JPS621591Y2 - - Google Patents

Info

Publication number
JPS621591Y2
JPS621591Y2 JP2095982U JP2095982U JPS621591Y2 JP S621591 Y2 JPS621591 Y2 JP S621591Y2 JP 2095982 U JP2095982 U JP 2095982U JP 2095982 U JP2095982 U JP 2095982U JP S621591 Y2 JPS621591 Y2 JP S621591Y2
Authority
JP
Japan
Prior art keywords
heat
temperature
heating
heat receiving
limit temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2095982U
Other languages
Japanese (ja)
Other versions
JPS58122879U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2095982U priority Critical patent/JPS58122879U/en
Publication of JPS58122879U publication Critical patent/JPS58122879U/en
Application granted granted Critical
Publication of JPS621591Y2 publication Critical patent/JPS621591Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Central Heating Systems (AREA)
  • Control Of Temperature (AREA)

Description

【考案の詳細な説明】 本考案は、熱伝達装置、特に、管路内に封入し
た作動流体の液と蒸気との相変化を利用して、受
熱部で吸収した熱を放熱部に熱輸送して発散させ
るようにした熱伝達装置に関するものである。
[Detailed description of the invention] The present invention is a heat transfer device, in particular, utilizes the phase change between the liquid and steam of the working fluid sealed in the pipe to transport the heat absorbed in the heat receiving part to the heat radiating part. The present invention relates to a heat transfer device for dissipating heat.

従来のこの種の熱伝達装置の概要構成を示すと
添付図面第1図のとおりであつて、図において、
符号1は上方に水平に配置された受熱部、2は下
方に垂直に配置された放熱部、3すなわち3A,
3Bは共に一方向へのみ流通を許容する逆止弁、
4はアキユムレータ、5は液溜器であつて受熱部
1とアキユムレータ4との間にあり受熱部1の上
方に位置している。また、6は添付図面第2図に
示すように液溜器5内に支点0を中心に揺転回可
能に枢支されていて、内部に液が貯溜されていな
いときには、支点0の下方に重心点G1を有して
開口部が上方にあり、且つ、所定量の液が貯溜さ
れたときは、支点0の上方に重心点G2が移動し
て自動的に転回し、内部の液を外部すなわち液溜
器5内に排出する回転液溜である。また、7は管
路であつて7Aは受熱部1の一端の端部と放熱部
2の一端との間の管路、7Bは放熱部2の他端と
逆止弁3Aとの間の管路、7Cは逆止弁3Aとア
キユムレータ4の底部との間の管路、7Dはアキ
ユムレータ4の下部と逆止弁3Bとの間の管路、
7Eは逆止弁3Bと液溜器5の上部との間の管
路、7Fは液溜器5の底部と受熱部1の他端の端
部との間の管路であり、このようにして各管路7
はループ、いわゆる、閉管路を形成し、アキユム
レータ4を含む管路7内に熱輸送媒体としてのフ
ロン、メチルアルコール等の凝縮性液体である作
動流体8が適量封入されると共に逆止弁3A,3
Bは協働して放熱部2よりの作動流体8を液溜器
5を介して受熱部1に向かつてのみ流し得るよう
にされており、このようにすると、始動時には、
アキユムレータ4の上部以外の管路7内に液体状
の作動流体8が満たされた状態にある。なお、以
下、この液体状の作動流体8を単に液8Aとい
い、これに対して気体状の作動流体8を単に蒸気
8Bという。
The schematic structure of a conventional heat transfer device of this type is shown in the accompanying drawing, FIG. 1, in which:
Reference numeral 1 indicates a heat receiving section arranged horizontally above, 2 indicates a heat dissipating section arranged vertically below, 3 is 3A,
3B is a check valve that allows flow only in one direction;
4 is an accumulator, and 5 is a liquid reservoir, which is located between the heat receiving section 1 and the accumulator 4 and above the heat receiving section 1. Further, as shown in FIG. 2 of the attached drawings, 6 is pivotably supported in the liquid reservoir 5 so as to be able to swing around a fulcrum 0, and when no liquid is stored inside, the center of gravity is below the fulcrum 0. When the opening is located above with point G 1 and a predetermined amount of liquid is stored, the center of gravity G 2 moves above the fulcrum 0 and automatically rotates, draining the liquid inside. It is a rotating liquid reservoir that discharges to the outside, that is, into the liquid reservoir 5. Further, 7 is a pipe, 7A is a pipe between one end of the heat receiving part 1 and one end of the heat radiating part 2, and 7B is a pipe between the other end of the heat radiating part 2 and the check valve 3A. 7C is a conduit between the check valve 3A and the bottom of the accumulator 4, 7D is a conduit between the bottom of the accumulator 4 and the check valve 3B,
7E is a pipe between the check valve 3B and the upper part of the liquid reservoir 5, and 7F is a pipe between the bottom of the liquid reservoir 5 and the other end of the heat receiving part 1. Each pipe 7
forms a loop, so-called a closed pipe line, and a suitable amount of working fluid 8, which is a condensable liquid such as fluorocarbon or methyl alcohol, as a heat transport medium is sealed in the pipe line 7 including the accumulator 4, and check valves 3A, 3
B cooperates to allow the working fluid 8 from the heat radiating part 2 to flow only toward the heat receiving part 1 via the liquid reservoir 5. In this way, at the time of startup,
The pipe line 7 other than the upper part of the accumulator 4 is filled with a liquid working fluid 8. Hereinafter, this liquid working fluid 8 will be simply referred to as liquid 8A, whereas the gaseous working fluid 8 will be simply referred to as vapor 8B.

このような従来装置における動作について次に
説明する。
The operation of such a conventional device will be described next.

まず、受熱部1に熱が供給されると、この受熱
部1での液8Aが与えられた温度に対応する高圧
の蒸気8Bを発生し、受熱部1とアキユムレータ
4との間に差圧を生じ、受熱部1の方が高圧とな
るために、管路7A、放熱部2、管路7Bにある
液8Aが逆止弁3Aを経てアキユムレータ4に流
れ込み、このアキユムレータ4の圧力を徐々に高
める。
First, when heat is supplied to the heat receiving section 1, the liquid 8A in the heat receiving section 1 generates high pressure steam 8B corresponding to the given temperature, creating a pressure difference between the heat receiving section 1 and the accumulator 4. As a result, the pressure in the heat receiving part 1 is higher than that in the heat receiving part 1, so the liquid 8A in the pipe 7A, the heat radiating part 2, and the pipe 7B flows into the accumulator 4 through the check valve 3A, and the pressure in the accumulator 4 is gradually increased. .

そして受熱部1で発生した蒸気8Bは、放熱部
2に達して冷却され、凝縮熱を放出して液化され
るために、これが受熱部温度と放熱部温度とに規
制されることになり、結果的に受熱部1、管路7
A及び放熱部2の蒸気8Bの圧力は、この受熱部
温度と放熱部温度との中間程度の温度に相当した
飽和蒸気圧となり、従つて、受熱部1で液8Aの
蒸発が行なわれている間、アキユムレータ4の圧
力もほぼこの圧力に維持される。
The steam 8B generated in the heat receiving part 1 reaches the heat radiating part 2, where it is cooled, releases the heat of condensation, and becomes liquefied. Therefore, this is regulated by the temperature of the heat receiving part and the temperature of the heat radiating part. Heat receiving part 1, pipe line 7
The pressure of the steam 8B in the heat receiving part 1 and the heat receiving part 2 is a saturated vapor pressure corresponding to a temperature approximately intermediate between the heat receiving part temperature and the heat radiating part temperature, and therefore, the liquid 8A is evaporated in the heat receiving part 1. During this time, the pressure of the accumulator 4 is also maintained at approximately this pressure.

この状態で受熱部1に発生した蒸気8Bが放熱
部2に達して再び液化される動作により、受熱部
1での熱が放熱部2に熱輸送されることになる
が、この動作は受熱部1に液8Aがなくなるまで
続く。そしてこの受熱部1での液8Aがすべて蒸
発すると、受熱部1、配管7A及び放熱部2にあ
る蒸気8Bの圧力は放熱部2の温度のみに規制さ
れて低くなり、アキユムレータ4と受熱部1との
間に差圧を生じ、アキユムレータ4の圧力が高い
ために、このアキユムレータ4に貯溜されている
液8Aは、管路7Dから逆止弁3B、管路7Eを
通つて液溜器5に入るが、液溜器5に入つた液8
Aはそのまま回転液溜6に溜り、回転液溜6に所
定量の液8Aが貯溜されると転回するために、液
溜器5の底部から管路7Fを通つて受熱部1に還
流することになる。このとき、回転液溜6が設け
られていない場合にはアキユムレータ4から還流
してきた液8Aは、そのまま受熱部1に入ること
になり、受熱部1に少量の液8Aが還流しただけ
でそこに高圧の蒸気8Bが発生し、アキユムレー
タ4の圧力より受熱部1の圧力が高くなつて受熱
部1への液8Aの還流が停止する。このことは、
受熱部1に液8Aが無い状態が頻繁に発生するこ
とを意味しており、結局、熱輸送効率が低下する
ことになる。従つて、回転液溜6があることによ
り、1回の液8Aの還流で最低でもその容積分の
液8Aが受熱部1に還流させ得るので、熱輸送効
率を大きくすることができる。
In this state, the steam 8B generated in the heat receiving part 1 reaches the heat radiating part 2 and is liquefied again, so that the heat in the heat receiving part 1 is transferred to the heat radiating part 2. This continues until there is no more liquid 8A in 1. When all of the liquid 8A in the heat receiving part 1 evaporates, the pressure of the steam 8B in the heat receiving part 1, the piping 7A, and the heat radiating part 2 is regulated only by the temperature of the heat radiating part 2, and becomes low. Since a pressure difference is generated between the two and the pressure in the accumulator 4 is high, the liquid 8A stored in the accumulator 4 flows from the pipe 7D to the liquid reservoir 5 through the check valve 3B and the pipe 7E. However, the liquid 8 that entered the liquid reservoir 5
A remains in the rotating liquid reservoir 6, and when a predetermined amount of liquid 8A is stored in the rotating liquid reservoir 6, it is turned, so that it flows back to the heat receiving part 1 from the bottom of the liquid reservoir 5 through the pipe 7F. become. At this time, if the rotating liquid reservoir 6 is not provided, the liquid 8A refluxed from the accumulator 4 will enter the heat receiving part 1 as it is, and only a small amount of the liquid 8A refluxed to the heat receiving part 1 will be there. High-pressure steam 8B is generated, the pressure in the heat receiving section 1 becomes higher than the pressure in the accumulator 4, and the return flow of the liquid 8A to the heat receiving section 1 is stopped. This means that
This means that a state in which there is no liquid 8A in the heat receiving part 1 frequently occurs, and as a result, the heat transport efficiency decreases. Therefore, by providing the rotary liquid reservoir 6, at least the volume of the liquid 8A can be returned to the heat receiving part 1 by one return of the liquid 8A, so that the heat transport efficiency can be increased.

以上の動作が順次繰り返されて、上部に位置す
る受熱部1からの熱が、下部に位置する放熱部2
に、何らの動力をも利用することなく熱輸送をす
ることができる。
The above operations are repeated in sequence, and the heat from the heat receiving part 1 located at the top is transferred to the heat radiating part 2 located at the bottom.
In addition, heat can be transported without using any power.

従来の熱伝達装置は、以上のように構成され作
動するために、受熱部及び放熱部の温度制御をす
ることができず、また、受熱部に一時的ではある
が作動流体がなくなる状態が発生するために、受
熱部が過熱し、受熱部の温度が一時的ではあるが
異常に高騰するという欠点があつた。
Because conventional heat transfer devices are configured and operate as described above, it is not possible to control the temperature of the heat receiving section and the heat dissipating section, and there is a situation where the heat receiving section temporarily runs out of working fluid. As a result, the heat-receiving part overheats, and the temperature of the heat-receiving part rises abnormally, albeit temporarily.

本考案は、このような従来装置における欠点を
除去し、受熱部の液の有無に関係なく、適切に液
を受熱部に還流させ得る熱伝達装置を提供するこ
とをその目的とするものである。
It is an object of the present invention to provide a heat transfer device that eliminates the drawbacks of conventional devices and can appropriately return liquid to the heat receiving section regardless of the presence or absence of liquid in the heat receiving section. .

本考案は、この目的を達成するために、受熱部
内及び受熱部から放熱部の作動流体の出口管路に
至る管路のいずれかの部分における蒸気の温度及
び圧力の内いずれかを検出する検出素子と、上記
受熱部を加熱する加熱源と、上記検出素子により
検出された温度及び圧力から換算される温度のい
ずれかが、ある所定の下限温度以下になると上記
加熱源は加熱量を増大し、上記下限温度よりある
温度幅だけ高い上限温度以上になると上記加熱源
は少なくともその加熱量を低減し、且つ、上記温
度幅は、上記温度幅によつて生ずる蒸気の圧力差
が、上記作動流体を上記放熱部から上記受熱部に
還流させるに必要な差圧よりも大きくなるという
ように設定されている制御装置とを備えているこ
とを特徴とするものである。
In order to achieve this objective, the present invention detects either the temperature or pressure of steam in the heat receiving part and in any part of the pipe line from the heat receiving part to the outlet pipe of the working fluid of the heat dissipating part. When either the element, the heating source that heats the heat receiving part, or the temperature converted from the temperature and pressure detected by the detection element become below a certain predetermined lower limit temperature, the heating source increases the heating amount. , when the temperature exceeds the upper limit temperature, which is higher than the lower limit temperature by a certain temperature range, the heating source at least reduces its heating amount; and a control device that is set so that the differential pressure is greater than the pressure difference required to circulate the heat from the heat radiating section to the heat receiving section.

以下、本考案をその一実施例を示す添付図面に
基づいて説明する。
Hereinafter, the present invention will be explained based on the accompanying drawings showing one embodiment thereof.

第3図において、受熱部1、放熱部2、第1及
び第2逆止弁3A及び3B、アキユムレータ4、
液溜器5、回転液溜6、管路7すなわち7A〜7
F及び作動流体8はすべて従来装置におけるそれ
らと全く同種のものである。また符号11は受熱
部1を加熱するための加熱源、例えば、ガスバー
ナであつて、加熱源11は制御装置、例えばON
−OFFスイツチ12により、加熱開始又は停止
がなされる。また、上記制御装置、例えば、ON
−OFFスイツチの作動は、作動流体8の蒸気8
Bが流れる部分、すなわち、受熱部1、若しく
は、受熱部1から放熱部2に至る管路7A、又
は、放熱部の作動流体8の出口部の管路7Bの内
いずれかの部分に、例えば、管路7A内に挿入、
又は、その管壁に接触させて設けられて、これら
の中にある作動流体8の蒸気温度を検出する、例
えば、熱電対等から成る検出素子13による蒸気
温度の検出信号によつて、作動する。この検出素
子13は、ある所定の下限温度TA以下に蒸気温
度が下つたこと、及び、上記下限温度TAより、
所定温度幅ΔTの温度差によつて生ずる作動流体
8の蒸気8Bの圧力差が、作動流体8を放熱部2
から受熱部1へ還流させるに必要な差圧よりも大
きな圧力差となるような所定温度幅ΔTだけ高く
設定された上限温度TB以上に蒸気温度が上がつ
たことの両者を検出するものであつて、この検出
信号によつて、下限温度TA以下に下つたことを
検出した場合には、制御装置12を作動させ、例
えば、加熱源11を作動させて受熱部1を加熱
し、また、上限温度以上に上つたことを検出した
場合には、制御装置12を作動させて、例えば、
加熱源11を停止させ、受熱部1の加熱を停止す
るようにしている。
In FIG. 3, a heat receiving section 1, a heat dissipating section 2, first and second check valves 3A and 3B, an accumulator 4,
Liquid reservoir 5, rotating liquid reservoir 6, pipe line 7, that is, 7A to 7
F and working fluid 8 are all exactly the same as those in conventional devices. Further, reference numeral 11 is a heat source for heating the heat receiving part 1, for example, a gas burner, and the heat source 11 is a control device, for example, an ON
-OFF switch 12 starts or stops heating. In addition, the above control device, for example, ON
-The OFF switch is operated by steam 8 of working fluid 8.
In the part where B flows, that is, in the heat receiving part 1, in the pipe line 7A from the heat receiving part 1 to the heat radiating part 2, or in the pipe line 7B at the outlet part of the working fluid 8 of the heat releasing part, for example, , inserted into the conduit 7A,
Alternatively, it is activated by a detection signal of the steam temperature from a detection element 13, which is provided in contact with the pipe wall and which detects the steam temperature of the working fluid 8 contained therein, and is composed of, for example, a thermocouple. This detection element 13 detects that the steam temperature has fallen below a certain predetermined lower limit temperature TA , and that from the lower limit temperature TA ,
The pressure difference in the steam 8B of the working fluid 8 caused by the temperature difference in the predetermined temperature range ΔT causes the working fluid 8 to move into the heat radiation section 2.
This device detects both the fact that the steam temperature has risen above the upper limit temperature T B which is set higher by a predetermined temperature width ΔT that causes a pressure difference larger than the pressure difference required for reflux from the steam to the heat receiving part 1. If it is detected by this detection signal that the temperature has fallen below the lower limit temperature T A , the control device 12 is activated, for example, the heating source 11 is activated to heat the heat receiving part 1, and , when it is detected that the temperature has risen above the upper limit temperature, the control device 12 is activated to, for example,
The heating source 11 is stopped, and heating of the heat receiving part 1 is stopped.

本考案装置は上記のように構成されるが、次に
その動作を、作動流体としてフロンR−114を使
用し、下限温度TAを50℃、上限温度TBを60℃、
所定温度幅ΔTを10℃とした場合を例にとつて説
明する。
The device of the present invention is constructed as described above, but its operation is as follows: Freon R-114 is used as the working fluid, the lower limit temperature T A is 50°C, the upper limit temperature T B is 60°C,
An example in which the predetermined temperature range ΔT is 10° C. will be explained.

まず、受熱部1に熱が供給されて液8Aが蒸発
して蒸気8Bとなり、この蒸気8Bが放熱部2に
運ばれて放熱部2において凝縮し、従つて、放熱
部2において熱を発散することにより、受熱部1
から放熱部2へ熱輸送することは、本考案も従来
装置も全く同様である。
First, heat is supplied to the heat receiving part 1, and the liquid 8A evaporates to become vapor 8B. This vapor 8B is carried to the heat radiating part 2 and condensed in the heat radiating part 2, so that the heat radiating part 2 radiates heat. By this, the heat receiving part 1
Transporting heat from the radiator to the heat radiating section 2 is exactly the same in both the present invention and the conventional device.

本考案装置は、このような状態下で初期状態に
あつては、蒸気温度が下限温度50℃よりも低く、
従つて、加熱源11は、検出素子13及び制御装
置12により稼働状態に置かれ、加熱が開始され
る。
In the device of the present invention, in the initial state under such conditions, the steam temperature is lower than the lower limit temperature of 50°C,
Therefore, the heating source 11 is put into operation by the detection element 13 and the control device 12, and heating is started.

このようにして加熱源11により加熱が続行す
ると、受熱部及び管路7A内の蒸気温度は、徐々
に上昇し、上限温度60℃になるまで、この加熱は
続行される。
As heating continues by the heat source 11 in this manner, the steam temperature in the heat receiving section and the pipe line 7A gradually rises, and this heating continues until the upper limit temperature reaches 60°C.

このようにして、上記蒸気温度が上限温度60℃
以上になると、検出素子13はこれを検出し、こ
の検出信号によつて制御装置、例えば、ON−
OFFスイツチが作動して、加熱源11を切り替
え、加熱を停止する。このときの蒸気圧力は、添
付図面第4図に示すフロンR−114の飽和蒸気圧
曲線に見られるとおり、5.9Kg/cm2となつてお
り、これは同時に、アキユムレータ4内の圧力
も、第1逆止弁3Aを介して連通しているため
に、同一圧力となつている。
In this way, the above steam temperature is increased to an upper limit of 60℃.
When the detection element 13 detects this, the control device, for example, ON-
The OFF switch is activated to switch the heating source 11 and stop heating. The steam pressure at this time was 5.9Kg/ cm2 , as seen in the saturated steam pressure curve of Freon R-114 shown in Figure 4 of the attached drawings, and at the same time, the pressure inside the accumulator 4 was also 5.9Kg/cm2. Since they communicate through the 1 check valve 3A, the pressure is the same.

このようにして加熱源11が加熱を停止してい
ると、蒸気は放熱部2により冷却されるだけとな
り、次第に温度が低下し、同時に圧力も低下して
くる。このようにして、蒸気温度が50℃以下にな
ると、再び、検出素子13は下限温度50℃を検出
するために、検出信号を発し、これによつて制御
装置12が再度作動して加熱源11を切り替えて
再び加熱を開始する。このときの蒸気8Bの圧力
は、第4図に示すように、4.3Kg/cm2にまで低下
することになる。従つて、アキユムレータ4内の
圧力は上限温度60℃に相当する飽和蒸気圧5.9
Kg/cm2であつたことから、アキユムレータ4と受
熱部1との間には、1.6Kg/cm2の圧力差が生じ、
この圧力差1.6Kg/cm2よつて、アキユムレータ4
から液溜器5へ液8Aが還流し、ひいては、受熱
部1へ液8Aが還流することになる。
When the heat source 11 stops heating in this way, the steam is only cooled by the heat radiation section 2, and the temperature gradually decreases, and the pressure also decreases at the same time. In this way, when the steam temperature falls below 50°C, the detection element 13 again issues a detection signal to detect the lower limit temperature of 50°C, which causes the control device 12 to operate again to switch and start heating again. At this time, the pressure of the steam 8B decreases to 4.3 kg/cm 2 as shown in FIG. Therefore, the pressure inside the accumulator 4 is the saturated vapor pressure of 5.9, which corresponds to the upper limit temperature of 60°C.
Kg/ cm2 , a pressure difference of 1.6Kg/ cm2 is created between the accumulator 4 and the heat receiving part 1.
This pressure difference is 1.6Kg/ cm2 , so the accumulator 4
From there, the liquid 8A flows back to the liquid reservoir 5, and as a result, the liquid 8A flows back to the heat receiving section 1.

以上の動作の繰返しによつて、受熱部1から放
熱部2へ熱が伝えられ、しかも、外力を利用する
ことなく還流することになる。
By repeating the above operations, heat is transferred from the heat receiving part 1 to the heat radiating part 2, and moreover, the heat is refluxed without using external force.

本考案装置は、上記のように構成され作動する
ので、液8Aの還流力である蒸気の圧力変動は、
受熱部1の液8Aの有無に無関係に発生するため
に、常に受熱部1に液8Aがある状態の下で液8
Aを還流させることができるので、従つて、蒸気
温度、ひいては、受熱部、放熱部の温度を、例え
ば、下限温度50℃〜上限温度60℃の間になるよう
に制御し得ると共に、受熱部1に液がなくなつて
受熱部1の温度が異常に上昇するのを防止し得る
という効果を有している。
Since the device of the present invention is constructed and operated as described above, the pressure fluctuation of the steam, which is the reflux force of the liquid 8A, is
This occurs regardless of the presence or absence of the liquid 8A in the heat receiving part 1, so when the liquid 8A is always present in the heat receiving part 1, the liquid 8
Since A can be refluxed, it is possible to control the steam temperature, and therefore the temperature of the heat receiving part and the heat radiating part, to be between, for example, a lower limit temperature of 50°C and an upper limit temperature of 60°C, and the temperature of the heat receiving part This has the effect of preventing the temperature of the heat receiving part 1 from rising abnormally due to the lack of liquid in the heat receiving part 1.

なお、上記実施例においては、検出素子13を
蒸気8Bの通る管路7Aに設けたが、これに限る
ものではなく、蒸気温度に付随して変化する管路
7Aの管壁とか、放熱部2の出口側管路7B内若
しくはその管壁の温度を検出するように検出素子
を挿入又は接触させて設けてもよく、あるいは
又、受熱部1又は管路7A内の蒸気圧力を直接検
出することにより、下限及び上限温度に相当する
飽和蒸気圧を基準にして加熱源を制御してもよ
く、これらのいずれの場合においても、その効果
は、上記実施例のそれと何ら異なるものではな
い。
In the above embodiment, the detection element 13 is provided in the pipe 7A through which the steam 8B passes, but the detection element 13 is not limited to this. A detection element may be inserted or brought into contact to detect the temperature inside the outlet side pipe 7B or the pipe wall thereof, or alternatively, the steam pressure in the heat receiving section 1 or the pipe 7A may be directly detected. Accordingly, the heating source may be controlled based on the saturated vapor pressure corresponding to the lower and upper temperature limits, and in any of these cases, the effect is no different from that of the above embodiment.

更に、加熱源11においても、その作動を、検
出素子13及び制御装置12を介して、接、断
し、これによつて加熱したり、若しくは、一切加
熱を行なわないという上記実施例の方法によるこ
とに限らず、加熱源自体を、下限温度以下におい
て作動し加熱後の温度が上限温度以上になるよう
に加熱能力を設定した高加熱源と、上限温度以上
において作動し加熱後の温度が下限温度以下にな
るように加熱能力を設定した低加熱源とから構成
したものであつても、何ら差し支えなく、その効
果もまた、上記実施例におけるそれと何ら異なる
ものではない。
Furthermore, the operation of the heating source 11 can be turned on and off via the detection element 13 and the control device 12, thereby heating or not heating at all, according to the method of the above embodiment. However, the heating source itself is not limited to a high heating source whose heating capacity is set so that it operates below the lower limit temperature and the temperature after heating is above the upper limit temperature, and a high heating source whose heating capacity is set so that the heating source itself operates above the upper limit temperature and the temperature after heating is above the upper limit temperature. There is no problem even if the heating source is configured with a low heating source whose heating capacity is set to be lower than the temperature, and the effect is not different from that in the above embodiment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱伝達装置の一例を示す構成系
統図、第2図は従来装置に使用されている液溜器
及び回転液溜を示す構成断面図、第3図は本考案
の熱伝達装置の一実施例の構成系統図、第4図は
作動流体としてのフロンR−114の飽和蒸気圧曲
線図である。 1……受熱部、2……放熱部、3A,3B……
第1及び第2逆止弁、4……アキユムレータ、5
……液溜器、6……回転液溜、7,7A〜7F…
…管路、8……作動流体、8A……液、8B……
蒸気、11……加熱源、12……制御装置(ON
−OFFスイツチ)、13……検出素子。
Fig. 1 is a structural diagram showing an example of a conventional heat transfer device, Fig. 2 is a cross-sectional view of the structure showing a liquid reservoir and a rotating liquid reservoir used in the conventional device, and Fig. 3 is a heat transfer system of the present invention. FIG. 4 is a structural diagram of an embodiment of the apparatus, and is a saturated vapor pressure curve diagram of Freon R-114 as a working fluid. 1...Heat receiving part, 2...Heat radiating part, 3A, 3B...
First and second check valves, 4...Accumulator, 5
...Liquid reservoir, 6...Rotating liquid reservoir, 7,7A to 7F...
...Pipeline, 8...Working fluid, 8A...Liquid, 8B...
Steam, 11...Heating source, 12...Control device (ON
-OFF switch), 13...detection element.

Claims (1)

【実用新案登録請求の範囲】 (1) 上方に設置の受熱部と下方に設置の放熱部と
の間をループ状に接続すると共に、内部に熱輸
送媒体としてのフロン・メチルアルコール等の
凝縮性液体の作動流体を適量封入した管路を有
し、この管路中に放熱部より受熱部に向かつて
のみ作動流体を流し得るようにした第1及び第
2逆止弁を介装させ、且つ、これらの両逆止弁
間にアキユムレータを配設した熱伝達装置にお
いて、上記受熱部内及び受熱部から放熱部の作
動流体の出口管路に至る管路のいずれかの部分
における蒸気の温度及び圧力の内いずれかを検
出する検出素子と、上記受熱部を加熱する加熱
源と、上記検出素子により検出された温度及び
圧力から換算される温度のいずれかが、ある所
定の下限温度以下になると上記加熱源は加熱量
を増大し、上記下限温度よりある所定温度幅だ
け高い上限温度以上になると上記加熱源は少な
くともその加熱量を低減し、且つ、上記所定温
度幅は、上記所定温度幅によつて生ずる蒸気の
圧力差が、上記作動流体を上記放熱部から上記
受熱部に還流させるに必要な差圧よりも大きく
なるように設定されている制御装置とを備えて
いることを特徴とする熱伝達装置。 (2) 加熱源が、下限温度及び上限温度の検出によ
り、加熱を開始及び停止する実用新案登録請求
の範囲第1項記載の熱伝達装置。 (3) 加熱源が、上限温度以上の温度の検出によつ
て切り換えられ且つ加熱後の温度が下限温度以
下になるように加熱能力を設定された低加熱源
と、下限温度以下の温度の検出によつて切り換
えられ且つ加熱後の温度が上限温度以上になる
ように加熱能力を設定された高加熱源とから成
る実用新案登録請求の範囲第1項又は第2項記
載の熱伝達装置。
[Claims for Utility Model Registration] (1) A loop-shaped connection between the heat receiving section installed above and the heat dissipation section installed below, and the condensability of fluorocarbons, methyl alcohol, etc. as a heat transport medium inside. It has a conduit in which an appropriate amount of liquid working fluid is sealed, and first and second check valves are interposed in this conduit to allow the working fluid to flow only from the heat radiating part to the heat receiving part, and In a heat transfer device in which an accumulator is disposed between these two check valves, the temperature and pressure of steam in the heat receiving section and in any part of the pipe line leading from the heat receiving section to the working fluid outlet pipe of the heat dissipating section. A detection element that detects any of the above, a heating source that heats the heat receiving part, and a temperature converted from the temperature and pressure detected by the detection element become below a certain predetermined lower limit temperature, the above-mentioned The heat source increases the amount of heating, and when the temperature reaches the upper limit temperature, which is higher than the lower limit temperature by a certain predetermined temperature range, the heat source at least reduces the amount of heat, and the predetermined temperature range is determined by the predetermined temperature range. and a control device configured such that a pressure difference in the steam that is generated is greater than a pressure difference required to recirculate the working fluid from the heat radiating section to the heat receiving section. transmission device. (2) The heat transfer device according to claim 1, wherein the heating source starts and stops heating by detecting a lower limit temperature and an upper limit temperature. (3) The heating source is a low heating source whose heating capacity is set such that the heating capacity is set so that the temperature after heating is switched to the detection of a temperature higher than the upper limit temperature and the temperature lower than the lower limit temperature, and the detection of a temperature lower than the lower limit temperature. 2. A heat transfer device according to claim 1 or 2, comprising: a high heating source whose heating capacity is set such that the temperature after heating is higher than the upper limit temperature;
JP2095982U 1982-02-15 1982-02-15 heat transfer device Granted JPS58122879U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2095982U JPS58122879U (en) 1982-02-15 1982-02-15 heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2095982U JPS58122879U (en) 1982-02-15 1982-02-15 heat transfer device

Publications (2)

Publication Number Publication Date
JPS58122879U JPS58122879U (en) 1983-08-20
JPS621591Y2 true JPS621591Y2 (en) 1987-01-14

Family

ID=30033097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2095982U Granted JPS58122879U (en) 1982-02-15 1982-02-15 heat transfer device

Country Status (1)

Country Link
JP (1) JPS58122879U (en)

Also Published As

Publication number Publication date
JPS58122879U (en) 1983-08-20

Similar Documents

Publication Publication Date Title
JP6351632B2 (en) Heat transport device using two-phase fluid
KR880011535A (en) Air conditioner
JPS621591Y2 (en)
JP3303644B2 (en) Loop heat transport system
JPS6143110Y2 (en)
JPH06257969A (en) Loop type heat pipe
JPH0428993B2 (en)
JPS6242296Y2 (en)
JPS6170388A (en) Heat transfer device
US2202360A (en) Refrigeration
JP2568709B2 (en) Heat transfer device
JPS6311496Y2 (en)
JPS6251394B2 (en)
JPS6311563Y2 (en)
JPS625572Y2 (en)
JPS6238148Y2 (en)
JPS6347738Y2 (en)
JP2774359B2 (en) Loop type heat pipe
JPS60114697A (en) Heat transfer device
JPS6039654Y2 (en) heat transfer device
JPS62134424A (en) Heat transfer device
JPS5971985A (en) Heat transporting apparatus
JP3617110B2 (en) Absorption refrigeration generator generator
JPH0113963Y2 (en)
JPS6314224Y2 (en)