JPS60102714A - Evaporative cooling type gas insulating electrical apparatus - Google Patents
Evaporative cooling type gas insulating electrical apparatusInfo
- Publication number
- JPS60102714A JPS60102714A JP20980483A JP20980483A JPS60102714A JP S60102714 A JPS60102714 A JP S60102714A JP 20980483 A JP20980483 A JP 20980483A JP 20980483 A JP20980483 A JP 20980483A JP S60102714 A JPS60102714 A JP S60102714A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- boundary surface
- cooling duct
- evaporative cooling
- cooling type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/08—Cooling; Ventilating
- H01F27/10—Liquid cooling
- H01F27/18—Liquid cooling by evaporating liquids
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transformer Cooling (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の技術分野〕 本発明は、蒸発冷却式ガス絶縁電気装置1%に。[Detailed description of the invention] [Technical field of invention] The present invention reduces evaporative cooling type gas insulated electrical equipment to 1%.
その冷却器中の非凝縮性気体と冷媒蒸気との境界面の制
御に関するものである。This invention relates to the control of the interface between non-condensable gas and refrigerant vapor in the cooler.
従来、作動時内部発熱する電気機器において、その内部
発熱を放熱する効率のよい手段として、比重の異なる非
凝縮性気体と相変化を伴う冷媒とを利用し且つ冷却器内
の非凝縮性気体を排出するようにした。いわゆる、蒸発
冷却式ガス絶縁方式があるが、その−例を示すと、第1
図のとおりである。Conventionally, in electrical equipment that generates internal heat during operation, as an efficient means to dissipate the internal heat, non-condensable gases with different specific gravities and refrigerants with phase changes have been used, and the non-condensable gas in the cooler has been used. I tried to eject it. There is a so-called evaporative cooling type gas insulation system.
As shown in the figure.
図において1発熱を伴なう電気機器/がタンクコの中に
収納されており、冷却器3とタンクコとは上下の各ヘッ
ダーtIa、+bを介して連通している。また、タンク
コ内には非凝縮性の気体9(以下、ガスと称す)と熱の
授受に際して気液相変化をする冷媒とがある割合で充填
されており、液相冷媒左はタンク底部に溜っていて、こ
れを液体ポンプ乙により、配管7を通じてタンクコ内へ
吐出させ、発熱する電気機器lへ散布する。電気機器l
に散布された液相冷媒Sの一部は電気機器/よりの熱を
奪うと同時に気化して冷媒蒸気gとなるが、この冷媒蒸
気gの比重がガス9の比重もより大きくなるように冷媒
及びガスが選定されているので、冷媒蒸気ざは下方に沈
んで停滞すると共に下部連通管/、2及び下部へッダー
グbを通じて冷却ダクト10にも入って行く。従って、
この冷却り”クトlOにて、例えば送風機//により放
熱され、放熱と同時に冷媒蒸気gの液化が生じて、冷却
器の放熱能力に応じた放熱が、この冷媒を熱輸送体とし
て行なわれる。また、冷却器3に入ってくるガス9は、
上記ヘッダー+aとタンクコとを連通する上部連通管/
グに設けた逆止弁l左、気体ポンプl乙により、タンク
ユヘ排出される。In the figure, an electrical device that generates heat is housed in a tanker, and the cooler 3 and the tanker communicate with each other via upper and lower headers tIa and +b. In addition, the tank is filled with a certain ratio of non-condensable gas 9 (hereinafter referred to as gas) and a refrigerant that undergoes a gas-liquid phase change when heat is transferred, and the liquid phase refrigerant on the left accumulates at the bottom of the tank. This liquid is discharged into the tank tank through piping 7 by a liquid pump B, and sprayed onto electric equipment L that generates heat. electrical equipment l
A part of the liquid phase refrigerant S sprayed on the electrical equipment absorbs heat from the electrical equipment and at the same time vaporizes to become refrigerant vapor g. and gas are selected, the refrigerant vapor sinks downward and stagnates, and also enters the cooling duct 10 through the lower communication pipes 2 and 2 and the lower header b. Therefore,
In this cooling section, heat is radiated by, for example, an air blower, and at the same time as the heat is radiated, the refrigerant vapor g is liquefied, and heat is radiated according to the heat radiating capacity of the cooler using the refrigerant as a heat transporter. Also, the gas 9 entering the cooler 3 is
Upper communication pipe that communicates the above header +a with the tanker/
The gas is discharged to the tank by the check valve l on the left and the gas pump l.
このように、電気機器lが負荷をとって発熱をしており
、また、液相冷媒Sが液体ポンプ乙により配管りを通じ
てタンクコ内に散布されて電気機器lにそそがれると、
液相冷媒の一部は気化して冷媒蒸気gとなる。従って、
タンクコ及び冷却器3内に封入された非凝縮性気体9は
冷媒蒸気より比重が小さいために、この比重差により冷
媒蒸気gは下方に沈み、ガス9は上方に溜まる。このよ
うにして冷媒蒸気tとガスヂどの境界面13が発生し、
境界面13の高さは負荷が大である程上方へ移動する。In this way, when the electrical equipment 1 is generating heat due to the load, and when the liquid phase refrigerant S is sprayed into the tank tank through the piping by the liquid pump B and poured into the electrical equipment 1,
A part of the liquid phase refrigerant is vaporized and becomes refrigerant vapor g. Therefore,
Since the non-condensable gas 9 sealed in the tanker and cooler 3 has a lower specific gravity than the refrigerant vapor, the refrigerant vapor g sinks downward and the gas 9 accumulates upward due to this difference in specific gravity. In this way, an interface 13 between the refrigerant vapor t and the gas is generated,
The height of the boundary surface 13 moves upward as the load increases.
ここで気体ポンプIAを作動させると、冷却器3内上部
のガスヂは逆止弁ihが設けられた上部連通管/+を通
じてタンクコ内へ移送され、それに替って冷媒蒸気ざが
冷却ダクトl。When the gas pump IA is operated, the gas in the upper part of the cooler 3 is transferred into the tanker through the upper communication pipe /+ provided with the check valve ih, and the refrigerant vapor flows into the cooling duct l instead.
の上方にまで入ってくる。この状態では冷媒蒸気gは冷
却ダクトIO内に充満するので冷却ダクト10の全域に
亘って冷媒蒸気gの凝縮が行なわれ、冷却器3は効率の
良い熱交換をすることができる。It comes up to the top. In this state, the refrigerant vapor g fills the cooling duct IO, so that the refrigerant vapor g is condensed over the entire area of the cooling duct 10, and the cooler 3 can perform efficient heat exchange.
しかしながら、このような従来装置においては、気体ポ
ンプlAを1車続運転した場合、電気機器lの負荷が軽
い状態においては、液相冷媒の藤発量も小さいために、
下方に停滞している冷媒蒸気gをもすべて吸い上げてし
まい、更には、タンクコ内のガスまでも吸い上げろよう
にもなり、却って放熱能力の低下をきたすことになると
いう欠点を有している。また、気体ポンプ16を一定間
隔をおいて運転したとしても、電気機器lの負荷変動が
激しい場合には、間欠運転の適正な時[津間隔を見つけ
出すことはきわめて困難であるという欠点も有している
。However, in such a conventional device, when one gas pump 1A is operated in series, the amount of liquid phase refrigerant released is small when the load of the electrical equipment 1 is light.
This has the disadvantage that it sucks up all of the refrigerant vapor g stagnant below, and even sucks up the gas inside the tank, which actually reduces the heat dissipation ability. Furthermore, even if the gas pump 16 is operated at regular intervals, it has the disadvantage that it is extremely difficult to find the appropriate interval for intermittent operation if the load on the electrical equipment is subject to large fluctuations. ing.
本発明は上記の従来装置の欠点を取り除き、冷却器の放
冷状態を如何なる負荷条件においても常に適正な状態に
保つようにした蒸発冷却式ガス絶縁電気装置を得ること
を目的としてなされたものであって、そのために、冷却
ダクト内に存在する冷媒蒸気と非凝縮性気体との境界面
を検知する検知装置、及び、上記境界面が別個に設定さ
れる基準境界面に一致するように気体ポンプの作動を制
御する制御装置を設けることにより、冷却器を常時最適
状態におく蒸発冷却式ガス絶縁電気装置を提供するもの
である。The present invention has been made for the purpose of eliminating the drawbacks of the above-mentioned conventional devices and providing an evaporative cooling type gas insulated electrical device that always maintains the cooling condition of the cooler in an appropriate state under any load conditions. For this purpose, there is a detection device for detecting the interface between refrigerant vapor and non-condensable gas existing in the cooling duct, and a gas pump so that the interface coincides with a separately set reference interface. By providing a control device for controlling the operation of the evaporative cooling type gas insulated electric device, the cooler is always kept in an optimal state.
以下1本発明をその一実施例を示す第2図に、基づいて
説明する。The present invention will be explained below based on FIG. 2 showing one embodiment thereof.
図において、冷却器3には境界面13を検知するセンサ
ーを有する検知装置、2/を取り付けており、このセン
サーからの信号を、気体ポンプ/乙の運転、停止を制御
する制御装置22に入力し。In the figure, the cooler 3 is equipped with a detection device 2/ that has a sensor that detects the boundary surface 13, and a signal from this sensor is input to the control device 22 that controls the operation and stop of the gas pump/B. death.
この制御装置2コにより気体ポンプ/Aの駆動制御をす
るものであり、常時境界m13を冷却が適正にできるよ
うに、境界面の位置決めをする。These two control devices control the drive of the gas pump/A, and position the boundary surface so that the boundary m13 can be properly cooled at all times.
第2図に示す境界面13の検知装置、2/の−例の詳細
を示すと第3図のとおりであって、この検知装置−2/
は、冷却ダクトIO内に一定間隔をおいて設けられた複
数個、例えば、5個のセンサー例えば、熱電対3/a、
31b、、3/C,3/(1゜、? t 6と次に述べ
るリード線3.2とから成り、この熱電対3/a〜3/
eの熱起電力はリード線3aにより制御装置ユコヘ入力
される。また、符号33はハーメチツクシールテアル。The details of the example of the detection device 2/ of the boundary surface 13 shown in FIG. 2 are as shown in FIG.
is a plurality of sensors, for example, five sensors, for example, thermocouples 3/a, provided at regular intervals in the cooling duct IO.
31b, 3/C, 3/(1°,?t 6 and lead wires 3.2 described below, and these thermocouples 3/a to 3/
The thermoelectromotive force e is inputted to the control device Yuco through the lead wire 3a. Also, numeral 33 is a hermetic seal.
今、冷却ダク)/・ワ内の境界面/3の高さをり。Now, the height of the boundary surface in the cooling duct)/3.
とすると、このときの熱電対3/&〜3/eが設けられ
ている位置Aから位置Eまでの温度分布は例えば第4図
のようになる。すなわち、蒸気の充満している部分であ
る高さh/では温度はほとんど一定して高くなっており
、境界面13より上方のガスデのある部分では急激に温
度が低くなる。Then, the temperature distribution from position A to position E where thermocouples 3/& to 3/e are provided is as shown in FIG. 4, for example. That is, at the height h/, which is a portion filled with steam, the temperature is almost constant and high, and in a portion where there is gas above the boundary surface 13, the temperature suddenly decreases.
従って、位置Aから位置Eまでの熱電対3/a〜3/e
の起電力をみると、位置A、B、Cにある熱電対、?
/ a 、 3 / b 、 3/ Cでは大きく1位
置り、Eにある熱電対3/ld、3/eでは急激に小さ
くなり、温度の落差Tを生じているので、このことから
、位置Cと位置りとの間に境界面/3があることを検知
することができる。Therefore, thermocouples 3/a to 3/e from position A to position E
Looking at the electromotive force of the thermocouples at positions A, B, and C, ?
/ a , 3 / b , 3 / C has a large 1 position, and thermocouples 3 / ld and 3 / e at E suddenly become smaller, causing a temperature drop T. From this, from this, the position C It is possible to detect that there is an interface /3 between and the position.
従って、このようにして境界面13が検知できるので、
電気機器lの負荷条件によって制御装置により設定され
る基準境界面の高さ例えばhaの高さにまで上記の境界
面/ 、?を引き上げる必要があるが、この場合には、
位置りと位置Eとの間に起電力の落差Tが発生するよう
に、気体ポンプ16を作動させて、上方にあるガスタを
タンクコ内へ排気する制御を行なえばよい。Therefore, since the boundary surface 13 can be detected in this way,
The height of the reference boundary surface set by the control device according to the load conditions of the electrical equipment l, for example, up to the height of the above boundary surface /,? needs to be raised, but in this case,
The gas pump 16 may be operated to exhaust the gas above into the tank so that a drop T in electromotive force is generated between the positions E and E.
なお、上記実施例では、検知装置コ/のセンサーとして
、冷却ダクトIO中に配役の熱電対を用いたが、これに
限るものではなく、冷却ダクトlOの外壁において検測
してもよく、また、熱電対以外のセンサーにより検測す
るようにしてもよい。In the above embodiment, a thermocouple placed in the cooling duct IO was used as the sensor of the detection device, but the thermocouple is not limited to this, and the measurement may be performed on the outer wall of the cooling duct IO. , the measurement may be performed using a sensor other than a thermocouple.
本発明は、上記のように冷却ダクト内の非凝縮性気体と
冷媒蒸気との境界面を検知装置によって検知すると共に
、別に設定される基準境界面を設定し、これと上記検知
装置により検知した上記境界面とを対比し、且つ、この
両者が一致するように気体ポンプを作動させる制御装置
を設けて制御するようにしたので、電気機器の負荷条件
に対して最適の位置に上記境界面を移動させることがで
き、従って、冷却器を如何なる負荷条件においても常に
適正な放冷状態におくことのできる蒸発冷却式ガス絶縁
装置を得ることができる効果を有している。The present invention detects the interface between the non-condensable gas and the refrigerant vapor in the cooling duct using the detection device as described above, and also sets a reference interface that is set separately, and detects the interface between the non-condensable gas and the refrigerant vapor in the cooling duct by using this and the detection device. A control device is provided to operate the gas pump to compare the above boundary surface and match the two, so the above boundary surface can be placed at the optimal position for the load conditions of the electrical equipment. This has the effect of providing an evaporative cooling type gas insulating device that can be moved and, therefore, can always keep the cooler in an appropriate cooling state under any load conditions.
第1図は従来の蒸発冷却式ガス給線電気装置の概略断面
図、第2図は本発明装置の一実施例の概略断面図、第3
図は第2図の要部詳細断面図、第4図は第2図に示す装
置とその冷媒蒸気の高さ一温度線図との対応説明図であ
る。
l・・電気機器、コ・・タンク、3・・冷却器、Qa・
・上部ヘッダー、グb・・下部ヘッダー、!・・液相冷
媒1g・・冷媒蒸気、9・・非凝縮性気体(ガス)、l
θ・・冷却ダクト、13・・境界面、/り・・上部連通
管、ls・・逆止弁。
16・・気体ポンプ、コ/・・検知装置5.2コ・・制
御装置、3/a〜31e・・センサー(熱電対)、3λ
・ ・ リード線。
なお、各図中、同一符号は同−又は相当部分を示す。
代理人 曽 我 道 照
手続補正書「自発」
昭和59.飄、 η0 「
特許庁長官殿
1、事件の表示
昭和!1年特許願第コOりto44 号2、発明の名称
蒸発冷却式ガス絶縁電気装置
3、補正をする者
名 称 (601)三菱電機株式会社
代表者 片 山 仁へ部
4、代理人
住 所 東京都千代田区丸の内二丁目4番1号丸の内ビ
ルディング4階
5、補正の対象
パ炉;〕\
aa*o″′A峠1姥”lρじ、・・′・−\!、、、
5g 、、 、o)
・、4.7nテi;7二−7ノ
が■ (1)
褒潜
6、補正の内容
[明細書をつぎのとおり訂正する。FIG. 1 is a schematic sectional view of a conventional evaporative cooling type gas feed line electric device, FIG. 2 is a schematic sectional view of an embodiment of the device of the present invention, and FIG.
The figure is a detailed sectional view of the main part of FIG. 2, and FIG. 4 is an explanatory diagram of the correspondence between the apparatus shown in FIG. 2 and its refrigerant vapor height-temperature diagram. l...electrical equipment, co...tank, 3...cooler, Qa...
-Top header, gb...Bottom header,!・・Liquid phase refrigerant 1g・・Refrigerant vapor, 9・・Noncondensable gas (gas), 1
θ...Cooling duct, 13...Boundary surface, /...Upper communication pipe, ls...Check valve. 16... Gas pump, ko/... Detection device 5.2 ko... Control device, 3/a~31e... Sensor (thermocouple), 3λ
· · Lead. In each figure, the same reference numerals indicate the same or corresponding parts. Agent So Ga Dosho Proceedings Amendment ``Voluntary'' 1982.飄、η0 ``Dear Commissioner of the Japan Patent Office 1, Indication of the case Showa! 1st year patent application No. 44 2, Name of the invention Evaporative cooling type gas insulated electrical device 3, Name of the person making the amendment (601) Mitsubishi Electric Co., Ltd. Representative: Hitoshi Katayama, Department 4, Agent address: 4th floor, 5th floor, Marunouchi Building, 2-4-1 Marunouchi, Chiyoda-ku, Tokyo; Parrot subject to correction: \ aa*o″′A-toge 1姥” lρji,・・′・−\!,,,
5g,, ,o) ・,4.7nte;72-7ノ■ (1) Award 6, Contents of amendment [The specification is amended as follows.
Claims (1)
器から発生する熱を外部へ放熱する冷却器とによって構
成されると共に、タンク内に非凝縮性の気体と、その蒸
気比重が上記非凝縮性気体より大きく且つ気液相変化を
伴う冷媒とが充填されており、上記冷却器が複数の直立
した冷却ダクトと該冷却ダクトの上下両端にそれぞれの
冷却ダクトを連通し且つタンクとを上部及び下部連通管
によって連通している上部及び下部へラダーとを設け2
上部連通管の管路の途中に非凝縮性気体を上部へラダー
よりタンク内に向ってのみ通気する逆止弁と非凝縮性気
体を上部へラダーからタンク内へ排出する気体ポンプと
を設けている蒸発冷却式ガス絶縁電気装置において、冷
却ダクト内に存在する冷媒蒸気と非凝縮性気体との境界
面を検知する検知装置、及び、上記境界面が設定される
基準境界面に一致するように気体ポンプの作動を制御す
る制御装置を設けていることを特徴とする蒸発冷却式ガ
ス絶縁電気装置。 −)設定される基準境界面が、電気装置の負荷条件に対
応して設定される特許請求の範囲第7項に記載の蒸発冷
却式ガス絶縁電気装置。 (,71境界面の検知装置が、冷却ダクト内の温度及び
冷却ダクト外壁の温度のいずれか一方を測定し、この温
度により境界面の位置を特徴とする特許請求の範囲第1
項又は第2項に記載の蒸発冷却式ガス絶縁電気装置。(1) Consisting of electrical equipment, a tank that houses the electrical equipment, and a cooler that radiates heat generated from the electrical equipment to the outside, the tank contains a non-condensable gas and its vapor specific gravity is the non-condensable gas. The cooler is filled with a refrigerant that is larger than a gas and undergoes a gas-liquid phase change. A ladder is provided to the upper and lower parts communicating through the lower communicating pipe 2
A check valve that vents non-condensable gas only from the ladder to the top and into the tank is provided in the middle of the upper communication pipe, and a gas pump that discharges the non-condensable gas from the ladder to the top and into the tank. In the evaporative cooling type gas insulated electrical equipment, there is a detection device that detects the interface between the refrigerant vapor and the non-condensable gas existing in the cooling duct, and a detection device that detects the interface between the refrigerant vapor and the non-condensable gas that exists in the cooling duct, and a detection device that detects the interface between the refrigerant vapor and the non-condensable gas that exists in the cooling duct, and An evaporative cooling type gas insulated electrical device characterized by being provided with a control device for controlling the operation of a gas pump. -) The evaporative cooling type gas insulated electrical device according to claim 7, wherein the set reference boundary surface is set in accordance with the load condition of the electrical device. (,71 Claim 1 in which the boundary surface detection device measures either the temperature inside the cooling duct or the temperature of the outer wall of the cooling duct, and the position of the boundary surface is characterized by this temperature.
The evaporative cooling type gas insulated electrical device according to item 1 or 2.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20980483A JPS60102714A (en) | 1983-11-10 | 1983-11-10 | Evaporative cooling type gas insulating electrical apparatus |
US06/668,872 US4562702A (en) | 1983-11-10 | 1984-11-06 | Evaporation cooled gas insulated electrical apparatus |
DE8484307808T DE3473081D1 (en) | 1983-11-10 | 1984-11-12 | An evaporation cooled gas insulated electrical apparatus |
EP84307808A EP0142972B1 (en) | 1983-11-10 | 1984-11-12 | An evaporation cooled gas insulated electrical apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20980483A JPS60102714A (en) | 1983-11-10 | 1983-11-10 | Evaporative cooling type gas insulating electrical apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60102714A true JPS60102714A (en) | 1985-06-06 |
Family
ID=16578871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20980483A Pending JPS60102714A (en) | 1983-11-10 | 1983-11-10 | Evaporative cooling type gas insulating electrical apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60102714A (en) |
-
1983
- 1983-11-10 JP JP20980483A patent/JPS60102714A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5583437B2 (en) | Vacuum environment test equipment | |
US20120034369A1 (en) | Vaporizing apparatus, substrate processing apparatus, coating and developing apparatus, and substrate processing method | |
TW201805582A (en) | Thermosiphons for use with temperature-regulated storage devices | |
JP2004233007A (en) | Vent gas condenser | |
US3512412A (en) | Liquid level indicating device | |
JPS60102714A (en) | Evaporative cooling type gas insulating electrical apparatus | |
JPH02134549A (en) | Heat exchange measurement method and apparatus | |
EP0142972B1 (en) | An evaporation cooled gas insulated electrical apparatus | |
US3878690A (en) | Liquid transfer system | |
JP2016121865A (en) | Cooling device and electronic apparatus with the same | |
WO2013008753A1 (en) | Humidity sensor | |
JPS6242296Y2 (en) | ||
JP2005291889A (en) | Mirror surface cooling type sensor | |
JP3999758B2 (en) | Cooling device and mirror cooled sensor | |
JPS6298192A (en) | Heat transfer device | |
JPS59122871A (en) | Method of preventing crystallization of absorption refrigerator | |
JPS621591Y2 (en) | ||
JPH0218006B2 (en) | ||
JPS62139015A (en) | Cooling method for electronic equipment | |
JPS6266065A (en) | Liquid-return preventive method of refrigerator | |
WO2020138082A1 (en) | Evaporator and loop-type heat pipe | |
JPH0472597A (en) | Decay heat removing device for high temperature gas-cooled reactor | |
JP2001349506A (en) | Drum level measuring instrument | |
JPS5910656Y2 (en) | water-cooled lighting system | |
JPH0536097B2 (en) |