001500 1010 비교예14Comparative Example 14 15001500 1010 비교예15Comparative Example 15 15001500 1010

구분division 소결온도(℃)Sintering temperature (℃) 냉각속도(℃/min)Cooling speed (° C / min) 비교예16Comparative Example 16 14201420 33 비교예17Comparative Example 17 14201420 55 비교예18Comparative Example 18 14201420 77 비교예19Comparative Example 19 15001500 77 실시예9Example 9 15001500 33 실시예10Example 10 15001500 55 실시예11Example 11 15001500 77 실시예12Example 12 15001500 1010 비교예20Comparative Example 20 15001500 1010 비교예21Comparative Example 21 15001500 1010

구분division 소결온도(℃)Sintering temperature (℃) 냉각속도(℃/min)Cooling speed (° C / min) 비교예22Comparative Example 22 14201420 33 비교예23Comparative Example 23 14201420 55 비교예24Comparative Example 24 14201420 77 비교예25Comparative Example 25 15001500 77 실시예11Example 11 15001500 33 실시예12Example 12 15001500 55 실시예13Example 13 15001500 77 실시예14Example 14 15001500 1010 비교예26Comparative Example 26 15001500 1010 비교예27Comparative Example 27 15001500 1010

본 발명의 실시예 및 비교예에 따라 제조된 초경합금의 바인더의 미세조직을 분석하기 위하여, EBSD(Electron Backscatter Diffraction) 분석을 실시하였으며, 아래 표 9~12는 분석결과를 나타낸 것이다.Electron Backscatter Diffraction (EBSD) analysis was performed to analyze the microstructure of the binder of the cemented carbide prepared according to the Examples and Comparative Examples of the present invention.

구분division 포화자화
(G·㎠/g)
Saturation magnetization
(G · cm 2 / g)
SMS
(%)
SMS
(%)
알파 Co 분율
(%)
Alpha Co fraction
(%)
Co 격자상수
(Å)
Co lattice constant
(A)
비교예1Comparative Example 1 184.0184.0 80.0 80.0 71.0 71.0 3.58313.5831 비교예2Comparative Example 2 180.0180.0 78.0 78.0 70.8 70.8 3.58443.5844 비교예3Comparative Example 3 175.0175.0 77.0 77.0 71.2 71.2 3.58923.5892 비교예4Comparative Example 4 168.0168.0 65.0 65.0 71.2 71.2 3.59003.5900 비교예5Comparative Example 5 164.0164.0 62.0 62.0 71.4 71.4 3.59143.5914 비교예6Comparative Example 6 162.0162.0 60.0 60.0 71.7 71.7 3.59173.5917 비교예7Comparative Example 7 178.0178.0 77.5 77.5 71.0 71.0 3.58903.5890 실시예1Example 1 154.0154.0 52.0 52.0 72.2 72.2 3.60213.6021 실시예2Example 2 135.0135.0 48.0 48.0 72.3 72.3 3.60673.6067 실시예3Example 3 125.0125.0 46.0 46.0 72.7 72.7 3.61073.6107 실시예4Example 4 115.0115.0 40.0 40.0 73.6 73.6 3.61223.6122 비교예8Comparative Example 8 112.0112.0 39.5 39.5 73.7 73.7 3.61303.6130 비교예9Comparative Example 9 170.0170.0 77.5 77.5 71.3 71.3 3.58913.5891

구분division 포화자화
(G·㎠/g)
Saturation magnetization
(G · cm 2 / g)
SMS
(%)
SMS
(%)
알파 Co 분율
(%)
Alpha Co fraction
(%)
Co 격자상수
(Å)
Co lattice constant
(A)
비교예10Comparative Example 10 169.0169.0 65.3 65.3 71.0 71.0 3.58473.5847 비교예11Comparative Example 11 167.0167.0 62.1 62.1 71.3 71.3 3.59103.5910 비교예12Comparative Example 12 163.0163.0 60.7 60.7 71.6 71.6 3.59123.5912 비교예13Comparative Example 13 178.0178.0 77.5 77.5 71.0 71.0 3.58903.5890 실시예5Example 5 155.0155.0 52.6 52.6 72.2 72.2 3.60183.6018 실시예6Example 6 138.0138.0 48.2 48.2 72.2 72.2 3.60413.6041 실시예7Example 7 128.0128.0 47.0 47.0 72.4 72.4 3.61003.6100 실시예8Example 8 116.0116.0 41.5 41.5 73.3 73.3 3.61193.6119 비교예14Comparative Example 14 115.0115.0 40.6 40.6 72.9 72.9 3.61273.6127 비교예15Comparative Example 15 172.0172.0 78.1 78.1 71.0 71.0 3.58883.5888

구분division 포화자화
(G·㎠/g)
Saturation magnetization
(G · cm 2 / g)
SMS
(%)
SMS
(%)
알파 Co 분율
(%)
Alpha Co fraction
(%)
Co 격자상수
(Å)
Co lattice constant
(A)
비교예16Comparative Example 16 170.0170.0 66.6 66.6 71.2 71.2 3.58513.5851 비교예17Comparative Example 17 166.0166.0 64.1 64.1 71.4 71.4 3.59233.5923 비교예18Comparative Example 18 161.0161.0 59.9 59.9 71.7 71.7 3.59413.5941 비교예19Comparative Example 19 178.0178.0 77.5 77.5 71.0 71.0 3.58903.5890 실시예9Example 9 155.0155.0 52.2 52.2 72.0 72.0 3.60003.6000 실시예10Example 10 136.0136.0 48.1 48.1 72.3 72.3 3.60673.6067 실시예11Example 11 124.0124.0 45.9 45.9 72.7 72.7 3.61543.6154 실시예12Example 12 114.0114.0 39.4 39.4 73.6 73.6 3.61573.6157 비교예20Comparative Example 20 116.0116.0 41.6 41.6 73.7 73.7 3.61813.6181 비교예21Comparative Example 21 171.0171.0 77.7 77.7 71.1 71.1 3.59003.5900

구분division 포화자화
(G·㎠/g)
Saturation magnetization
(G · cm 2 / g)
SMS
(%)
SMS
(%)
알파 Co 분율
(%)
Alpha Co fraction
(%)
Co 격자상수
(Å)
Co lattice constant
(A)
비교예22Comparative Example 22 166.0166.0 64.0 64.0 71.0 71.0 3.58783.5878 비교예23Comparative Example 23 163.0163.0 61.5 61.5 70.0 70.0 3.59043.5904 비교예24Comparative Example 24 161.0161.0 59.8 59.8 71.7 71.7 3.59303.5930 비교예25Comparative Example 25 178.0178.0 77.5 77.5 71.0 71.0 3.58903.5890 실시예11Example 11 154.0154.0 52.0 52.0 72.1 72.1 3.60313.6031 실시예12Example 12 135.0135.0 48.0 48.0 72.6 72.6 3.61103.6110 실시예13Example 13 125.0125.0 46.0 46.0 73.0 73.0 3.61393.6139 실시예14Example 14 115.0115.0 40.0 40.0 73.6 73.6 3.61483.6148 비교예26Comparative Example 26 112.0112.0 39.5 39.5 73.9 73.9 3.61513.6151 비교예27Comparative Example 27 170.0170.0 77.5 77.5 71.1 71.1 3.59313.5931

표 9 ~ 12에서 확인되는 바와 같이, 본 발명의 실시예에 따른 초경합금의 경우, Co의 알파상 비율이 72% 이상이었다. 이에 비해 비교예 1 ~ 7, 9 ~ 13, 15 ~ 19, 21 ~ 25 및 27은 Co에 있어서 알파상의 비율이 72% 미만으로 나타났다.As shown in Tables 9 to 12, in the case of the cemented carbide according to the embodiment of the present invention, the alpha phase ratio of Co was 72% or more. In contrast, Comparative Examples 1 to 7, 9 to 13, 15 to 19, 21 to 25 and 27 showed that the proportion of alpha phase in Co was less than 72%.

또한, 본 발명의 실시예에 따른 초경합금의 경우, Co의 격자상수가 3.6Å 이상으로 나타났으나, 비교예의 경우, 비교예 8, 14, 20 및 26을 제외한 나머지는 모두 3.6Å 미만의 값을 나타내었다.In addition, in the case of the cemented carbide according to the embodiment of the present invention, the lattice constant of Co is not less than 3.6 Å, but in the case of the comparative example, all the values except for Comparative Examples 8, 14, 20 and 26 are values less than 3.6 Å Respectively.

또한, 본 발명의 실시예에 따른 초경합금의 경우, SMS(%)는 39 ~ 55%의 범위에 속하나, 비교예의 경우, 비교예 8, 14, 20 및 26을 제외한 나머지는 모두 상기 범위를 벗어나는 값을 나타내었다.In the case of the cemented carbide according to the embodiment of the present invention, SMS (%) is in the range of 39 to 55%, but in the case of the comparative example, all of the values except for Comparative Examples 8, 14, 20 and 26 are values Respectively.

한편, 비교예 8, 14, 20 및 26의 경우, 첨가제의 함량이 2.0중량%를 초과하는 점에서 본 발명의 실시예들에 따라 제조한 초경합금과 차이가 있다.On the other hand, Comparative Examples 8, 14, 20 and 26 differ from the cemented carbide manufactured according to the embodiments of the present invention in that the additive content exceeds 2.0% by weight.

본 발명의 실시예 및 비교예에 따라 제조된 초경합금으로 인써트의 표면에는 다음과 같은 공정으로 경질피막을 형성하였다.A hard coating was formed on the surface of the insert with the cemented carbide manufactured according to the examples and comparative examples of the present invention by the following process.

초경합금 절삭 인서트에 850℃의 코팅로에서 TiCl4, H2, N2와 CH3CN, HCl을 이용하며 MT-CVD 기술을 사용하여 3㎛ 두께의 MT-TiCN 층을 코팅하였다.The MT-TiCN layer with a thickness of 3 μm was coated on the cemented carbide cutting insert by using MT-CVD technique using TiCl 4 , H 2 , N 2 , CH 3 CN and HCl in a coating furnace at 850 ° C.

동일한 코팅 사이클에서 AlCl3, TiCl4, N2, H2, CH4와 CO를 사용하여 1005℃에서 약 0.5㎛ 두께의 판상의 Ti1-aAlaCxNyOz(0.1≤a≤0.5, x+y+z=1, x>0, y>0, z>0)층을 형성한 후 1.5㎛의 α상의 알루미나를 형성하였다. In the same coating cycle, AlCl 3, TiCl 4, N 2 , H 2, CH 4 and in 1005 ℃ of the plate thickness of about 0.5㎛ Ti1 -a Al using CO a C x N y O z (0.1≤a≤0.5 , x + y + z = 1, x> 0, y> 0, z> 0).

상기 각 증착단계에서의 구체적인 공정 조건은 아래 표 13에 나타내었다.The specific process conditions at each deposition step are shown in Table 13 below.

단계step MT-TiCNMT-TiCN Ti1-aAlaCxNyOz Ti1 -a Al a C x N y O z α-Al2O3 alpha -Al 2 O 3 TiCl4 TiCl 4 1~5%1 to 5% 1.5~2%1.5 to 2% -- N2 N 2 0~10%0 to 10% 2~10%2 to 10% -- CH4 CH 4 -- 2%2% -- CO2 CO 2 -- 0~1%0 to 1% 3.5%3.5% COCO 0~3%0 to 3% 1.5%1.5% 0~2%0 to 2% AlCl3 AlCl 3 -- 2~4%2 to 4% 2.5%2.5% H2SH 2 S -- -- 0.5~2%0.5 to 2% HClHCl 1~3%1 to 3% -- 1~3%1 to 3% CH3CNCH 3 CN 0.5~2%0.5 to 2% -- -- H2 H 2 나머지Remainder 나머지Remainder 나머지Remainder 압력pressure 8,000 Pa8,000 Pa 10,000 Pa10,000 Pa 6,000 Pa6,000 Pa 온도Temperature 880℃880 ℃ 1,010℃1,010 ° C 1,010℃1,010 ° C 시간time 3hr3hr 0.5 hr0.5 hr 2 hr2 hr

이와 같이 경질피막을 형성한 후에는, 후처리를 통해 절삭공구의 인선 부분에 형성된 내마모층의 표면조도(Ra)가 4.0㎛ 이하가 되도록 조절하였다.After the formation of the hard coating, the surface roughness (Ra) of the wear resistant layer formed on the cutting edge of the cutting tool was adjusted to 4.0 m or less through post treatment.

이상과 같이 경질피막이 형성된 인써트를 다음과 같은 절삭가공 조건으로 내마모성을 평가하였다.The abrasion resistance of the insert with the hard coating was evaluated under the following cutting conditions.

- 가공방식: 밀링- Machining method: Milling

- 피삭재: Inconel 718 - Workpiece: Inconel 718

- Vc(절삭속도): 30mm/min- Vc (cutting speed): 30 mm / min

- fn(이송속도): 0.18mm/min- fn (feed rate): 0.18 mm / min

- ap(절입깊이): 0.8mm- ap (infeed depth): 0.8mm

- 건/습식: 습식(wet)- dry / wet: wet

- 가공방식: 밀링- Machining method: Milling

- 피삭재: Ti-6Al-4V 합금- Workpiece: Ti-6Al-4V alloy

- Vc(절삭속도): 40mm/min- Vc (cutting speed): 40 mm / min

- fn(이송속도): 0.18mm/min- fn (feed rate): 0.18 mm / min

- ap(절입깊이): 1.2mm- ap (infeed depth): 1.2mm

- 건/습식: 습식(wet)- dry / wet: wet

도 1은 Inconel 718 합금으로 이루어진 피삭재를 본 발명의 실시예 1과 비교예 1에 따른 절삭공구를 사용하여 가공한 후 절삭공구의 상태를 비교한 것이고, 도 2는 Ti-6Al-4V 합금으로 이루어진 피삭재를 본 발명의 실시예 1과 비교예 1에 따른 절삭공구의 상태를 비교한 것이다.FIG. 1 is a graph comparing the state of a cutting tool after machining a workpiece made of Inconel 718 alloy with a cutting tool according to Example 1 of the present invention and Comparative Example 1, and FIG. 2 is a graph showing the state of a cutting tool made of a Ti-6Al- The workpiece is compared with the state of the cutting tool according to the first embodiment and the first comparative example of the present invention.

도 1 및 도 2에서 확인되는 바와 같이, 비교예에 따른 절삭공구는 가공 시에 파손이 많이 관찰되나, 본 발명의 실시예에 따른 절삭공구는 비교예에 비해 가공 후 상태가 매우 양호하여, Inconel 718 및 Ti-6Al-4V 합금과 같이 열전도도가 낮은 합금의 가공에 적합함을 알 수 있다.As can be seen from FIGS. 1 and 2, the cutting tool according to the comparative example shows much breakage at the time of machining, but the cutting tool according to the embodiment of the present invention has a better machining condition than the comparative example, 718 and Ti-6Al-4V alloys, which have a low thermal conductivity.

아래 표 14~17은 본 발명의 실시예 및 비교예에 따라 제조된 경질피막이 형성된 인써트의 절삭시험 결과를 정리한 것이다.Tables 14 to 17 below summarize the results of the cutting test of the hard coated insert prepared according to Examples and Comparative Examples of the present invention.

구분division 공구수명 Ti-6Al-4V
(가공시간, 분)
Tool life Ti-6Al-4V
(Processing time, minute)
공구수명 Inconel 718
(가공시간, 분)
Tool life Inconel 718
(Processing time, minute)
비교예1Comparative Example 1 15분15 minutes 10분10 minutes 비교예2Comparative Example 2 16분16 minutes 11분11 minutes 비교예3Comparative Example 3 19분19 minutes 13분13 minutes 비교예4Comparative Example 4 20분20 minutes 17분17 minutes 비교예5Comparative Example 5 23분23 minutes 18분18 minutes 비교예6Comparative Example 6 26분26 minutes 20분20 minutes 비교예7Comparative Example 7 19분19 minutes 12분12 minutes 실시예1Example 1 30분30 minutes 27분27 minutes 실시예2Example 2 37분37 minutes 34분34 minutes 실시예3Example 3 45분45 minutes 41분41 minutes 실시예4Example 4 50분50 minutes 43분43 minutes 비교예8Comparative Example 8 25분25 minutes 17분17 minutes 비교예9Comparative Example 9 20분20 minutes 15분15 minutes

구분division 공구수명 Ti-6Al-4V
(가공시간, 분)
Tool life Ti-6Al-4V
(Processing time, minute)
공구수명 Inconel 718
(가공시간, 분)
Tool life Inconel 718
(Processing time, minute)
비교예10Comparative Example 10 19분19 minutes 15분15 minutes 비교예11Comparative Example 11 24분24 minutes 19분19 minutes 비교예12Comparative Example 12 25분25 minutes 15분15 minutes 비교예13Comparative Example 13 19분19 minutes 12분12 minutes 실시예5Example 5 31분31 minutes 25분25 minutes 실시예6Example 6 33분33 minutes 33분33 minutes 실시예7Example 7 41분41 minutes 40분40 minutes 실시예8Example 8 50분50 minutes 41분41 minutes 비교예14Comparative Example 14 23분23 minutes 15분15 minutes 비교예15Comparative Example 15 17분17 minutes 12분12 minutes

구분division 공구수명 Ti-6Al-4V
(가공시간, 분)
Tool life Ti-6Al-4V
(Processing time, minute)
공구수명 Inconel 718
(가공시간, 분)
Tool life Inconel 718
(Processing time, minute)
비교예16Comparative Example 16 19분19 minutes 12분12 minutes 비교예17Comparative Example 17 24분24 minutes 19분19 minutes 비교예18Comparative Example 18 25분25 minutes 20분20 minutes 비교예19Comparative Example 19 19분19 minutes 12분12 minutes 실시예9Example 9 31분31 minutes 30분30 minutes 실시예10Example 10 35분35 minutes 33분33 minutes 실시예11Example 11 44분44 minutes 39분39 minutes 실시예12Example 12 51분51 minutes 47분47 minutes 비교예20Comparative Example 20 22분22 minutes 13분13 minutes 비교예21Comparative Example 21 17분17 minutes 10분10 minutes

구분division 공구수명 Ti-6Al-4V
(가공시간, 분)
Tool life Ti-6Al-4V
(Processing time, minute)
공구수명 Inconel 718
(가공시간, 분)
Tool life Inconel 718
(Processing time, minute)
비교예22Comparative Example 22 21분21 minutes 17분17 minutes 비교예23Comparative Example 23 22분22 minutes 18분18 minutes 비교예24Comparative Example 24 26분26 minutes 20분20 minutes 비교예25Comparative Example 25 19분19 minutes 12분12 minutes 실시예11Example 11 31분31 minutes 28분28 minutes 실시예12Example 12 35분35 minutes 35분35 minutes 실시예13Example 13 45분45 minutes 40분40 minutes 실시예14Example 14 51분51 minutes 42분42 minutes 비교예26Comparative Example 26 26분26 minutes 15분15 minutes 비교예27Comparative Example 27 19분19 minutes 12분12 minutes

표 14 ~ 17에서 확인되는 바와 같이, 본 발명의 실시예에 따라 제조된 초경합금으로 이루어진 절삭공구는 비교예에 따라 제조된 초경합금으로 이루어진 절삭공구에 비해 현저하게 향상된 공구수명을 나타내었다.As can be seen in Tables 14 to 17, the cutting tool made of the cemented carbide manufactured according to the embodiment of the present invention exhibited remarkably improved tool life as compared with the cutting tool made of the cemented carbide manufactured according to the comparative example.

Claims (7)

초경합금 모재와, 이 초경합금 모재 상에 형성된 내마모층을 포함하고,
상기 초경합금 모재는, WC 70 ~ 92중량%와, W를 제외한 주기율표 중 4족, 5족, 6족 금속으로부터 선택되는 1종 이상의 금속의 탄화물, 탄질화물, 또는 이들의 혼합물을 포함하는 입성장억제제 0.1 ~ 2.0 중량%와, Co, Ni 및 Fe 중에서 선택된 1종 이상의 바인더 7.0 ~ 15.0중량%와, Ru, Gd, Re 중에서 선택된 1종 이상의 첨가제 0.2 ~ 2.0중량%를 포함하고, 상기 바인더는 Co를 포함하고, 상기 Co는 알파상의 면적비율이 70% 이상이고, 상기 Co의 격자상수는 3.6Å 이상이고,
상기 내마모층은 상기 모재 상에 형성되는 하부층과, 이 하부층 상에 형성되는 결합층층과, 상기 결합층 상에 형성된 상부층을 포함하고,
상기 하부층은 TiCxNy(x+y=1, x>0, y>0)층을 포함하여 이루어지고,
상기 결합층은, 상기 하부층 상에 순차적으로 형성되는, Ti1-aAlaCxNyOz(0.1≤a≤0.5, x+y+z=1, x>0, y>0, z>0)층을 포함하고,
상기 상부층은 아래 [식 1]로 표현되는 TC(006)이 2.0 이상인 알파-알루미나층을 포함하는, 절삭공구.
[식 1]
TC(hkl) = I(hkl)/Io(hkl){1/nΣI(hkl)/Io(hkl)}-1
(여기서, I(hkl) = (hkl) 반사강도, Io(hkl) = JCPDS 카드 46-1212에 따른
표준 강도, n= 계산에 사용된 반사의 횟수, (hkl) 반사는 (012), (104), (110), (006), (113), (024) 및 (116)을 사용하는 것)
A cemented carbide base material and an abrasion resistant layer formed on the cemented carbide base material,
Wherein the cemented carbide base material comprises 70 to 92% by weight of WC and at least one of a carbide, a carbonitride or a mixture of at least one metal selected from Group 4, Group 5 and Group 6 metals in the periodic table excluding W, 0.1 to 2.0% by weight of a binder, 7.0 to 15.0% by weight of at least one binder selected from the group consisting of Co, Ni and Fe and 0.2 to 2.0% by weight of at least one additive selected from Ru, Gd and Re, Wherein the area ratio of the Co phase to the alpha phase is not less than 70%, the lattice constant of the Co is not less than 3.6 A,
Wherein the abrasion resistant layer comprises a lower layer formed on the base material, a bonding layer formed on the lower layer, and an upper layer formed on the bonding layer,
Wherein the lower layer comprises a layer of TiC x N y (x + y = 1, x> 0, y> 0)
The bond layer, which are sequentially formed on the lower layer, Ti 1-a Al a C x N y O z (0.1≤a≤0.5, x + y + z = 1, x> 0, y> 0, z > 0) layer,
Wherein the upper layer comprises an alpha-alumina layer having a TC (006) of 2.0 or greater as represented by the following formula (1).
[Formula 1]
TC (hkl) = I (hkl) / Io (hkl) {1 / nSi (hkl) / Io (hkl)} -1
(Hkl) = (hkl) reflection intensity, Io (hkl) = according to JCPDS card 46-1212
Standard intensity, n = number of reflections used in the calculation, (hkl) reflections using (012), (104), (110), (006), (113), (024) and (116)
제1항에 있어서,
상기 입성장억제제로 Cr3C2 0.45 ~ 0.85중량%를 포함하는 것을 특징으로 하는, 절삭공구.
The method according to claim 1,
Wherein the grain growth inhibitor comprises 0.45 to 0.85% by weight of Cr 3 C 2 .
제1항에 있어서,
상기 절삭공구의 포화자화는 100 ~ 160 G·㎠/g 인 것을 특징으로 하는, 절삭공구.
The method according to claim 1,
And the saturation magnetization of the cutting tool is 100 to 160 G · cm 2 / g.
제1항에 있어서,
상기 Co의 알파상의 면적비율이 72% 이상인 것을 특징으로 하는, 절삭공구.
The method according to claim 1,
And the area ratio of the alpha phase of the Co is 72% or more.
제1항에 있어서,
상기 초경합금의 SMS는 39 ~ 55%인 것을 특징으로 하는, 절삭공구.
The method according to claim 1,
Characterized in that the SMS of the cemented carbide is between 39 and 55%.
제1항에 있어서,
상기 내마모층은 인선 부분의 면조도가 4.0㎛ 이하인, 절삭공구.
The method according to claim 1,
Wherein the abrasion resistant layer has a surface roughness of 4.0 탆 or less.
제1항에 있어서,
상기 알파-알루미나층의 상부에 추가로 TiN층을 포함하고, 인선부에서 상기 TiN층이 제거된, 절삭공구.
The method according to claim 1,
Further comprising a TiN layer on top of the alpha-alumina layer, wherein the TiN layer is removed from the tin section.
KR1020170157928A 2017-11-24 2017-11-24 Cutting tools coated with hard film for heat resistant super alloy KR101951316B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170157928A KR101951316B1 (en) 2017-11-24 2017-11-24 Cutting tools coated with hard film for heat resistant super alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170157928A KR101951316B1 (en) 2017-11-24 2017-11-24 Cutting tools coated with hard film for heat resistant super alloy

Publications (1)

Publication Number Publication Date
KR101951316B1 true KR101951316B1 (en) 2019-06-03

Family

ID=66848890

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170157928A KR101951316B1 (en) 2017-11-24 2017-11-24 Cutting tools coated with hard film for heat resistant super alloy

Country Status (1)

Country Link
KR (1) KR101951316B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102265210B1 (en) * 2019-12-24 2021-06-15 한국야금 주식회사 Cutting tools having improved toughness
KR102265819B1 (en) * 2019-12-24 2021-06-16 한국야금 주식회사 Cutting insert for heat resistant alloy
KR20210097308A (en) * 2020-01-30 2021-08-09 한국야금 주식회사 Hard film for cutting tools
US11421307B2 (en) * 2019-12-19 2022-08-23 Tungaloy Corporation Cemented carbide and coated cemented carbide, and tool including same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050110822A (en) * 2004-05-19 2005-11-24 한국야금 주식회사 Sintered body of wc-co alloys having high toughness and heat resistance
KR20090053934A (en) * 2006-09-22 2009-05-28 하.체. 스타르크 게엠베하 Metal powder
WO2009119682A1 (en) * 2008-03-26 2009-10-01 京セラ株式会社 Cutting tool
KR20090121351A (en) 2007-03-16 2009-11-25 티디와이 인더스트리스, 인코포레이티드 Compositearticles
KR20120002137A (en) * 2010-06-30 2012-01-05 한국야금 주식회사 Sintered body of hardmetal cemented carbide and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050110822A (en) * 2004-05-19 2005-11-24 한국야금 주식회사 Sintered body of wc-co alloys having high toughness and heat resistance
KR20090053934A (en) * 2006-09-22 2009-05-28 하.체. 스타르크 게엠베하 Metal powder
KR20090121351A (en) 2007-03-16 2009-11-25 티디와이 인더스트리스, 인코포레이티드 Compositearticles
WO2009119682A1 (en) * 2008-03-26 2009-10-01 京セラ株式会社 Cutting tool
KR20120002137A (en) * 2010-06-30 2012-01-05 한국야금 주식회사 Sintered body of hardmetal cemented carbide and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11421307B2 (en) * 2019-12-19 2022-08-23 Tungaloy Corporation Cemented carbide and coated cemented carbide, and tool including same
KR102265210B1 (en) * 2019-12-24 2021-06-15 한국야금 주식회사 Cutting tools having improved toughness
KR102265819B1 (en) * 2019-12-24 2021-06-16 한국야금 주식회사 Cutting insert for heat resistant alloy
KR20210097308A (en) * 2020-01-30 2021-08-09 한국야금 주식회사 Hard film for cutting tools
KR102395885B1 (en) * 2020-01-30 2022-05-09 한국야금 주식회사 Hard film for cutting tools

Similar Documents

Publication Publication Date Title
KR101859644B1 (en) Sintered alloy for cutting tools and cutting tools for heat resistant alloy
JP6677932B2 (en) Surface coated cutting tool that demonstrates excellent chipping and wear resistance in heavy interrupted cutting
KR101951316B1 (en) Cutting tools coated with hard film for heat resistant super alloy
JP5308426B2 (en) Cemented carbide and cutting tools
US20190076920A1 (en) Sintered material and method of manufacturing the same
JP2013255986A (en) Cutting tool of cubic crystal boron nitride based sintered material
EP1829990A1 (en) Coated cermet cutting tool and use thereof
KR101529726B1 (en) Coated cutting insert for milling applications
WO2010104094A1 (en) Cermet and coated cermet
JP5031182B2 (en) Cemented carbide
CN111286661A (en) High-temperature alloy machining tool and application thereof
JP2011156645A (en) Surface-coated cutting tool made of wc-based cemented carbide excellent in thermal plastic deformation resistance
JP5381616B2 (en) Cermet and coated cermet
JPH10237650A (en) Wc base cemented carbide and its production
KR102395885B1 (en) Hard film for cutting tools
KR101640644B1 (en) Titanium sintered alloy with improved thermal impact resistance and cutting tools using the same
JPS5928628B2 (en) Surface coated cemented carbide tools
JP2004223666A (en) Cutting tool for rough machining
KR20120055026A (en) Cemented carbide having good wear resistance and chipping resistance
JP5424935B2 (en) Surface coating tool
KR101816712B1 (en) Cutting tools having hard coated layer
JP2020132971A (en) Cemented carbide and cutting tool
JPH0271906A (en) Surface coated tungsten carbide base sintered hard alloy made cutting tool excellent in plastic deformation resistance
JP2020033597A (en) TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL
KR102450430B1 (en) Cemented carbide for cutting tools