JPS63297983A - Cryogenic cold reserving device - Google Patents

Cryogenic cold reserving device

Info

Publication number
JPS63297983A
JPS63297983A JP62131223A JP13122387A JPS63297983A JP S63297983 A JPS63297983 A JP S63297983A JP 62131223 A JP62131223 A JP 62131223A JP 13122387 A JP13122387 A JP 13122387A JP S63297983 A JPS63297983 A JP S63297983A
Authority
JP
Japan
Prior art keywords
gas
liquefied gas
cold
cold storage
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62131223A
Other languages
Japanese (ja)
Inventor
Norihide Saho
典英 佐保
Yukiyoshi Yoshimatsu
吉松 幸祥
Tadashi Takada
忠 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62131223A priority Critical patent/JPS63297983A/en
Publication of JPS63297983A publication Critical patent/JPS63297983A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/17Re-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PURPOSE:To perform a cryogenic cold reserving operation only with supplying of gas and make facility less expensive without supplying any liquefied gas by a method wherein gas is supplied from outside into a cold reserving tank and the gas is cooled down to condense. CONSTITUTION:A flange 5 is fixed with a refrigerator 6 and a cold station 7 for the refrigerator 6 is stored within a cold receiving tank 1. Another opening is fixed with a lid 14 and a body to be cooled, for example a base plate 16 supported on the lid 14 through a support 15 is stored within the cold reserving tan k1. Further, another opening is fixed with a cylindrical feeding pipe 8 which is guided into the cold reserving tank 1. A side of the coolant gas conduit 10 facing to the surrounding atmosphere is provided with a flow rate regulator valve 11 and a pressurizing machine 12 in sequence and the end part of the pipe is provided with an air inlet port. Air sucked from the air inlet port 13 into the pressurizing machine 12 is pressurized, sent to the absorbing unit 9 and then the purified gas is supplied to the cold reserving tank 1. At this time, the purified gas is cooled by liquefied gas while passing through the coolant gas conduit 10, liquefied therein and then becomes a liquefied gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は低温保冷装置に係り、特にコンピュータのCP
Uやメモリ等を冷却するのに好適な低温保冷装置に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a low temperature cooling device, and particularly to a computer CPU.
The present invention relates to a low temperature cooling device suitable for cooling U, memory, etc.

〔従来の技術〕[Conventional technology]

従来の冷却装置、例えば、電子素子を実装したCPUや
メモリを極低温に冷却して動作させる極低温コンピュー
タの冷却装置としては、アイ・イー・イー・イー、トラ
ンザクション オン エレクトロン ディバイシス、E
D−34No、1 (1987年)第4頁から第7頁(
I、 E E E  TRANSA CTl0NS O
N ELECTRON [1EVICES、 VOL、
 E D −34、No、I  JANVARY198
7.PP4−7)において論じられている。
Conventional cooling devices, such as cooling devices for cryogenic computers that operate by cooling CPUs and memory mounted with electronic elements to extremely low temperatures, are available from IE, Transactions on Electron Devices, and E.
D-34 No. 1 (1987) pages 4 to 7 (
I, E E E TRANSA CTl0NS O
N ELECTRON [1EVICES, VOL,
ED-34, No, I JANVARY198
7. PP4-7).

また、この種の装置として関連するものには例えば米国
特許第4223540号明細書等が挙げられる。
Further, related devices of this type include, for example, US Pat. No. 4,223,540.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は冷却媒体の供給の点について配慮されて
おらず、保冷槽内の冷却媒体である液化ガスを供給また
は補充するのに液体ガスを供給しており、そのため液化
ガスを貯蔵した液化ガスタンクが必要になり、設備費が
掛かるという問題があった。
The above conventional technology does not take into consideration the supply of the cooling medium, and instead supplies liquid gas to supply or replenish the liquefied gas that is the cooling medium in the cold storage tank, so the liquefied gas tank storing the liquefied gas There was a problem in that this required equipment costs.

本発明の目的は、設備費が安価で、簡単に冷媒ガスを供
給することのできる低温保冷装置を提供することにある
An object of the present invention is to provide a low-temperature cold storage device that has low equipment costs and can easily supply refrigerant gas.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、液化ガスを貯蔵する保冷槽と、保冷槽の外
側に断熱空間を形成する外槽と、液化ガスのガスを供給
する供給手段とj液化ガスで冷却されガスを精製して供
給する吸着器と、保冷槽内のガスを凝縮する冷却手段と
から構成することにより、達成される。
The above purpose is to provide a cold storage tank for storing liquefied gas, an outer tank for forming a heat insulating space on the outside of the cold storage tank, a supply means for supplying liquefied gas, and a purified gas cooled by the liquefied gas for supply. This is achieved by comprising an adsorber and a cooling means for condensing the gas in the cold storage tank.

〔作   用〕[For production]

保冷槽内の液化ガスによって冷却された吸着器を介して
、供給手段によって外部から保冷槽内にガスを供給し、
冷凍機によって該ガスを冷却して凝縮させる。これによ
り、液化ガスを供給することなく、ガスの供給だけです
み設備費が安価で、簡単に冷媒ガスを供給できる。
Supplying gas from the outside into the cold storage tank by a supply means through an adsorption device cooled by the liquefied gas in the cold storage tank,
The gas is cooled and condensed by a refrigerator. As a result, the equipment cost is low and refrigerant gas can be easily supplied without supplying liquefied gas and requiring only gas supply.

〔実 施 例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

外槽3内に保冷槽1を設け、外槽3と保冷槽1との間に
断熱空間2、この場合は、真空断熱空間を形成し、上部
にフランジ5を取り付けて容器を形成する。
A cold storage tank 1 is provided in an outer tank 3, a heat insulation space 2, in this case, a vacuum heat insulation space, is formed between the outer tank 3 and the cold storage tank 1, and a flange 5 is attached to the upper part to form a container.

フランジ5には、この場合、開口部が3ケ所設けてあり
、一つには冷凍機6を取り付け、冷凍機6のコールドス
テージ璽ン7を保冷槽l内に収納し、他方の開口部には
蓋14を取り付け、蓋14にサポート15を介して支持
した被冷却体、例えば、電子素子を実装したCPUやメ
モリを取り付けた基板16が保冷槽l内に収納しである
。この場合、基板16は保冷槽1内に貯蔵した液化ガス
4中に侵潰してあり、基板16に接続されたリード線1
7はi14を貫通して外部に引き出され、外部に設けた
インタフェイス18に接続される。
In this case, the flange 5 has three openings; the refrigerator 6 is attached to one, the cold stage seal 7 of the refrigerator 6 is housed in the cold storage tank l, and the other opening is provided with a refrigerator 6. A lid 14 is attached, and an object to be cooled supported by the lid 14 via a support 15, such as a board 16 with a CPU mounted with an electronic element or a memory mounted thereon, is housed in the cold storage tank l. In this case, the substrate 16 is crushed in the liquefied gas 4 stored in the cold storage tank 1, and the lead wire 1 connected to the substrate 16 is
7 passes through i14 and is drawn out to the outside, and is connected to an interface 18 provided outside.

さらに他方の開口部には筒状の導入管8を取り付け、常
温から液化ガス温度までの間に固化点を有するガスを吸
着する活性炭を充填した吸着器9を途中に設けた冷媒ガ
ス導管10が導入管8内を通って保冷槽l内に導いであ
る。吸着器9は導入管8部に挿入され、隙間はシールし
密封しである。
Furthermore, a cylindrical introduction pipe 8 is attached to the other opening, and a refrigerant gas conduit 10 is provided with an adsorber 9 filled with activated carbon that adsorbs gases that have a solidification point between room temperature and liquefied gas temperature. It passes through the introduction pipe 8 and is led into the cold storage tank l. The adsorber 9 is inserted into the introduction pipe 8, and the gap is sealed.

導入管8は熱侵入を防ぐため薄肉の材料で形成され、液
化ガスの液面下まで導いてあり、吸着器9も液化ガス4
内に漬けである。
The introduction pipe 8 is made of a thin-walled material to prevent heat from entering, and is led to below the surface of the liquefied gas.
It is pickled inside.

冷媒ガス導管10の大気側には流量調整弁11および加
圧機12が順次取り付けられ、端部には空気取入口が設
けである。流量調整弁11および加圧機12はそれぞれ
制御装置22に接続され、さらに制御装置22には保冷
槽1内に設けた液面計21と、保冷槽1内の圧力を測定
する圧力計19と、コールドステーション7に設はコー
ルドステーション7の温度を測定する温度計を有した熱
負荷装置20とが接続しである。
A flow rate regulating valve 11 and a pressurizer 12 are sequentially attached to the atmospheric side of the refrigerant gas conduit 10, and an air intake port is provided at the end. The flow rate adjustment valve 11 and the pressurizer 12 are each connected to a control device 22, and the control device 22 further includes a liquid level gauge 21 provided inside the cold storage tank 1, a pressure gauge 19 that measures the pressure inside the cold storage tank 1, A heat load device 20 having a thermometer for measuring the temperature of the cold station 7 is connected to the cold station 7 .

上記構成の装置により、空気取入口13から加圧機12
に吸込まれた空気が加圧され、流量制御弁11を介して
吸着器9に送られ、水分、炭酸ガス、炭化水素ガス等の
不純ガスが吸着除去されて精製された酸素および窒素の
混合ガス、または酸素も吸着除去した窒素ガスが保冷槽
1内に供給される。このとき、精製されたガスは冷媒ガ
ス導管10を通過する際に液化ガスで冷やされ液化して
液化ガスとなる。
With the device having the above configuration, the air intake port 13 can be connected to the pressurizer 12.
The air sucked into is pressurized and sent to the adsorber 9 via the flow rate control valve 11, where impurity gases such as moisture, carbon dioxide, and hydrocarbon gas are adsorbed and removed to produce a purified mixed gas of oxygen and nitrogen. , or nitrogen gas from which oxygen has also been adsorbed and removed is supplied into the cold storage tank 1 . At this time, when the purified gas passes through the refrigerant gas conduit 10, it is cooled by liquefied gas and liquefied to become liquefied gas.

また、保冷槽1内の液化ガス4が蒸発したガスは保冷槽
1内の液化ガス4液面上の空間に充満しており、冷凍4
516で冷却されたコールドステージ璽ンによって冷や
され凝縮して液化し、液化ガス4となる。
In addition, the evaporated gas of the liquefied gas 4 in the cold storage tank 1 fills the space above the liquid level of the liquefied gas 4 in the cold storage tank 1, and
At step 516, the gas is cooled and condensed and liquefied by the cooled cold stage tube to become liquefied gas 4.

なお、これら精製ガスの供給および冷凍4I!6の運転
にあたっては、流血計21および圧力計19さらに熱負
荷装置20に設けられた温度計からの情報を制御装置2
2に取り込んで、制御装置22によって行なわれる。
In addition, these purified gas supplies and refrigeration 4I! 6, information from the blood flow meter 21, pressure gauge 19, and thermometer provided in the heat load device 20 is transmitted to the control device 2.
2 and executed by the control device 22.

例えば、保冷槽1内の液化ガスは外部からのわずかな熱
侵入によって少しずつ蒸発し、保冷槽1上部に溜まる。
For example, the liquefied gas in the cold storage tank 1 evaporates little by little due to slight heat intrusion from the outside and accumulates in the upper part of the cold storage tank 1.

この間、蒸発した低温ガスはコールドヘッド7で再凝縮
され液化ガスとなり、これを繰り返す、このとき、保冷
槽1内での液化ガス量が安定するように、すなわち、保
冷槽1内の低温ガス圧力が一定するように、低温ガス圧
力を圧力計19によって測定し、コールドステージ璽ン
7で凝縮され液化ガスとなる量を熱負荷装置20を制御
装置22によって制御する。なお、この場合、熱負荷装
置20に内股した温度計から制御装置22に信号が送ら
れ、加温温度を制御するようになっている。
During this time, the evaporated low-temperature gas is recondensed in the cold head 7 and becomes liquefied gas, and this process is repeated. The low-temperature gas pressure is measured by a pressure gauge 19 so that the pressure of the low-temperature gas is constant, and the amount that is condensed into liquefied gas in the cold stage tube 7 is controlled by the heat load device 20 and the control device 22. In this case, a signal is sent from a thermometer installed in the heat load device 20 to the control device 22 to control the heating temperature.

また、この制御において、コールドステーション7の温
度が大気圧での液化ガスの沸点温度よりもかなり低い場
合には保冷槽内の圧力は負圧となるので、この場合、圧
力計18の信号を制御装置22が受けて熱負荷装置20
を作動させ、コールドステーション7を加温する。また
、熱負荷装置20に設けた温度計の測定値が液化ガスの
沸点温度よりも充分低く、なおかつ、保冷槽1内の圧力
が増加する場合は、コールドステーション7の凝縮面で
液化ガスが固化しているので、熱負荷装置20を作動さ
せてコールドステーション7を加温し固化ガスを溶かし
、凝縮面を再生する。
In addition, in this control, if the temperature of the cold station 7 is considerably lower than the boiling point temperature of the liquefied gas at atmospheric pressure, the pressure in the cold storage tank becomes negative pressure, so in this case, the signal of the pressure gauge 18 is controlled. The heat load applied to the device 22 by the device 20
to warm the cold station 7. In addition, if the measured value of the thermometer installed in the heat load device 20 is sufficiently lower than the boiling point temperature of the liquefied gas and the pressure inside the cold storage tank 1 increases, the liquefied gas will solidify on the condensation surface of the cold station 7. Therefore, the heat load device 20 is activated to heat the cold station 7, melt the solidified gas, and regenerate the condensing surface.

また、保冷槽1は一応密閉しであるので、保冷槽1外へ
の低温ガスのリークはないと考えられ、この状態では液
化ガス4の液面は一定の高さに保持される。しかし、仮
に、低温ガスがリークしたとしたら、その分液化ガス4
が少なくなり液面が低下する。液化ガス4の液面が低下
し液面計21の所定位置まで液面が低下すると、制御装
置22に液面計21からの信号が送られ、制御装置22
は加圧器12および流量調整弁11を制御して、精製し
たガスを保冷槽l内に少量づつ補給する。
Furthermore, since the cold storage tank 1 is sealed, it is considered that there is no leakage of low temperature gas to the outside of the cold storage tank 1, and in this state, the liquid level of the liquefied gas 4 is maintained at a constant level. However, if low-temperature gas leaks, the liquefied gas 4
decreases and the liquid level drops. When the liquid level of the liquefied gas 4 decreases to a predetermined position of the liquid level gauge 21, a signal from the liquid level gauge 21 is sent to the control device 22,
controls the pressurizer 12 and the flow rate regulating valve 11 to replenish the purified gas into the cold storage tank l little by little.

補給されたガスは液化ガス4によって、凝縮され、液化
し液化ガスとなって保冷槽1内に溜まり、徐々に液面が
上昇する。液面が所定高さまで達すると、制御装置22
は液面計21からの信号を受けて、加圧機12および流
量調整弁11を制御してガスの供給を停止させ、補給を
終了する。
The replenished gas is condensed by the liquefied gas 4, becomes liquefied gas, and accumulates in the cold storage tank 1, and the liquid level gradually rises. When the liquid level reaches a predetermined height, the control device 22
receives the signal from the liquid level gauge 21, controls the pressurizer 12 and the flow rate adjustment valve 11 to stop the gas supply, and ends the replenishment.

以上、木−実施例によれば、液化ガスが少なくなっても
液化ガスを供給することなく、空気を精製した酸素や窒
素を冷媒ガスとして供給できるので、いつでも冷媒ガス
を供給できるとともに、冷媒ガスを購込する必要もなく
、設備費が安価で、簡単に冷媒ガスを供給できるという
効果がある。
As described above, according to the embodiment, oxygen or nitrogen purified from air can be supplied as refrigerant gas without supplying liquefied gas even when the liquefied gas is low, so refrigerant gas can be supplied at any time, and refrigerant gas can be supplied at any time. There is no need to purchase refrigerant gas, equipment costs are low, and refrigerant gas can be easily supplied.

また、ガスのみを供給するので、液化ガスに比べて管理
が簡単になるという効果がある。
Furthermore, since only gas is supplied, it has the effect of being easier to manage than liquefied gas.

なお、本実施例ではガスを供給する際に、加圧機12で
空気を加圧して送るようにしているが、精製ガスは液化
ガス4によって凝縮、液化され、冷媒ガス導管10内の
圧力は低下し、大気圧との間に差圧が生じるので、差圧
によって空気を吸着器9内に吸い込み、精製したガスを
保冷槽内に供給するようにしても良い、これによれば、
ガス供給部の装置を簡単にできる。
In this embodiment, when supplying gas, air is pressurized and sent by the pressurizer 12, but the purified gas is condensed and liquefied by the liquefied gas 4, and the pressure inside the refrigerant gas conduit 10 is reduced. However, since a pressure difference occurs between the atmospheric pressure and the atmospheric pressure, air may be sucked into the adsorber 9 by the pressure difference, and purified gas may be supplied into the cold storage tank. According to this,
Gas supply unit equipment can be simplified.

また、木−実施例では基板16を液化ガス中に浸漬して
いるが、基板16の必要冷却温度によっては、基板16
を液化ガスに一部漬けたり、さらには液化ガス4の蒸発
した低温ガスで冷却するようにしても良い。
In addition, although the substrate 16 is immersed in the liquefied gas in the wooden example, depending on the required cooling temperature of the substrate 16,
may be partially immersed in liquefied gas, or further may be cooled with evaporated low temperature gas of liquefied gas 4.

さらに、冷凍機6においても、往復動式の膨張機、ター
ビン式の膨張機、磁気冷凍機等いろいろ適用でき、限定
されるものではない。
Furthermore, the refrigerator 6 can also be applied in various ways, such as a reciprocating expander, a turbine expander, a magnetic refrigerator, etc., and is not limited thereto.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、保冷槽内へは空気を精製したガスを供
給するだけで良く、設備費が安価になり、簡単に冷媒ガ
スを供給することができるという効果がある。
According to the present invention, it is only necessary to supply gas purified from air into the cold storage tank, and the equipment cost is reduced and refrigerant gas can be easily supplied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である低温保冷装置を示す断
面図である。
FIG. 1 is a sectional view showing a low-temperature cooling device which is an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、液化ガスを貯蔵する保冷槽と、該保冷槽の外側に断
熱空間を形成する外槽と、前記液化ガスのガスを供給す
る供給手段と、前記液化ガスで冷却され前記ガスを精製
して供給する吸着器と、前記保冷槽内のガスを凝縮する
冷却手段とから成ることを特徴とする低温保冷装置。 2、前記保冷槽内に前記液化ガスまたは前記液化ガスが
蒸発した低温ガスで冷却される被冷却体を収納した特許
請求の範囲第1項記載の低温保冷装置。
[Claims] 1. A cold storage tank for storing liquefied gas, an outer tank forming a heat insulating space outside the cold storage tank, a supply means for supplying the liquefied gas, and a cooling tank that is cooled by the liquefied gas. A low-temperature cold storage device comprising an adsorption device that purifies and supplies the gas, and a cooling means that condenses the gas in the cold storage tank. 2. The low-temperature cold storage device according to claim 1, wherein an object to be cooled to be cooled by the liquefied gas or a low-temperature gas obtained by evaporating the liquefied gas is housed in the cold storage tank.
JP62131223A 1987-05-29 1987-05-29 Cryogenic cold reserving device Pending JPS63297983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62131223A JPS63297983A (en) 1987-05-29 1987-05-29 Cryogenic cold reserving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62131223A JPS63297983A (en) 1987-05-29 1987-05-29 Cryogenic cold reserving device

Publications (1)

Publication Number Publication Date
JPS63297983A true JPS63297983A (en) 1988-12-05

Family

ID=15052910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62131223A Pending JPS63297983A (en) 1987-05-29 1987-05-29 Cryogenic cold reserving device

Country Status (1)

Country Link
JP (1) JPS63297983A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285959A (en) * 2001-03-27 2002-10-03 Sumitomo Heavy Ind Ltd Vacuum-maintaining method for refrigerant recondenser
EP1376033A3 (en) * 2002-06-28 2005-08-03 Sanyo Electric Co., Ltd. Preserving system
US7251949B2 (en) 2004-02-09 2007-08-07 Sanyo Electric Co., Ltd. Refrigerant system
JP2020126936A (en) * 2019-02-05 2020-08-20 富士通株式会社 Immersion cooling device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285959A (en) * 2001-03-27 2002-10-03 Sumitomo Heavy Ind Ltd Vacuum-maintaining method for refrigerant recondenser
EP1376033A3 (en) * 2002-06-28 2005-08-03 Sanyo Electric Co., Ltd. Preserving system
US7251949B2 (en) 2004-02-09 2007-08-07 Sanyo Electric Co., Ltd. Refrigerant system
JP2020126936A (en) * 2019-02-05 2020-08-20 富士通株式会社 Immersion cooling device

Similar Documents

Publication Publication Date Title
US5293750A (en) Control system for liquefied gas container
US4209657A (en) Apparatus for immersion-cooling superconductor
KR860001329A (en) High Purity Nitrogen Gas Production Equipment
US2938360A (en) Anhydrous ammonia storage tank
US4646525A (en) Vessel for a cryogenic mixture and a process for drawing off the liquid
JPS63297983A (en) Cryogenic cold reserving device
US3424230A (en) Cryogenic refrigeration device with temperature controlled diffuser
JP4537270B2 (en) Cryostat for superconducting magnet
US3166915A (en) Cooling arrangement
Warren A pressurized helium II-cooled magnet test facility
US5386707A (en) Withdrawal of cryogenic helium with low impurity from a vessel
JPH10246547A (en) Re-liquefying device for liquefied gas for use in cooling physical and chemical equipment
US3216210A (en) Cryostat apparatus
JPS63217181A (en) Reliquefier
JP2010048452A (en) Cryogenic cooling device
JPS63294471A (en) Low-temperature heat insulator
JPS5856272B2 (en) superconducting device
JPH0633854B2 (en) Evaporation prevention device
US3552135A (en) Fluid cooling arrangement employing liquified gas
JPS59117281A (en) Cooling apparatus
JP2843307B2 (en) Ozone concentration apparatus and ozone concentration method
JP2000283578A (en) Liquefied gas storage unit, reliquefying unit, and reliquefying method for liquefied nitrogen
JP2597182B2 (en) Superconducting magnet device
JPH05330810A (en) Formation of pressure superfluid helium
JPH0694193A (en) Storage tank for liquified gas of mixed components