JPS62134424A - Heat transfer device - Google Patents

Heat transfer device

Info

Publication number
JPS62134424A
JPS62134424A JP27633285A JP27633285A JPS62134424A JP S62134424 A JPS62134424 A JP S62134424A JP 27633285 A JP27633285 A JP 27633285A JP 27633285 A JP27633285 A JP 27633285A JP S62134424 A JPS62134424 A JP S62134424A
Authority
JP
Japan
Prior art keywords
heating
heat
tank
heat radiation
side tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27633285A
Other languages
Japanese (ja)
Inventor
Toshihiko Hasegawa
長谷川 俊彦
Soichi Kitajima
北島 壮一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27633285A priority Critical patent/JPS62134424A/en
Publication of JPS62134424A publication Critical patent/JPS62134424A/en
Pending legal-status Critical Current

Links

Landscapes

  • Central Heating Systems (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

PURPOSE:To stabilize the heat transfer function of the title device by stopping the heating on the basis of a liquid level lowering signal of a tank on a heating side and circulating a heat medium of a tank on a heat radiation side by utilizing the lowering of the internal pressure within the tank on the heating side due to the lowering in the temperature of a heating side block. CONSTITUTION:A heat medium within a heat exchanger 12 is evaporated by heating means 11, and vapor discharges heat via a tank 13 on a heating side and is stored within a tank 18 on the side of heat radiation. In this step, when the level of the heat medium within the tank 13 on the heating side is lowered, and liquid level detection means 24 is actuated, the operation of heating means 11 is stopped by time control means 25. Thus, a heating block 14 is cooled and the internal pressure is lowered, resulting in actuating a check value 24 by time control means 25, and circulating the heat medium solution within the tank 18 on the heat radiating side to the tank 13 on the heating side. In so doing, since the tank 18 on the heat radiating side is constantly kept at a predetermined pressure by means of an exhaust valve and an air feed valve 26, the circulation of the liquid is smoothly carried out. By this construction, a stable heat transfer function can be attained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、加熱部から放熱部へ、ポンプ等の装置無しで
熱を搬送する搬送装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a transfer device for transferring heat from a heating section to a heat radiating section without a pump or other device.

従来の技術 間歇的に、蒸気の圧力を用いてしかも下方にも熱を搬送
するこの種の熱搬送装置は、第2図に示すように、上下
に配置した熱媒液容器1.2を二つの連通路3.4を介
して接続し、その一方の連通路3は上側容器1の下部と
下側容器2の一部とを連通しその途中に逆止弁5を介装
し、他方の連通路4は上側容器1の一部と下側容器2の
上部近傍とを連通しその途中に放熱器6を介装して密閉
構造をなし、下側容器2に対応させて加熱装置7を設け
、下側容器2内に上下2点の液位検出具8を設けるとと
もに、その信号により加熱装置7を制御する制御機構9
を設けるように構成されておシ、この加熱装置7により
下側容器2内に溜められた熱媒液が加熱され、その蒸気
圧により熱媒蒸気は連通路4を通り途中に介装された放
熱器6にて放熱して凝縮し、熱媒液となって上側容器1
に溜められる。加熱が続くと、下側容器2内の熱媒T夜
の液面が低下して行きγ後位検出具8の上位検出位置ま
で達すると、制佃機描9により加熱装置7の運!伝は停
止する。加がが止まり冷却により下側容器2内の′−A
気圧が下がると、上11111容2g1に溜められてい
た熱媒液は重力と大電圧により連通路3とその途中に介
装された逆止弁5を通って下側容器2に遠戚し、下側容
器2内の液面が上昇して行き、液位検出具8の上位検出
位置まで達すると制御機構9により加熱装置7の運転は
始動するというサイクルで熱媒液の潜熱を利用して熱搬
送するようになっていた。
Conventional Technology This type of heat transfer device uses the pressure of steam to transfer heat intermittently downward as well, as shown in FIG. One of the communication passages 3 communicates the lower part of the upper container 1 with a part of the lower container 2, and a check valve 5 is interposed in the middle of the communication passage 3. The communication path 4 communicates a part of the upper container 1 with the vicinity of the upper part of the lower container 2 and has a radiator 6 interposed therebetween to form a sealed structure, and a heating device 7 is connected to the lower container 2 in correspondence with the communication path 4 . A control mechanism 9 is provided in which liquid level detectors 8 are provided at two points, upper and lower, in the lower container 2, and the heating device 7 is controlled by the signals from the liquid level detectors 8.
The heating device 7 heats the heat medium liquid stored in the lower container 2, and its vapor pressure causes the heat medium vapor to pass through the communication path 4, which is interposed in the middle. Heat is radiated and condensed in the radiator 6, and becomes a heat transfer liquid, which is then poured into the upper container 1.
It is stored in As the heating continues, the liquid level of the heating medium T in the lower container 2 decreases, and when it reaches the upper detection position of the gamma rear detector 8, the temperature of the heating device 7 is determined by the control device 9. The story stops. ′-A inside the lower container 2 due to the stop of application and cooling.
When the atmospheric pressure decreases, the heat medium liquid stored in the upper 11111 volume 2g1 is moved to the lower container 2 through the communication path 3 and the check valve 5 interposed in the middle due to gravity and large voltage. The liquid level in the lower container 2 rises, and when it reaches the upper detection position of the liquid level detector 8, the control mechanism 9 starts the operation of the heating device 7. This cycle utilizes the latent heat of the heat transfer liquid. It was supposed to transport heat.

発明が解決しようとする問題点 しかしながら上記のような構成では、作動媒体として沸
点が高く常階で液状となる水などの物質を使用した場合
、当初に脱’Xk行ない密閉系内を減圧状態にしても、
時間の経過とともにスローリークによって空気が系内に
侵入して減圧度を低下させ、熱搬送性能が低下したり、
内圧が異常に上昇するという問題点を有していた。また
系内を減圧状態に保持しても、密閉構造の場合、上側容
器から下1lllI谷a:に熱媒液が戻る際、上側容器
内の気相部容積の減圧膨張により内部圧力が大きく降下
し、下fftl+谷器内との圧力差が小さくなるため、
還τ夜が速やかに行なえないという問題点を有していた
。更に開放系にすると熱媒液が蒸発によって減量したり
、溶存酸素によって酸(L腐蝕が促進されるという問題
点を有していた。
Problems to be Solved by the Invention However, with the above configuration, when a substance such as water, which has a high boiling point and is always liquid, is used as the working medium, it is necessary to first perform de-Xk to bring the inside of the closed system into a reduced pressure state. Even though
As time passes, air enters the system due to slow leaks, lowering the degree of vacuum and reducing heat transfer performance.
The problem was that the internal pressure rose abnormally. In addition, even if the inside of the system is kept in a reduced pressure state, in the case of a closed structure, when the heat transfer liquid returns from the upper container to the lower 1llllI valley a:, the internal pressure will drop significantly due to the reduced pressure expansion of the gas phase volume in the upper container. However, since the pressure difference between lower fftl + valley chamber becomes smaller,
There was a problem in that the return could not be carried out promptly. Furthermore, if an open system is used, there are problems in that the heat transfer fluid loses weight due to evaporation and acid (L) corrosion is accelerated by dissolved oxygen.

本発明はかかる問題を解消するもので、密閉系内に侵入
した空気による系内の異常な圧力上昇および熱伝達率の
低下を防止し、かつ速やかな遠戚を行なうことにより、
常に安定した熱搬送性能を維持することを目的とする。
The present invention solves this problem by preventing an abnormal pressure rise in the system and a decrease in heat transfer coefficient due to air entering the closed system, and by quickly eliminating the problem.
The purpose is to always maintain stable heat transfer performance.

問題点を解決するだめの手段 上記問題点を解決するために、本発明の熱搬送装置は、
加熱部と加熱側タンク部からなる加熱側ブロックと、放
熱部と、放熱側タンクと、加熱側ブロックの上部と放熱
部の一端を連通ずる蒸気管と、放熱部の池端と放熱側タ
ンクの一部とを連通ずる液管と、放熱側タンク内に溜ま
っだ熱媒液を加熱側ブロックへ間歇的に遠戚させる透液
手段と加熱側タンク部の下部近傍に設けられた液面検知
手段と、この液面検出手段により加熱部への入出力を制
御する制御手段と、放熱側タン[りの上部近傍に設けら
れ大気圧より一定値以上高い圧力および一定値以上低い
圧力で作動する吸排気手段を備えたものである。
Means for Solving the Problems In order to solve the above problems, the heat transfer device of the present invention includes:
A heating side block consisting of a heating part and a heating side tank part, a heat radiation part, a heat radiation side tank, a steam pipe connecting the upper part of the heating side block and one end of the heat radiation part, and a pond end of the heat radiation part and one end of the heat radiation side tank. a liquid pipe communicating with the heating side tank, a liquid permeation means for intermittently discharging the heat medium liquid accumulated in the heat dissipation side tank to the heating side block, and a liquid level detection means provided near the lower part of the heating side tank section. , a control means for controlling the input/output to the heating section using this liquid level detection means, and an intake/exhaust system that is installed near the top of the heat dissipation side tank and operates at a pressure higher than a certain value or lower than atmospheric pressure. It is equipped with the means.

作   用 本発明は上記した構成によって、熱媒液は加熱部にて加
熱され沸とうを起こし、蒸気が発生する。
Function: With the above-described configuration, the heat medium liquid is heated in the heating section to cause boiling, and steam is generated.

発生し7た蒸気は加熱側ブロックの上部に接続された蒸
気管を通って放熱部へ至シ、ここで熱媒蒸気は凝縮m熱
を放熱して凝縮し、液化した熱媒液は液管を通って放熱
側タンクへ流入する。加熱モードでの運転が進行すると
加熱側タンク部内の熱媒液の液面は低下して行き、液面
検出手段により検出されなくなると時間制副手段により
加熱モードの運転は停止され、還液モードとなる。7X
I熱側ブロツクが冷却されて、内部の熱媒蒸気が凝縮し
内圧の低下が起きると、放熱側タンクに溜められた熱媒
液は、透液手段によって、加熱側ブロックへ連成され始
める。遠戚が始まると加熱側タンク部内の液面は上昇し
、このタンクに設けだ液面検出手段が液面を検出すると
、時間制副手段により加熱モードの運転が開始される。
The generated steam passes through the steam pipe connected to the upper part of the heating side block to the heat radiation section, where the heat medium vapor condenses by radiating the heat of condensation, and the liquefied heat medium liquid flows into the liquid pipe. and flows into the heat radiation side tank. As the operation in the heating mode progresses, the level of the heat medium liquid in the heating side tank section decreases, and when it is no longer detected by the liquid level detection means, the operation in the heating mode is stopped by the time-based sub-means, and the liquid level returns to the liquid return mode. becomes. 7X
When the heat side block is cooled and the internal heat medium vapor condenses and the internal pressure decreases, the heat medium liquid stored in the heat radiation side tank begins to be coupled to the heating side block by the liquid permeation means. When the distant phase starts, the liquid level in the heating side tank section rises, and when the liquid level detecting means provided in this tank detects the liquid level, the heating mode operation is started by the time-based sub-means.

このサイクルをくり返すことによって熱搬送を行なう。Heat transfer is carried out by repeating this cycle.

本発明は、蒸発による熱媒液の減量を防止するため密閉
構造とし、初期には系内を脱気減圧している。ここで時
間の経過に伴いスローリークによって空気が系内に侵入
した場合、この空気は熱媒蒸気に押し流され放熱部以後
の空間に滞留し、熱伝達率の低下および内圧の上昇を引
き起こす。しかし、放熱側タンクに、タンク内圧が大気
圧より一定値以上高くなると作動する排慨手段が設けら
れているので、内圧がこの設定値以上になると侵入空気
は系外に排出され、長期間、当初の性能を維持して熱を
搬送することができる。
In the present invention, in order to prevent the loss of heat transfer liquid due to evaporation, a closed structure is adopted, and the inside of the system is initially degassed and depressurized. When air enters the system due to slow leakage over time, this air is swept away by the heat medium vapor and stays in the space after the heat radiation part, causing a decrease in heat transfer coefficient and an increase in internal pressure. However, the heat dissipation side tank is equipped with an exhaust means that activates when the tank internal pressure becomes higher than atmospheric pressure by a certain value, so when the internal pressure exceeds this set value, the intruding air is discharged out of the system and the air is discharged for a long period of time. Heat can be transported while maintaining the original performance.

また、熱媒液の遠戚は加熱ブロックと放熱側タンクとの
圧力差によって行なわれるが、密閉構造であるため、遠
戚が開始されると放熱側タンク内の気相部容積の減圧膨
張が起こり、内部圧力が降下して加熱ブロック内との圧
力差が小さくなる。
In addition, the discharging of the heat transfer liquid is carried out by the pressure difference between the heating block and the heat dissipation side tank, but since it has a sealed structure, when the dispersion starts, the volume of the gas phase inside the heat dissipation side tank expands under reduced pressure. The internal pressure drops and the pressure difference with the inside of the heating block becomes smaller.

しかし放熱側タンクにタンク内圧が大気圧より一定逍以
上低くなると吸気する吸気手段が設けられているので、
タンク内圧はこの設定値以上に保たれ、常に加熱ブロッ
ク内との圧力差を十分に維持して、速やかな遠戚を行な
うことができる。
However, since the heat dissipation side tank is equipped with an air intake means that sucks air when the tank internal pressure becomes lower than atmospheric pressure by a certain amount,
The internal pressure of the tank is maintained above this set value, and a sufficient pressure difference between the tank and the inside of the heating block is always maintained, allowing prompt removal.

実施例 以下1本発明の一実施例を添付図面にもとづいて説明す
る。
Embodiment One embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図において、10は加熱部で、加熱手段11と熱交
換部12からなり、この加熱部10と一体または近設さ
れた加熱側タンク部13とで加熱側ブロック14が構成
されている。加熱側ブロック14の上部と任意の位置に
配置された放?!器15の内部に設けられた放熱部16
とは蒸気管17によって連通接続されている。放熱側タ
ンク1日は加勢側タンク部13より上方位置に設けられ
、その一部は放熱部16の下部と液管19によって連通
接続されて構成され、内部には適量の蒸発性の熱媒が封
入されている。
In FIG. 1, reference numeral 10 denotes a heating section, which is composed of a heating means 11 and a heat exchange section 12, and a heating side block 14 is constituted by this heating section 10 and a heating side tank section 13 which is integrated with or adjacent to the heating section 10. A radiation source placed on the upper part of the heating side block 14 and at an arbitrary position. ! Heat dissipation section 16 provided inside the container 15
and are connected to each other by a steam pipe 17. The heat radiation side tank 1 is provided at a position above the auxiliary side tank part 13, and a part thereof is configured to be connected to the lower part of the heat radiation part 16 by a liquid pipe 19, and an appropriate amount of evaporative heat medium is contained inside. It is enclosed.

放熱側タンク18の下部近傍と加熱側タンク部13の上
部近傍とは第1逆止弁20が介装されたバイパス管21
により連通されている。第1逆止弁20は加熱側タンク
部13より放熱側タンク18への似媒液流れを止める構
成で順方向には流れ抵抗の小さい弁である。この弁は、
加熱側タンク部13または放熱側タンク18の液面レベ
ルや圧力と相関して駆動される構成の開閉弁であっても
なんらその効果に変わることはない。
The vicinity of the lower part of the heat radiation side tank 18 and the vicinity of the upper part of the heating side tank section 13 are connected to a bypass pipe 21 in which a first check valve 20 is interposed.
It is communicated by. The first check valve 20 is configured to stop the flow of the similar medium liquid from the heating side tank portion 13 to the heat radiation side tank 18, and is a valve with low flow resistance in the forward direction. This valve is
Even if the opening/closing valve is configured to be driven in correlation with the liquid level or pressure of the heating side tank section 13 or the heat radiation side tank 18, the effect will not change in any way.

液管19の一部には第2逆止弁22が介装されており、
放熱側タンク18よシ放熱側16への熱媒の流れを止め
る構成で順方向には流れ抵抗の小さい弁である。この弁
もまた第1逆止弁20と同様な開閉弁に置き換えられる
ものである。
A second check valve 22 is interposed in a part of the liquid pipe 19,
This valve is configured to stop the flow of heat medium from the heat radiation side tank 18 to the heat radiation side 16, and has low flow resistance in the forward direction. This valve is also replaced with an on-off valve similar to the first check valve 20.

放熱側タンク18の上部には吸排気手段として排気弁2
3と吸気弁26が設置されておシ、排気弁23は大気圧
よりも一定値以上高い圧力で、吸気弁26は大気圧より
一定値以上低い圧力で、それぞれ排気、吸気するように
なっている。
An exhaust valve 2 is installed at the upper part of the heat radiation side tank 18 as an intake/exhaust means.
3 and an intake valve 26 are installed, the exhaust valve 23 is designed to exhaust air and the intake valve 26 is operated at a pressure higher than atmospheric pressure by a certain value or more, and the intake valve 26 is operated at a pressure lower than atmospheric pressure by a certain value or more, respectively. There is.

上記構成において、加熱部10の加熱手段11への入力
供給によって熱交換部12内の熱媒液が加熱され、蒸発
し始めると気泡となり、加熱側ブロックの上部で気液分
離された熱媒蒸気は蒸気管17を通り放熱器15内の放
熱部16へ至る。この放熱部16で凝縮m熱を放熱して
熱媒蒸気は凝縮し熱媒液となり、液管19を通って放熱
側タンク18に至る。スローリークによって系内に空電
が侵入していた場合、この空気は熱媒蒸気に押し流され
放熱側タンク18内に滞留するため、放熱側タンク18
の内圧は徐々に上昇する。しかし。
In the above configuration, the heat medium liquid in the heat exchange part 12 is heated by the input supply to the heating means 11 of the heating part 10, and when it starts to evaporate, it becomes bubbles, and the heat medium vapor is separated into gas and liquid at the upper part of the heating side block. passes through the steam pipe 17 and reaches the heat radiating section 16 in the radiator 15. The condensed heat is radiated in the heat radiating section 16, and the heat medium vapor is condensed to become a heat medium liquid, which passes through the liquid pipe 19 and reaches the heat radiating side tank 18. If static electricity has entered the system due to slow leakage, this air will be swept away by the heat medium vapor and will remain in the heat radiation side tank 18.
The internal pressure of will gradually rise. but.

内圧が設定値(大気圧よシ一定値高い圧力)に達すると
、放熱側タンク18に設けた排気弁23が作動し、侵入
空気は自動的に系外に排出される。
When the internal pressure reaches a set value (a pressure that is a certain value higher than atmospheric pressure), the exhaust valve 23 provided in the heat radiation side tank 18 is activated, and the intruding air is automatically discharged from the system.

加熱部10において蒸気が送り出されると、熱媒液が減
少し、加熱側タンク部13内の熱媒液面は徐4に低下す
る。そして液面検出手段24によって液面が低くなった
ことを検出すると、時間制御手段25により加熱手段1
1への入力供給が停止される。
When the steam is sent out in the heating section 10, the heat medium liquid decreases, and the heat medium liquid level in the heating side tank section 13 gradually decreases. When the liquid level detecting means 24 detects that the liquid level has become low, the time controlling means 25 causes the heating means 1 to
1 is stopped.

加熱が停止され、加熱側ブロック14が冷却されると内
部の熱媒蒸気は凝縮し内圧が低下しはじめる。加熱側ブ
ロック14の内圧低下が進行し、バイパス管21に介装
された第1逆止弁20の加熱側ブロツク14側の圧力が
、放熱側タンク18側の圧力より低くなると、放熱側タ
ンク18内に溜まっていた熱媒液はバイパス管21を通
って加熱側タンク部13へ遠戚しはじめる。この際、放
熱側タンク18内の気相部が熱媒液の減少に伴い減圧膨
張し、内部圧力が降下するが、何らかの原因によって、
熱搬送中に排気弁23からの排気量が多かった場合には
、系全体の圧力が低くなっており、放熱側タンク18内
圧力は、設定値(大気圧より一定値低い圧力)以下に達
する。この場合に、放熱側タンク18に設けた吸気弁2
6が作動し吸気が行なわれるため、タンク内の圧力はこ
の設定値以上に保たれ、加熱側ブロック14の内圧と、
十分な圧力差を維持できるので、遠戚は速やかに行なわ
れる。遠戚が進行し、加熱側タンク部13内の液面が上
昇し、液面検出手段24によって液面が十分に高いこと
を検出すると、時間制御手段25により加熱手段11へ
の入力供給が開始される。このサイクルをくり返すこと
によって、加熱部10から放熱部16への熱搬送が行な
われる。
When heating is stopped and the heating side block 14 is cooled, the internal heat medium vapor condenses and the internal pressure begins to decrease. When the internal pressure of the heating side block 14 continues to decrease and the pressure on the heating side block 14 side of the first check valve 20 installed in the bypass pipe 21 becomes lower than the pressure on the heat radiation side tank 18 side, the heat radiation side tank 18 The heat medium liquid accumulated therein begins to be distantly transferred to the heating side tank section 13 through the bypass pipe 21. At this time, the gas phase inside the heat dissipation side tank 18 expands under reduced pressure as the heat transfer liquid decreases, and the internal pressure drops, but for some reason,
If there is a large amount of exhaust from the exhaust valve 23 during heat transfer, the pressure of the entire system is low, and the pressure inside the heat radiation side tank 18 reaches a set value (a certain value lower than atmospheric pressure) or less. . In this case, the intake valve 2 provided in the heat radiation side tank 18
6 is activated to perform intake, the pressure inside the tank is maintained above this set value, and the internal pressure of the heating side block 14 and
Distant relatives are performed quickly because a sufficient pressure difference can be maintained. As the distant phase advances, the liquid level in the heating side tank section 13 rises, and when the liquid level detection means 24 detects that the liquid level is sufficiently high, the time control means 25 starts supplying input to the heating means 11. be done. By repeating this cycle, heat is transferred from the heating section 10 to the heat radiation section 16.

このように5排気弁23はスローリーク、あるいは吸気
弁26からの吸気によって系内に侵入した空気を、自動
的に排出するため、系内の異常な圧力上昇を防止し、常
に安定した熱搬送性能を維持できるという効果がある。
In this way, the 5 exhaust valve 23 automatically exhausts the air that has entered the system due to slow leakage or intake air from the intake valve 26, thereby preventing abnormal pressure increases in the system and ensuring stable heat transfer at all times. This has the effect of maintaining performance.

また吸気弁26は、透液中の、放熱側タンク18内の異
常な圧力降下時に、自動的に吸気してタンク内圧を維持
し、速やかな透液を行なえるため、遠戚時間の短縮が図
れるという効果がある。更に、異常時のみに吸気を行な
うため、系内への侵入空気が壇めて少なく、排気時に侵
入空気に混じって外部へ排出されるP媒蒸気量を最小1
恨におさえられるという効果を有する。
In addition, the intake valve 26 automatically takes in air to maintain the tank internal pressure when there is an abnormal pressure drop in the heat dissipation side tank 18 during liquid permeation, so that liquid permeation can be performed quickly. It has the effect of being able to Furthermore, since air is taken in only when an abnormality occurs, the amount of air that enters the system is significantly reduced, and the amount of P vapor that is mixed with the air that enters and discharged to the outside during exhaust is reduced to a minimum of 1.
It has the effect of being suppressed by resentment.

発明の効果 以上のように本発明の熱搬送装置によれば次の効果が得
られる。
Effects of the Invention As described above, the heat transfer device of the present invention provides the following effects.

(1)密閉系内に侵入した空電が滞溜する位置に、排気
手段を設けたものであるから、侵入空気を確実に外部に
排出でき、系内の異常な圧力上ゲi・およびp(伝達率
の低下を防止して、常に安定した熱搬送性能を維持でき
るという効果がある。
(1) Since the exhaust means is provided at the position where static electricity that has entered the closed system accumulates, the intruded air can be reliably exhausted to the outside, and the abnormal pressure inside the system can be removed by This has the effect of preventing a decrease in the transfer rate and maintaining stable heat transfer performance at all times.

(2)放熱側タンクに、吸気手段を設けたものであるか
ら、タンク内を常に大気圧よυ一定値低い圧力以上に保
ち、加執側ブロック内との圧力差を十分に維持できるの
で、透液が速やかに行なえ遠戚時間を短縮できるという
効果がある。
(2) Since the heat radiation side tank is equipped with an air intake means, the inside of the tank can always be maintained at a pressure lower than atmospheric pressure by a certain value, and a sufficient pressure difference between the inside of the heating side block and the inside of the heating side block can be maintained. It has the effect that liquid permeation can be carried out quickly and the time required for distant relatives can be shortened.

0)異常時にのみ吸排気手段が作動するので、正常時は
系内を密閉状態に維持し、十分な熱媒液量を長期間にわ
たって保持できるという効果がある。
0) Since the suction/exhaust means operates only in abnormal conditions, the system can be maintained in a sealed state during normal conditions, and a sufficient amount of heat medium liquid can be maintained for a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の熱搬送装置の構成図、第2
図は従来例の熱搬送装置の構成図である。 10・・・・加熱部、13・・・・加熱側タンク、14
・・・・・・加熱側ブロック、16・・・・・放熱部、
17・・・・・・蒸気管、18・・・・・・放熱側タン
ク、19・・・・・・液管、20・・・・・・第1逆止
弁、21・・・・・バイパス管、22・・・・・・第2
逆止弁、23・・・・・・排気弁、24・・・・・液面
検出手段、25・・・・・・時間制御手段、26・・・
・・吸気弁。
Figure 1 is a configuration diagram of a heat transfer device according to an embodiment of the present invention;
The figure is a configuration diagram of a conventional heat transfer device. 10... Heating part, 13... Heating side tank, 14
... Heating side block, 16 ... Heat dissipation section,
17... Steam pipe, 18... Heat radiation side tank, 19... Liquid pipe, 20... First check valve, 21... Bypass pipe, 22...2nd
Check valve, 23...Exhaust valve, 24...Liquid level detection means, 25...Time control means, 26...
...Intake valve.

Claims (1)

【特許請求の範囲】[Claims] 加熱部と加熱側タンク部からなる加熱側ブロックと、放
熱部と、放熱側タンクと、前記加熱側ブロックの上部と
前記放熱部の一端を連通する蒸気管と、前記放熱部の他
端と前記放熱側タンクの一部とを連通する液管と、前記
放熱側タンク内に溜まった熱媒液を前記加熱側ブロック
へ間歇的に還液させる還液手段と、前記加熱側タンク部
の下部近傍に設けられた液面検出手段と、前記液面検出
手段により前記加熱部への入出力を制御する制御手段と
、前記放熱側タンクの上部近傍に設けられた大気圧より
一定値以上高い圧力および一定値以上低い圧力で作動す
る吸排気手段からなる熱搬送装置。
a heating side block consisting of a heating part and a heating side tank part, a heat radiation part, a heat radiation side tank, a steam pipe communicating between the upper part of the heating side block and one end of the heat radiation part, and the other end of the heat radiation part and the heat radiation side tank; a liquid pipe communicating with a part of the heat radiation side tank; a liquid return means for intermittently returning the heat medium liquid accumulated in the heat radiation side tank to the heating side block; and a vicinity of the lower part of the heating side tank part. a control means for controlling input/output to the heating section by the liquid level detecting means; and a control means for controlling input/output to the heating section by the liquid level detecting means; A heat transfer device consisting of intake and exhaust means that operate at a pressure lower than a certain value.
JP27633285A 1985-12-09 1985-12-09 Heat transfer device Pending JPS62134424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27633285A JPS62134424A (en) 1985-12-09 1985-12-09 Heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27633285A JPS62134424A (en) 1985-12-09 1985-12-09 Heat transfer device

Publications (1)

Publication Number Publication Date
JPS62134424A true JPS62134424A (en) 1987-06-17

Family

ID=17567970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27633285A Pending JPS62134424A (en) 1985-12-09 1985-12-09 Heat transfer device

Country Status (1)

Country Link
JP (1) JPS62134424A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424088U (en) * 1990-06-19 1992-02-27
CN102287867A (en) * 2011-03-04 2011-12-21 王彤宇 Heat energy water cycle heating system
CN105934639A (en) * 2013-12-23 2016-09-07 金永净 Fluid circulation type heating apparatus
CN107787432A (en) * 2015-06-24 2018-03-09 Mim陶瓷制品有限公司 Possesses the influent circulation type heating installation that overvoltage prevents part

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424088U (en) * 1990-06-19 1992-02-27
CN102287867A (en) * 2011-03-04 2011-12-21 王彤宇 Heat energy water cycle heating system
CN105934639A (en) * 2013-12-23 2016-09-07 金永净 Fluid circulation type heating apparatus
JP2017505891A (en) * 2013-12-23 2017-02-23 ヤン ジョン キム Fluid circulation heating system
CN105934639B (en) * 2013-12-23 2019-03-08 金永净 Influent circulation type heating installation
US10488076B2 (en) 2013-12-23 2019-11-26 Young Jung Kim Fluid circulation type heating apparatus
CN107787432A (en) * 2015-06-24 2018-03-09 Mim陶瓷制品有限公司 Possesses the influent circulation type heating installation that overvoltage prevents part
CN107787432B (en) * 2015-06-24 2021-03-09 Mim陶瓷制品有限公司 Fluid circulation heating apparatus having overpressure prevention member

Similar Documents

Publication Publication Date Title
JPS62134424A (en) Heat transfer device
JPS60186626A (en) Method of carrying heat in house
JP3303644B2 (en) Loop heat transport system
JPS61259032A (en) Thermal feeder
JPS62288422A (en) Circulation device for heating steam in steam heater
JP4632633B2 (en) Absorption heat pump device
JP3281228B2 (en) Absorption type cold / hot water unit
JP3381094B2 (en) Absorption type heating and cooling water heater
JPH0728535Y2 (en) Absorption cold water heater
JPH07104065B2 (en) Absorption heat pump device
JPH074452Y2 (en) Low temperature heat source utilization device
JPS6238148Y2 (en)
JPS6311496Y2 (en)
JPS62134426A (en) Heat transfer device
JPS6196395A (en) Heat transfer device
JPS62217025A (en) Heat transportation device
JPS63169453A (en) Method of operating chemical heat pump
JP3579500B2 (en) Drying equipment
JPS627979Y2 (en)
JPS61276696A (en) Heat conveying device
JPS6343656B2 (en)
JPH0357392B2 (en)
JPH034726B2 (en)
JPS6193393A (en) Heat transmission device
JPS6220470B2 (en)