JPH0728535Y2 - Absorption cold water heater - Google Patents

Absorption cold water heater

Info

Publication number
JPH0728535Y2
JPH0728535Y2 JP1988076770U JP7677088U JPH0728535Y2 JP H0728535 Y2 JPH0728535 Y2 JP H0728535Y2 JP 1988076770 U JP1988076770 U JP 1988076770U JP 7677088 U JP7677088 U JP 7677088U JP H0728535 Y2 JPH0728535 Y2 JP H0728535Y2
Authority
JP
Japan
Prior art keywords
pressure
pipe
water heater
water
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988076770U
Other languages
Japanese (ja)
Other versions
JPH02563U (en
Inventor
哲也 山田
▲吉▼孝 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP1988076770U priority Critical patent/JPH0728535Y2/en
Publication of JPH02563U publication Critical patent/JPH02563U/ja
Application granted granted Critical
Publication of JPH0728535Y2 publication Critical patent/JPH0728535Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は吸収冷温水機に係り、特に機内低圧部に発生す
る不凝縮性ガスの排除に留意した吸収冷温水機に関す
る。
[Detailed Description of the Invention] [Industrial field of application] The present invention relates to an absorption chiller-heater, and more particularly to an absorption chiller-heater in consideration of elimination of non-condensable gas generated in a low-pressure portion inside the machine.

〔従来の技術〕[Conventional technology]

従来知られている吸収式冷温水機およびそれに用いられ
ている不凝縮性ガスを排除するための抽気装置を第2図
および第3図により説明する。
A conventionally known absorption chiller-heater and a bleeder used for removing the non-condensable gas will be described with reference to FIGS. 2 and 3.

図に示された空冷吸収冷温水機は、加熱コイル2Aにより
加熱された温水を供給する温水器2と、高温再生器1,分
離器3,低温再生器4,凝縮器5,冷水コイル7Aを備えた蒸発
器7,吸収器6,溶液ポンプ10,逆止弁11,冷却ファン12,低
温熱交換器9,高温熱交換器8,を備えて冷水コイル7Aによ
り冷却された冷水を供給する空冷吸収冷凍機とからなっ
ている。温水器2内には熱媒が封入され、その液面上の
空間は大気圧以下に減圧されている。また、加熱コイル
2A,冷水コイル7Aに水を供給する冷温水ポンプ14が設け
られ、冷水コイル7Aおよび加熱コイル2Aは冷温水三方弁
13を介して図示されない供給先へ接続されている。
The air-cooled absorption chiller-heater shown in the figure includes a water heater 2 for supplying hot water heated by a heating coil 2A, a high temperature regenerator 1, a separator 3, a low temperature regenerator 4, a condenser 5, and a cold water coil 7A. Equipped with an evaporator 7, an absorber 6, a solution pump 10, a check valve 11, a cooling fan 12, a low-temperature heat exchanger 9, and a high-temperature heat exchanger 8, which are provided with air to supply cold water cooled by a cold water coil 7A. It consists of an absorption refrigerator. A heating medium is enclosed in the water heater 2, and the space above the liquid surface is depressurized to atmospheric pressure or lower. Also heating coil
2A, a cold / hot water pump 14 for supplying water to the cold water coil 7A is provided, and the cold water coil 7A and the heating coil 2A are a cold / hot water three-way valve.
It is connected to a supply destination (not shown) via 13.

冷水供給時には、冷温水三方弁13が冷水コイル7Aと図示
されない供給先を連通するように操作され、水は冷温水
ポンプ14により、冷水コイル7A,冷温水三方弁を経て供
給先に送られる。
At the time of supplying cold water, the cold / hot water three-way valve 13 is operated so as to connect the cold water coil 7A and a supply destination not shown, and water is sent to the supply destination by the cold / hot water pump 14 via the cold water coil 7A and the cold / hot water three-way valve.

高温再生器1で加熱された吸収液は、分離器3で冷媒蒸
気と中間濃溶液に分離され、冷媒蒸気は低温再生器4を
経て凝縮器5へ流入する。中間濃溶液は高温熱交換器8
の加熱側に流入して被加熱側を流れる希溶液と熱交換し
た後、低温再生器4に流入して分離器3から流入した冷
媒蒸気で加熱され、冷媒を蒸発させて濃溶液となる。こ
の濃溶液は、低温熱交換器9の加熱側へ流入して被加熱
側を流れる希溶液と熱交換した後、吸収器6に流入し、
蒸発器7で蒸発した冷媒蒸気を吸収して希溶液となる。
この希溶液は溶液ポンプ10により、逆止弁11,低温熱交
換器9の被加熱側,高温熱交換器8の被加熱側を経て高
温再生器1へ還送される。一方、低温再生器4で蒸発し
た冷媒蒸気は凝縮器5へ流入し、分離器3で分離されて
低温再生器4を経て蒸発器5へ流入した冷媒蒸気(一部
は液冷媒となっている。)とともに、冷却ファン12で冷
却されて凝縮し、液冷媒となる。この液冷媒は、大気圧
よりも低い圧力に保持されている蒸発器7に供給されて
蒸発するが、このとき冷水コイル7A内を流れている水か
ら蒸発熱を奪ってこの水を冷却する。蒸発した冷媒蒸気
は前述のように、吸収器6内で濃溶液に吸収される。冷
温水ポンプ14により冷水コイル7Aに送りこまれる水はこ
のようにし冷却されるが、蒸発器7内で液冷媒を所定の
温度で蒸発させるには蒸発器7内を、低圧に維持するこ
とが必要である。吸収液に含まれる不凝縮性ガスや、外
部から漏れこんでくるガスがあると、蒸発器内の圧力を
所定の低圧に保持することができなくなり、蒸発量が低
下して冷却能力が落ちる。
The absorbing liquid heated in the high temperature regenerator 1 is separated into a refrigerant vapor and an intermediate concentrated solution in the separator 3, and the refrigerant vapor flows into the condenser 5 via the low temperature regenerator 4. Intermediate concentrated solution is high temperature heat exchanger 8
After heat-exchanged with the dilute solution flowing into the heating side and flowing in the heated side, it is heated by the refrigerant vapor flowing into the low temperature regenerator 4 and flowing from the separator 3, and the refrigerant is evaporated to become a concentrated solution. The concentrated solution flows into the heating side of the low temperature heat exchanger 9 to exchange heat with the dilute solution flowing on the heated side, and then flows into the absorber 6.
The refrigerant vapor evaporated in the evaporator 7 is absorbed to form a dilute solution.
This dilute solution is returned by the solution pump 10 to the high temperature regenerator 1 via the check valve 11, the heated side of the low temperature heat exchanger 9 and the heated side of the high temperature heat exchanger 8. On the other hand, the refrigerant vapor evaporated in the low temperature regenerator 4 flows into the condenser 5, is separated by the separator 3 and flows into the evaporator 5 via the low temperature regenerator 4 (a part thereof is a liquid refrigerant). .) Together with the cooling fan 12 to be condensed and become a liquid refrigerant. The liquid refrigerant is supplied to the evaporator 7 which is maintained at a pressure lower than the atmospheric pressure and evaporates, but at this time, the heat of evaporation is taken from the water flowing in the cold water coil 7A to cool the water. The evaporated refrigerant vapor is absorbed by the concentrated solution in the absorber 6 as described above. The water sent to the cold water coil 7A by the cold / hot water pump 14 is cooled in this way, but in order to evaporate the liquid refrigerant in the evaporator 7 at a predetermined temperature, the inside of the evaporator 7 must be maintained at a low pressure. Is. If there is a non-condensable gas contained in the absorbing liquid or a gas leaking from the outside, the pressure inside the evaporator cannot be maintained at a predetermined low pressure, the amount of evaporation decreases, and the cooling capacity decreases.

このように機内の圧力が上昇するのを防ぐため、抽気装
置が設けられている。空冷吸収冷温水機の抽気装置の構
成と動作を第3図により説明する。抽気装置は凝縮器5
から蒸発器7へ導かれた液冷媒が自己蒸発し、自己冷却
するフラッシュ室35の近傍に配置された抽気室28と、抽
気室28に冷媒蒸気とともに不凝縮性ガスを導く抽気管29
と、溶液ポンプ10出口から溶液の一部を抽気室28に導く
溶液分岐管30と、溶液分岐管30に直列に配置されたスト
レーナー31およびオリフィス32と、抽気室28内を溶液で
均一に濡らすように設けられた分配器33と、抽気室28と
ガス分離器36とを連通するガス降下管34と、ガス分離器
36と吸収器6を連通する溶液戻り管37と、ガス分離器36
にガス分離管38を介して接続されたガス貯蔵室39とを備
えている。ガス貯蔵室39には、電気ヒータ40で加熱され
るパラジウムセル41と、図示されない真空ポンプに接続
された排気弁42とが設けられている。
In order to prevent the pressure inside the machine from rising in this way, a bleeding device is provided. The structure and operation of the extraction device of the air-cooled absorption chiller-heater will be described with reference to FIG. The bleeding device is the condenser 5
The liquid refrigerant introduced from the evaporator 7 to the evaporator 7 self-evaporates and is self-cooled, and the extraction chamber 28 disposed near the flash chamber 35, and the extraction pipe 29 that guides the non-condensable gas to the extraction chamber 28 together with the refrigerant vapor.
And a solution branch pipe 30 that guides a part of the solution from the outlet of the solution pump 10 to the extraction chamber 28, a strainer 31 and an orifice 32 that are arranged in series with the solution branch pipe 30, and uniformly wet the inside of the extraction chamber 28 with the solution. 33 provided in such a manner, a gas downcomer pipe 34 that connects the extraction chamber 28 and the gas separator 36, and a gas separator.
A solution return pipe 37 that connects the absorber 36 with the absorber 6, and a gas separator 36.
And a gas storage chamber 39 connected via a gas separation pipe 38. The gas storage chamber 39 is provided with a palladium cell 41 heated by an electric heater 40 and an exhaust valve 42 connected to a vacuum pump (not shown).

抽気室28は冷媒蒸気で周囲を常に冷却されているので吸
収器6に比べて低圧となり、抽気管29を経て冷媒蒸気と
不凝縮性ガスが流入する。冷媒蒸気は、溶液分岐管30を
経て抽気室へ送給され分配器33で分配される溶液に吸収
され、不凝縮性ガスは溶液に混入された状態でガス降下
管34を通ってガス分離器36へ移送される。不凝縮性ガス
はガス分離器36内で溶液から分離され、溶液は溶液戻り
管37を経て吸収器6に送られる。不凝縮性ガスはガス分
離器38を経てガス貯蔵室39内に貯められ、その中の水素
ガスは電気ヒータ40にて加熱されたパラジウムセル41に
より分離排出され、他の不凝縮性ガスは排気弁42を経て
真空ポンプで外部に排出される。
Since the surroundings of the extraction chamber 28 are constantly cooled by the refrigerant vapor, the extraction chamber 28 has a lower pressure than the absorber 6, and the refrigerant vapor and the non-condensable gas flow through the extraction pipe 29. The refrigerant vapor is fed to the extraction chamber through the solution branch pipe 30 and absorbed by the solution distributed by the distributor 33, and the non-condensable gas is mixed with the solution and passes through the gas downcomer pipe 34 to separate the gas. Transferred to 36. The non-condensable gas is separated from the solution in the gas separator 36, and the solution is sent to the absorber 6 via the solution return pipe 37. The non-condensable gas is stored in the gas storage chamber 39 through the gas separator 38, the hydrogen gas therein is separated and discharged by the palladium cell 41 heated by the electric heater 40, and the other non-condensable gas is discharged. It is discharged to the outside through a valve 42 by a vacuum pump.

温水供給時には、吸収冷凍機側は停止され、冷温水三方
弁13が加熱コイル2Aと図示されていない供給先を連通す
るように操作され、冷温水ポンプ14が運転されて水が加
熱コイル2A,冷温水三方弁13を経て供給先に送られる。
温水器2内には熱媒が封入され、その液面上の空間は、
大気圧以下に減圧されている。熱媒は加熱されて蒸発
し、この熱媒蒸気が加熱コイル2A内の水を加熱する。加
熱後の熱媒蒸気は凝縮して再び液体となる。温水器2内
の熱媒液面上の空間は、蒸発、凝縮を容易にするため、
前述のように大気圧以下の低圧に保持さてれおり、不凝
縮性ガスが存在すると低圧に保持するのが困難になる。
At the time of supplying hot water, the absorption refrigerator side is stopped, the cold / hot water three-way valve 13 is operated so as to communicate the heating coil 2A and a supply destination not shown, and the cold / hot water pump 14 is operated to supply water to the heating coil 2A, It is sent to the supply destination through the cold / hot water three-way valve 13.
A heating medium is enclosed in the water heater 2, and the space above the liquid surface is
The pressure is reduced to below atmospheric pressure. The heat medium is heated and evaporated, and the heat medium vapor heats the water in the heating coil 2A. The heating medium vapor after heating is condensed to become a liquid again. The space on the liquid surface of the heat medium in the water heater 2 facilitates evaporation and condensation,
As described above, it is kept at a low pressure below atmospheric pressure, and it becomes difficult to keep it at a low pressure when non-condensable gas is present.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

しかしながら、上述のような従来の公知技術にあって
は、暖房時の加熱能力の低下および制御方法の複雑化を
なくすため、温水器の回路と吸収冷凍機の回路が分離さ
れているので、温水器で発生する不凝縮性ガスの抽気が
行われず、加熱能力の低下を来す恐れがあった。
However, in the conventional technology as described above, the circuit of the water heater and the circuit of the absorption refrigerator are separated from each other in order to eliminate the deterioration of the heating capacity during heating and the complicated control method. The non-condensable gas generated in the vessel was not extracted, and the heating capacity might be reduced.

本考案の目的は、吸収冷温水機における温水器内の不凝
縮性ガスを抽気するにある。
An object of the present invention is to extract the non-condensable gas in the water heater of the absorption chiller heater.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記の目的は、冷水を供給する吸収冷凍機と大気圧以下
の圧力で蒸発させた蒸気を加熱手段として温水を供給す
る温水器を備え、前記冷水と温水が共通の配管を経て負
荷に供給されるように構成された吸収冷温水機におい
て、前記温水器の蒸気部に抽気管を介して接続され外周
に冷却用フィンを備えた冷却器と、該冷却器底部と前記
温水器を連通する熱媒戻り管と、前記冷却器に不凝縮性
ガス取出し管を介して接続された不凝縮性ガスの移送手
段と、該移送手段の不凝縮性ガス出側と前記吸収冷凍機
の吸収器とを連通する不凝縮性ガス移送管と、前記温水
器蒸気部の圧力を検出して圧力信号を出力する圧力検出
器と、前記不凝縮性ガス取出し管に介装され前記圧力信
号により開閉制御される流路開閉手段と、前記冷却器に
冷却用空気を送る冷却用ファンと、を備えることにより
達成される。
The above-mentioned object is provided with an absorption refrigerator that supplies cold water and a water heater that supplies hot water as a heating means using vapor evaporated at a pressure of atmospheric pressure or less, and the cold water and hot water are supplied to a load through a common pipe. In the absorption chiller-heater configured as described above, a cooler that is connected to the steam part of the water heater via a bleed pipe and has cooling fins on the outer circumference, and heat that communicates the bottom part of the cooler with the water heater. A medium return pipe, a noncondensable gas transfer means connected to the cooler via a noncondensable gas extraction pipe, a noncondensable gas outlet side of the transfer means and an absorber of the absorption refrigerator. A non-condensable gas transfer pipe that communicates, a pressure detector that detects the pressure of the steam part of the water heater and outputs a pressure signal, and a non-condensable gas take-out pipe that is interposed and controlled to open and close by the pressure signal. Flow path opening / closing means and a cooling device for sending cooling air to the cooler. And use a fan, is achieved by providing a.

〔作用〕[Action]

冷却器に流入する熱媒蒸気と不凝縮性ガスが、冷却用フ
ァンによって冷却されるので、冷却器内部は温水器の蒸
気部よりも低圧になり、不凝縮性ガスを含む熱媒蒸気が
連続的に流入する。熱媒蒸気は冷却されて凝縮し、冷却
器内部の気体は不凝縮性ガスに富んだものとなる。温水
器蒸気部の不凝縮性ガスの量が増えて、該蒸気部の圧力
が設定圧力より高くなると、圧力検出器は圧力信号を出
力する。この信号に基いて不凝縮性ガス取出し管に設け
られた流路開閉手段が開かれ、不凝縮性ガスは、不凝縮
性ガス移送手段により、不凝縮性ガス移送管を経て吸収
器へ移送される。
The heat transfer medium and non-condensable gas flowing into the cooler are cooled by the cooling fan, so the pressure inside the cooler becomes lower than the steam part of the water heater, and the heat transfer medium containing the non-condensable gas continues. Inflow. The heat medium vapor is cooled and condensed, and the gas inside the cooler becomes rich in noncondensable gas. When the amount of the non-condensable gas in the steam part of the water heater increases and the pressure of the steam part becomes higher than the set pressure, the pressure detector outputs a pressure signal. Based on this signal, the flow path opening / closing means provided in the noncondensable gas extraction pipe is opened, and the noncondensable gas is transferred to the absorber through the noncondensable gas transfer pipe by the noncondensable gas transfer device. It

不凝縮性ガス移送手段を、溶液ポンプから吐出される溶
液を駆動流体とするエゼクタとすると、不凝縮性ガスは
エゼクタに吸引されたのち、駆動流体である溶液に混入
した状態で吸収器に送られる。
When the non-condensable gas transfer means is an ejector that uses the solution discharged from the solution pump as a driving fluid, the non-condensable gas is sucked by the ejector and then sent to the absorber in a state of being mixed with the solution that is the driving fluid. To be

〔実施例〕〔Example〕

以下、この考案を第1図に示す実施例に基いて説明す
る。第2図に示す従来の例と同一の機能を果す部分は同
一の符号を付して説明は省略する。
The present invention will be described below based on the embodiment shown in FIG. The parts having the same functions as those of the conventional example shown in FIG.

温水器2の蒸気部2Bに抽気管19を介して冷却器18が接続
され、該冷却器18の底部と温水器2の蒸気部2Bが熱媒戻
り管20によって連通され、前記冷却器18に不凝縮性ガス
取出し管23を介して不凝縮性ガスの移送手段であるエゼ
クタ24が接続されている。不凝縮性ガス取出し管23に
は、流路開閉手段である電磁弁23Aが介装されている。
吸収冷凍機の溶液ポンプ10の吐出側に溶液三方弁25が設
けられ、溶液三方弁25の出口のひとつとエゼクタ24の駆
動流体入口がエゼクタ駆動溶液管26により接続されてい
る。またエゼクタ24出口は、不凝縮性ガス移送管27によ
り吸収器6に接続されている。冷却器18の外面にはフィ
ンが設けられ、冷却器18を冷却する冷却用ファン12が設
けられている。この冷却ファン12は凝縮器5,吸収器6用
の冷却ファンと共用のものとしてもよい。温水器の蒸気
部2Bの圧力を検出する圧力検出器21が設けられ、該圧力
検出器21が出力する圧力信号に基いて前記冷却ファン1
2,溶液ポンプ10の発停および電磁弁23Aの開閉を行う制
御器22が設けられている。
A cooler 18 is connected to the steam part 2B of the water heater 2 via an extraction pipe 19, and the bottom part of the cooler 18 and the steam part 2B of the water heater 2 are connected by a heat medium return pipe 20 to the cooler 18. An ejector 24, which is a transfer means of the non-condensable gas, is connected via a non-condensable gas extraction pipe 23. The non-condensable gas take-out pipe 23 is provided with a solenoid valve 23A which is a flow path opening / closing means.
A solution three-way valve 25 is provided on the discharge side of the solution pump 10 of the absorption refrigerator, and one of the outlets of the solution three-way valve 25 and the drive fluid inlet of the ejector 24 are connected by an ejector drive solution pipe 26. The outlet of the ejector 24 is connected to the absorber 6 by a noncondensable gas transfer pipe 27. Fins are provided on the outer surface of the cooler 18, and a cooling fan 12 for cooling the cooler 18 is provided. The cooling fan 12 may be shared with the cooling fans for the condenser 5 and the absorber 6. A pressure detector 21 for detecting the pressure of the steam portion 2B of the water heater is provided, and the cooling fan 1 is based on the pressure signal output from the pressure detector 21.
2. A controller 22 is provided which starts and stops the solution pump 10 and opens and closes the solenoid valve 23A.

温水供給時、温水器2が加熱され熱媒が蒸発するととも
に不凝縮性ガスの存在のために、温水器の蒸気部2Bの圧
力が設定値以上になると、圧力検出器21から制御器22に
信号が送られ、制御器の出力信号により冷却ファン12が
起動され、さらにタイマー作動により溶液ポンプ10が起
動された後、電磁弁23Aが開かれる。
When hot water is supplied, when the water heater 2 is heated and the heat medium evaporates and the pressure of the steam part 2B of the water heater exceeds the set value due to the presence of non-condensable gas, the pressure detector 21 changes to the controller 22. A signal is sent, the cooling fan 12 is activated by the output signal of the controller, and the solution pump 10 is activated by the timer operation, and then the solenoid valve 23A is opened.

抽気管19を経て冷却器18内へ流入する不凝縮性ガスと熱
媒蒸気は、冷却器壁面を介して冷却ファン12で冷却され
るので、冷却器18内は温水器2よりも低圧になる。熱媒
蒸気は凝縮熱媒となって熱媒戻り管20を経て温水器2へ
還流する。冷却器18内の不凝縮性ガスは、エゼクタ24に
より吸引されてエゼクタ24を駆動する溶液に混入した状
態で不凝縮性ガス移送管27を経て吸収器6へ送られる。
温水器2内の圧力が設定値以下になるまで上述の動作が
継続され、設定値以下になると電磁弁23Aが閉じられ、
溶液ポンプ10,冷却ファン12が停止される。溶液三方弁2
5は、冷温水三方弁13に連動しており、冷水供給,温水
供給にそれぞれ切り換えられる。また、エゼクタ駆動流
体は、吸収冷凍機内の溶液であるから、不凝縮性ガスと
ともに吸収器に送入されても、不都合を生じない。
The non-condensable gas and the heat medium vapor flowing into the cooler 18 via the extraction pipe 19 are cooled by the cooling fan 12 via the cooler wall surface, so that the inside of the cooler 18 becomes lower in pressure than the water heater 2. . The heat medium vapor becomes a condensation heat medium and returns to the water heater 2 through the heat medium return pipe 20. The non-condensable gas in the cooler 18 is sent to the absorber 6 via the non-condensable gas transfer pipe 27 while being mixed with the solution that is sucked by the ejector 24 and drives the ejector 24.
The above operation is continued until the pressure in the water heater 2 becomes equal to or lower than the set value, and when the pressure becomes equal to or lower than the set value, the solenoid valve 23A is closed,
The solution pump 10 and the cooling fan 12 are stopped. Solution three-way valve 2
5 is linked with the cold / hot water three-way valve 13, and can be switched between cold water supply and hot water supply. Further, since the ejector driving fluid is a solution in the absorption refrigerator, it does not cause any inconvenience even if it is sent into the absorber together with the non-condensable gas.

温水供給時は、吸収器6が不凝縮性ガスの貯蔵室として
機能し、貯えられた不凝縮性ガスは、必要に応じて吸収
器から抜き出すか、冷水供給時に、吸収冷凍機に装着さ
れている抽気装置よって抽気されてもよい。
When hot water is supplied, the absorber 6 functions as a storage room for the non-condensable gas, and the stored non-condensable gas is extracted from the absorber as needed, or is attached to the absorption refrigerator when the cold water is supplied. It may be bleed by the bleeding device.

本実施例によれば、空冷吸収冷温水機において、温水供
給運転時に、温水器内の不凝縮性ガスを抽気することが
可能となり、熱媒蒸気の効率の低下を防いで熱効率を保
持する効果がある。また、温水供給に無関係な溶液ポン
プの吐出液をエゼクタの駆動流体に用いているので、温
水供給力に影響がない。また、本考案は水冷式吸収冷温
水機に適用することも可能であり、その場合は、冷却フ
ァン12を別途装着する必要がある。
According to the present embodiment, in the air-cooled absorption chiller-heater, it is possible to extract the non-condensable gas in the water heater during the hot water supply operation, and the effect of maintaining the thermal efficiency by preventing the efficiency of the heat medium vapor from decreasing. There is. Further, since the discharge liquid of the solution pump irrelevant to the hot water supply is used as the drive fluid of the ejector, the hot water supply force is not affected. Further, the present invention can be applied to a water-cooled absorption chiller-heater, in which case the cooling fan 12 needs to be mounted separately.

〔考案の効果〕[Effect of device]

請求項1に記載の本考案によれば、温水器の蒸気部に接
続された冷却器を設け、この冷却器に流路開閉手段を備
えた配管を介して不凝縮性ガス移送手段を接続し、この
移送手段の出口を配管を介して吸収器に接続するととも
に、前記温水器蒸気部の圧力を検出する圧力検出器を設
けたので、温水器内の圧力が設定値をこえたとき、温水
器内の不凝縮性ガスを取出して吸収器に送りこむことが
可能となり、温水器の蒸発圧力を所定の値に維持して、
加熱の熱効率が下がらないようにする効果がある。
According to the present invention as set forth in claim 1, a cooler connected to the steam part of the water heater is provided, and the non-condensable gas transfer means is connected to the cooler via a pipe provided with a flow path opening / closing means. , Since the outlet of this transfer means is connected to the absorber through a pipe and a pressure detector for detecting the pressure of the steam part of the water heater is provided, when the pressure in the water heater exceeds a set value, It becomes possible to take out the non-condensable gas in the water heater and send it to the absorber, and keep the evaporation pressure of the water heater at a predetermined value.
This has the effect of preventing the thermal efficiency of heating from decreasing.

また、温水器で蒸発した熱媒蒸気は冷却器で凝縮されて
温水器に戻されるので、温水器中の溶液の濃度を上昇さ
せることなく運転できる、温水器使用期間中に不凝縮性
ガスを外部に取り出す作業を行う必要がなく、保守作業
を簡易化できる、などの効果も得られる。
In addition, since the heat transfer medium vapor evaporated in the water heater is condensed in the cooler and returned to the water heater, it can be operated without increasing the concentration of the solution in the water heater. There is no need to carry out the work to take it out, and the maintenance work can be simplified.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の実施例を示す空冷吸収冷温水機の系統
図、第2図は空冷吸収冷温水機の従来の例を示す系統図
であり、第3図は吸収冷凍機に設けられている抽気装置
の従来の例を示す系統図である。 2……温水器、2B……温水器の蒸気部、12……冷却器内
部の蒸気を冷却する手段(冷却ファン)、18……冷却
器、21……圧力検出器、23……不凝縮性ガス取出し管、
23A……流路開閉手段(電磁弁)、24……不凝縮性ガス
移送手段(エゼクタ)、27……不凝縮性ガス移送管。
FIG. 1 is a system diagram of an air-cooled absorption chiller-heater showing an embodiment of the present invention, FIG. 2 is a system diagram showing a conventional example of an air-cooled absorption chiller-heater, and FIG. 3 is provided in an absorption refrigerator. It is a systematic diagram which shows the conventional example of the bleeding device which is doing. 2 ... Water heater, 2B ... Steam part of the water heater, 12 ... Means for cooling the steam inside the cooler (cooling fan), 18 ... Cooler, 21 ... Pressure detector, 23 ... Non-condensing Gas extraction pipe,
23A: flow path opening / closing means (solenoid valve), 24: non-condensable gas transfer means (ejector), 27: non-condensable gas transfer tube.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】冷水を供給する吸収冷凍機と大気圧以下の
圧力で蒸発させた蒸気を加熱手段として温水を供給する
温水器を備え、前記冷水と温水が共通の配管を経て負荷
に供給されるように構成された吸収冷温水機において、
前記温水器の蒸気部に抽気管を介して接続され外周に冷
却用フィンを備えた冷却器と、該冷却器底部と前記温水
器を連通する熱媒戻り管と、前記冷却器に不凝縮性ガス
取出し管を介して接続された不凝縮性ガスの移送手段
と、該移送手段の不凝縮性ガス出側と前記吸収冷凍機の
吸収器とを連通する不凝縮性ガス移送管と、前記温水器
蒸気部の圧力を検出して圧力信号を出力する圧力検出器
と、前記不凝縮性ガス取出し管に介装され前記圧力信号
により開閉制御される流路開閉手段と、前記冷却器に冷
却用空気を送る冷却用ファンと、を備えていることを特
徴とする吸収冷温水機。
1. An absorption refrigerating machine for supplying cold water and a water heater for supplying hot water by using steam evaporated at a pressure lower than atmospheric pressure as heating means, and the cold water and hot water are supplied to a load through a common pipe. In an absorption chiller-heater configured to
A cooler that is connected to the steam section of the water heater via a bleeder pipe and has cooling fins on the outer periphery, a heat medium return pipe that connects the water heater bottom to the water heater, and a non-condensable condenser A non-condensable gas transfer means connected through a gas take-out pipe, a non-condensable gas transfer pipe communicating the non-condensable gas outlet side of the transfer means with the absorber of the absorption refrigerator, and the hot water. Pressure detector for detecting the pressure of the steam part of the vessel and outputting a pressure signal, flow path opening / closing means which is interposed in the noncondensable gas extraction pipe and is controlled to open / close by the pressure signal, and for cooling the cooler An absorption chiller-heater having a cooling fan for sending air.
JP1988076770U 1988-06-09 1988-06-09 Absorption cold water heater Expired - Lifetime JPH0728535Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988076770U JPH0728535Y2 (en) 1988-06-09 1988-06-09 Absorption cold water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988076770U JPH0728535Y2 (en) 1988-06-09 1988-06-09 Absorption cold water heater

Publications (2)

Publication Number Publication Date
JPH02563U JPH02563U (en) 1990-01-05
JPH0728535Y2 true JPH0728535Y2 (en) 1995-06-28

Family

ID=31301781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988076770U Expired - Lifetime JPH0728535Y2 (en) 1988-06-09 1988-06-09 Absorption cold water heater

Country Status (1)

Country Link
JP (1) JPH0728535Y2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5052556U (en) * 1973-09-10 1975-05-21
JPS5618270A (en) * 1979-07-25 1981-02-20 Ebara Mfg Water cooling*heater

Also Published As

Publication number Publication date
JPH02563U (en) 1990-01-05

Similar Documents

Publication Publication Date Title
US4070870A (en) Heat pump assisted solar powered absorption system
US4665711A (en) Heat pump systems
US4665709A (en) Steam powered heating/cooling systems
JPH0728535Y2 (en) Absorption cold water heater
JPH1089814A (en) Absorption refrigerator
JP3281228B2 (en) Absorption type cold / hot water unit
JP3448680B2 (en) Absorption air conditioner
JP4201418B2 (en) Control method of absorption chiller / heater
JP3451539B2 (en) Absorption type cold heat generator
JPH0745998B2 (en) Absorption cold water heater
KR200142462Y1 (en) Absorption type cooler
JP2940839B2 (en) Air conditioning
JP3451538B2 (en) Absorption type cold heat generator
JPH07849Y2 (en) Air-cooled absorption chiller / heater
JPS6244284Y2 (en)
JP2583579B2 (en) Absorption chiller with refrigerant circulation system for cooling and heating
JP3594453B2 (en) Operating method of air conditioner
JP2523947Y2 (en) Air-cooled absorption chiller / heater
JP3407182B2 (en) Absorption type cold heat generator
JP3663006B2 (en) Absorption chiller / heater
JP2594099B2 (en) Non-condensable gas discharge device of absorption chiller / heater
JPH0754209B2 (en) Absorption cold / hot water device and its operating method
JP2635276B2 (en) Absorption type cold / hot water unit
JPH0354378Y2 (en)
KR0136049Y1 (en) Absorption room cooler