JP3617110B2 - Absorption refrigeration generator generator - Google Patents

Absorption refrigeration generator generator Download PDF

Info

Publication number
JP3617110B2
JP3617110B2 JP08957395A JP8957395A JP3617110B2 JP 3617110 B2 JP3617110 B2 JP 3617110B2 JP 08957395 A JP08957395 A JP 08957395A JP 8957395 A JP8957395 A JP 8957395A JP 3617110 B2 JP3617110 B2 JP 3617110B2
Authority
JP
Japan
Prior art keywords
generator
dilute solution
liquid
out pipe
heat conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08957395A
Other languages
Japanese (ja)
Other versions
JPH08285403A (en
Inventor
裕司 渡部
文一 谷口
晃一 安尾
史朗 薬師寺
克宏 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP08957395A priority Critical patent/JP3617110B2/en
Publication of JPH08285403A publication Critical patent/JPH08285403A/en
Application granted granted Critical
Publication of JP3617110B2 publication Critical patent/JP3617110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【産業上の利用分野】
本願発明は、吸収式冷凍装置に適用される発生器に関し、さらに詳しくはかかる発生器の液溜部に貯留される作動液の液面が常時所定範囲内に位置する如く液面位を自動的に制御するための構造に関するものである。
【0002】
【従来の技術】
図1には、一般的な吸収式冷凍装置のシステム構成を示している。この吸収式冷凍装置は、本願発明の対象である発生器1の他に、凝縮器2と蒸発器3と吸収器4と減圧弁5と膨張弁6とを備えて構成される。ここで本願発明の説明の都合上、吸収式冷凍装置を構成する上記各部材の作動等について簡単に説明しておく。
【0003】
上記発生器1は、縦長の密閉容器状の容器本体10を備え、該容器本体10の底部を作動液L(例えば、冷媒としてのアンモニア溶液と吸収液としての水とが混合したアンモニア水溶液)を貯留する液溜部13とするとともに、該液溜部13の上方位置には精留器部11と分縮器部12とを設けている。また、上記液溜部13部分には、該液溜部13の底部に開口する希溶液取出管15が設けられるとともに、該液溜部13の下側位置にはガスバーナ等の加熱装置14が配置されている。さらに、発生器1には、上記吸収器4から冷媒濃度の高い濃溶液Raが供給される。
【0004】
かかる構成をもつ発生器1においては、上記加熱装置14により上記液溜部13内の作動液Lを加熱して該作動液Lから冷媒と吸収液との作動液蒸気を発生させる。この作動液蒸気は、その上昇過程において、先ず上記精留器部11で上記吸収器4からの濃溶液Raと接触して濃縮されるとともに、上記分縮器部12での冷却により水分が除去され、高濃度のガス冷媒Gaとして上記凝縮器2側に供給される。一方、上記液溜部13内の作動液Lは、加熱による作動液蒸気の発生に伴って次第に冷媒濃度が低下して希溶液Rbとなるが、この希溶液Rbは上記希溶液取出管15を通して取り出されて上記吸収器4に供給される。また、上記液溜部13内の作動液Lは、上記吸収器4から減圧弁5を介して還流される濃溶液Raによりその液量が順次補充される。
【0005】
上記凝縮器2においては、上記発生器1からのガス冷媒Gaを凝縮させてこれを液冷媒Gbとし、膨張弁6を介して蒸発器3に送る。また、この液冷媒Gbは、蒸発器3において蒸発して再度ガス冷媒Gaとなる。さらに、このガス冷媒Gaは、上記吸収器4に供給され、上記発生器1から供給される希溶液Rbに順次吸収されて濃溶液Raとされ、再度上記発生器1に供給される。
【0006】
ところで、かかる吸収式冷凍装置における上記発生器1においては、上述のように容器本体10の液溜部13に貯留された作動液Lから冷媒濃度の低い希溶液を順次上記希溶液取出管15を介して吸収器4側に取り出すが、その場合、該液溜部13内の作動液Lの液面位、即ち、作動液Lの貯留量は、俗に言う“空焚き”を防止して発生器1の信頼性を確保するとともに冷凍システムの円滑な運転を確保する等の観点から非常に重要であり、そのためには上記吸収器4から発生器1への濃溶液Raの還流量と該発生器1から吸収器4への希溶液Rbの取り出し量との均衡を図って作動液Lの液面位を常時所定範囲内に維持することが必要となる。
【0007】
かかる観点から、従来は、図6に示すように、上記容器本体10の液溜部13に対応する部位の外側に液面計31を取り付けるとともに、上記希溶液取出管15に希溶液Rbの流量調整を行う電磁制御弁33を介装し、上記液面計31からの検出信号をコントローラ32に入力し、該コントローラ32においてはこの入力信号に対応した開度信号を上記制御弁33に出力し、該制御弁33の開度を増減調整することで上記液溜部13内の作動液Lの液面位を常時所定範囲内に維持するようにしていた。
【0008】
【発明が解決しようとする課題】
ところが、かかる従来の液面位維持方法によれば、液面計31とコントローラ32及び制御弁33が共に高価であることから、装置全体としてのコストアップを招来するという問題があり、またこれら各部材がともに電気的に作動するものであることから電気回路の故障によって作動上の信頼性が損なわれるということも危惧されるところである。
【0009】
そこで本願発明は、簡易且つ安価な構造でしかも作動上の信頼性が高い液面位維持機能をもった吸収式冷凍装置用発生器を提供せんとしてなされたものある。
【0010】
【課題を解決するための手段】
本願発明ではかかる課題を解決するための具体的手段として次のような構成を採用している。
【0011】
本願の第1の発明では、図2〜図5に例示するように、容器本体10の底部に位置する液溜部13に貯留された冷媒と吸収液との混合溶液である作動液Lを上記容器本体10の容器壁10aからの伝導熱により加熱して作動液蒸気Gを発生させる一方、上記液溜部13の底部に液取出口15aを開口させた希溶液取出管15を備え、上記作動液Lのうち上記作動液蒸気Gの発生により冷媒濃度が希薄となった希溶液Rbを上記希溶液取出管15を介して取り出してこれを吸収器4側へ供給するようにした吸収式冷凍装置用発生器において、上記希溶液取出管15の上下方向において上記容器本体10の上記液溜部13に対応する位置に、上記容器壁10a側の熱を熱伝導により上記希溶液取出管15側へ伝達可能とされた熱伝導部材21を備えたことを特徴としている。
【0012】
本願の第2の発明では、図2及び図3に例示するように、上記第1の発明にかかる吸収式冷凍装置用発生器において、上記熱伝導部材21を、上記希溶液取出管15の外周に接触配置された良熱伝導材からなる巻回材24と、該巻回材24と上記容器本体10の容器壁10aとにそれぞれ接触状態でこれらの間に跨がって延設配置された良熱伝導材からなる延設材25とで構成したことを特徴としている。
【0013】
本願の第3の発明では、図4及び図5に例示するように、上記第1の発明にかかる吸収式冷凍装置用発生器において、上記熱伝導部材21を、上記希溶液取出管15の一部を上記容器本体10の容器壁10aに直接接触せしめられた接触部15bで構成したことを特徴としている。
【0014】
【発明の作用・効果】
本願発明ではかかる構成とすることにより次のような作用・効果が得られる。
【0015】
▲1▼ 本願の第1の発明にかかる吸収式冷凍装置用発生器によれば、希溶液取出管15の上下方向において容器本体10の液溜部13に対応する位置に、容器壁10a側の熱を熱伝導により上記希溶液取出管15側へ伝達可能とされた熱伝導部材21を備えている。
【0016】
先ず、図2及び図4に示すように、熱伝導部材21よりも作動液Lの液面Laが高い場合、即ち、熱伝導部材21が作動液L中に没している場合には、加熱装置14により熱せられた容器本体10の容器壁10aから熱伝導部材21を介して希溶液取出管15側に熱伝導により熱が伝達されるが、該熱伝導部材21そのものが作動液L中に没しているため、伝導熱は希溶液取出管15に伝達されずにそのまま作動液L側に放熱される。また、上記希溶液取出管15そのものも作動液Lから冷却作用を受ける。従って、この場合には、希溶液取出管15を通って液溜部13側から取り出される希溶液は内部沸騰がないことから液のみの単相流となり、該希溶液取出管15内における圧力損失が小さくその流量が増加する。このため、吸収器4から発生器1への濃溶液の還流量よりも該発生器1から希溶液取出管15を介しての希溶液の取り出し量の方が多くなり、液溜部13内の作動液Lの液面位は次第に低下せしめられる。
【0017】
一方、希溶液取出管15を通しての希溶液の取り出しの促進により作動液Lの液面位が低下し、これが図3及び図5に示すように、上記熱伝導部材21より低下した場合、即ち、上記熱伝導部材21が作動液Lからその上方へ露出した場合には、上記容器本体10の容器壁10aから熱伝導部材21側に熱伝導により伝達される熱は作動液Lへ放熱されることなく直接希溶液取出管15に伝達されてこれを加熱する。従って、該希溶液取出管15内を流通する希溶液は、該希溶液取出管15側からの加熱によって内部で沸騰が起こりその流れが気体と液体との二相流となり、圧力損失の増大によってその流量が次第に低下する。このため、吸収器4から発生器1への濃溶液の還流量が該発生器1から希溶液取出管15を介しての希溶液の取り出し量を上回り、液溜部13内の作動液Lの液面位は次第に上昇せしめられる。
【0018】
このように熱伝導部材21が作動液L中に没した場合における該作動液Lの液面位の低下作用と、該熱伝導部材21が作動液Lから露出した場合における該作動液Lの液面位の上昇作用とが交互に繰り返して行われることで、該作動液Lの液面位は常時所定の高さ範囲内に維持されることになる。
【0019】
即ち、この第1の発明にかかる吸収式冷凍装置用発生器においては、上記容器本体10の容器壁10aと上記希溶液取出管15との間に上記熱伝導部材21を配置するという極めて簡易で且つ安価な構造によって該発生器1内の作動液Lの液面位を常時所定範囲内に維持することができるものであり、例えば従来のように高価な液面計31とコントローラ32及び制御弁33を設ける場合に比して、該発生器1の構造の簡略化及び低コスト化が図られるものである。また、上記熱伝導部材21は熱伝導という物理的性状を利用して液面位の維持という初期の目的を達するものであって、電気的手段によって当該目的を達する従来の場合のような故障等による作動不良の発生ということがなく、それだけ作動上の信頼性が高められるものである。
【0020】
▲2▼ 本願の第2の発明にかかる吸収式冷凍装置用発生器によれば、上記▲1▼に記載の作用効果に加えて次のような特有の作用効果が得られる。即ち、上記熱伝導部材21を、上記希溶液取出管15の外周に接触配置された良熱伝導材からなる巻回材24と、該巻回材24と上記容器本体10の容器壁10aとにそれぞれ接触状態でこれらの間に跨がって延設配置された良熱伝導材からなる延設材25とで構成しているので、該巻回材24と延設材25の材質の選択によってより高精度且つ高感度の液面位制御が可能になると共に、該巻回材24及び延設材25の形状の選択により上記希溶液取出管15の仕様変更を伴うことなく既存の発生器1にも適用可能である。
【0021】
▲3▼ 本願の第3の発明にかかる吸収式冷凍装置用発生器によれば、上記▲1▼に記載の作用効果に加えて次のような特有の作用効果が得られる。即ち、上記熱伝導部材21を、上記希溶液取出管15の一部を上記容器本体10の容器壁10aに直接接触せしめられた接触部15bで構成し、該希溶液取出管15にそれ本来の機能の他に液面位制御機能をもたせているので、例えば熱伝導部材21として専用の部材を設ける場合に比して部品点数の低減と構造の簡略化とが図れるものである。
【0022】
【実施例】
以下、本願発明の吸収式冷凍装置用発生器を添付図面に基づいて具体的に説明する。
【0023】
第1の実施例
図2及び図3には、本願発明の第1の実施例にかかる発生器1の要部を示している。この発生器1は、図1に示した発生器1と基本構造を同じにするものであって、容器本体10の底部に液溜部13を形成するとともに、この図2及び図3には図示を省略しているが、該液溜部13の上方位置には精留器部11と分縮器部12とが設けられている。そして、この発生器1は、その下方側に配置した加熱装置14によって容器本体10の底部を加熱することで上記液溜部13内に貯留された作動液Lを加熱し、これから作動液蒸気Gを発生させるとともに、該作動液蒸気Gの発生により冷媒濃度の低下した希溶液を該液溜部13の底部近傍に開口する希溶液取出管15の液取出口15aから吸収器4(図1参照)側へ取り出すようになっている。また、これと同時に、上記吸収器4から濃溶液Raが供給され、この希溶液の取り出しと濃溶液の供給とがバランスすることで上記液溜部13内の作動液Lの貯留量、即ち、液面位が常時適正範囲に維持され、システムの円滑な運転が確保されるものである。
【0024】
かかる作動液Lの液面位の維持制御のために、この実施例においては上記希溶液取出管15の上記液溜部13に対応する部位に、上下方向に所定間隔をもって次述する3個の熱伝導部材21,21,21を配置している。この熱伝導部材21は、例えば銅、ステンレス鋼等の良熱伝導材により所定軸長の管体とされ且つ上記希溶液取出管15の外側に接触状態で嵌挿される巻回材24と、同じく銅等の良熱伝導材で板状に形成され且つその一旦が上記巻回材24に、他端が上記容器本体10の容器壁10aに、それぞれ溶接固着された延設材25とで構成されている。
【0025】
かかる構造の熱伝導部材21,21,21を上記希溶液取出管15の所定位置に取り付けることで、次述する如く、何ら格別な制御を行わずとも自動的に上記作動液Lの液面位が常時所定の高さ範囲内に維持されるものである。
【0026】
先ず、図2に示すように、熱伝導部材21よりも作動液Lの液面Laが高く該熱伝導部材21が作動液L中に没している高液面位時であるが、この場合、加熱装置14により熱せられた容器本体10の容器壁10aから上記熱伝導部材21を介して希溶液取出管15側に熱伝導により熱が伝達される。ところが、該熱伝導部材21そのものが作動液L中に没しているため伝導熱は希溶液取出管15に伝達されずにそのまま作動液L側に放熱される。また、上記希溶液取出管15そのものも作動液Lに没しているので該作動液Lから冷却作用を受ける。従って、この場合には、希溶液取出管15を通って液溜部13側から取り出される希溶液には内部沸騰は生じず、その流れは液のみの単相流となる。従って、該希溶液取出管15内における圧力損失が小さくなり、その流量が増加方向に変化する。このため、吸収器4から発生器1への濃溶液の還流量よりも該発生器1から希溶液取出管15を介しての希溶液の取り出し量の方が多くなり、上記液溜部13内の作動液Lの液面位は次第に低下傾向となる。
【0027】
一方、希溶液取出管15を通しての希溶液の取り出しの促進により作動液Lの液面位が低下し、図3に示すように液面Laが上記熱伝導部材21より低くなり該熱伝導部材21が作動液Lからその上方へ露出した場合には、上記容器本体10の容器壁10aから熱伝導部材21側に熱伝導により伝達される熱は作動液Lへ放熱されることなく直接希溶液取出管15に伝達されてこれを加熱する。従って、該希溶液取出管15内を流通する希溶液は、該希溶液取出管15側からの加熱によって内部で沸騰が起こりその流れが気体と液体との二相流となり、圧力損失の増大によってその流量が次第に低下することになる。このため、吸収器4から発生器1への濃溶液の還流量が該発生器1から希溶液取出管15を介しての希溶液の取り出し量よりも多くなり、液溜部13内の作動液Lの液面位は次第に上昇傾向となる。
【0028】
このように熱伝導部材21が作動液L中に没した場合における該作動液Lの液面位の低下作用と、該熱伝導部材21が作動液Lから露出した場合における該作動液Lの液面位の上昇作用とが交互に繰り返して行われることで、該作動液Lの液面位は常時所定の高さ範囲内に維持されることになる。
【0029】
従って、この実施例の発生器1においては、上記容器本体10の容器壁10aと上記希溶液取出管15との間に上記熱伝導部材21を配置するという極めて簡易で且つ安価な構造によって該発生器1内の作動液Lの液面位を常時所定範囲内に維持することができるものであり、例えば従来のように高価な液面計31とコントローラ32及び制御弁33を設ける場合に比して、該発生器1の構造の簡略化及び低コスト化が図られるものである。また、上記熱伝導部材21は熱伝導という物理的性状を利用して液面位の維持という初期の目的を達するものであって、電気的手段によって当該目的を達する従来の場合のような故障等による作動不良の発生ということがなく、それだけ作動上の信頼性が高められるものである。
【0030】
さらに、上記巻回材24と延設材25の材質の選択によって上記熱伝導部材21の熱伝導性能を適宜設定することでより高精度且つ高感度の液面位制御が可能になる。また、上記巻回材24及び延設材25の形状を適宜選択することにより、上記希溶液取出管15の仕様変更を伴うことなく既存の発生器1にも容易に適用可能であり、高い汎用性が確保されるものである。
【0031】
尚、上記熱伝導部材21の設置個数、設置間隔等は発生器1の能力等の条件に応じて適宜設定できるものである。
【0032】
第2の実施例
図4及び図5には、本願発明の第2の実施例にかかる発生器1を示している。この実施例の発生器1は、上記第1の実施例における発生器1と同様の基本構造を有するものであって、これと異なる点は、上記第1実施例のものにおいては熱伝導部材21を希溶液取出管15とは別体に形成していたのに対して、この実施例においては該希溶液取出管15そのものによって上記熱伝導部材21を構成した点である。具体的には、上記希溶液取出管15の上記液溜部13に対応する部位15bを略平坦山型状に屈曲させてこれを直接上記容器本体10の容器壁10aに接触させることで該接触部15bを上記熱伝導部材21として機能させるようにしている。
【0033】
この実施例のものにおいても、先ず、図4に示すように、上記熱伝導部材21、即ち、接触部15bが作動液L中に没している高液面位時には、容器本体10の容器壁10aの熱は希溶液取出管15側に伝達されずに上記接触部15bにおいてそのまま作動液L側に放熱される。また、上記希溶液取出管15そのものも作動液Lから冷却作用を受ける。従って、希溶液取出管15内の希溶液は加熱されないのでその流れは液のみの単相流となり管内における圧力損失が小さくなり、その流量の増大変化によって上記液溜部13内の作動液Lの液面位は次第に低下傾向となる。
【0034】
一方、図5に示すように上記希溶液取出管15の接触部15bが作動液Lからその上方へ露出した場合には、上記容器本体10の容器壁10aから該接触部15bに熱伝導により伝達される熱は作動液Lへ放熱されることなく直接希溶液取出管15を介してその内部の希溶液を加熱する。従って、希溶液取出管15内を流通する希溶液は、その内部で沸騰が起こりその流れが気体と液体との二相流となり、管内の圧力損失の増大によってその流量が次第に低下し、液溜部13内の作動液Lの液面位は次第に上昇傾向となる。
【0035】
このように希溶液取出管15の接触部15bが作動液L中に没した場合における該作動液Lの液面位の低下作用と、これが作動液Lから露出した場合における該作動液Lの液面位の上昇作用とが交互に繰り返して行われることで、該作動液Lの液面位は常時所定の高さ範囲内に維持されることになる。
【0036】
この場合、特にこの実施例のものにおいては、上記希溶液取出管15の一部を屈曲させてこれを上記容器本体10の容器壁10aに直接接触させることでこの接触部15bを熱伝導部材21として機能させるようにしているので、例えば熱伝導部材21として専用の部材を設ける場合に比して部品点数の低減と構造の簡略化とが図れるものである。
【0037】
尚、上記熱伝導部材21を構成する接触部15bの形成個数、形成間隔等は発生器1の能力等の条件に応じて適宜設定できるものである。
【図面の簡単な説明】
【図1】吸収式冷凍装置の一般的なシステム構成図である。
【図2】本願発明の第1実施例にかかる発生器の要部断面図である。
【図3】図2に示した発生器の状態変化図である。
【図4】本願発明の第2状態にかかる発生器の要部断面図である。
【図5】図4に示した発生器の状態変化図である。
【図6】従来の発生器の要部断面図である。
【符号の説明】
1は発生器、2は凝縮器、3は蒸発器、4は吸収器、5は減圧弁、6は膨張弁、10は容器本体、11は精留器部1、12は分縮器部、13は液溜部、14は加熱装置、15は希溶液取出管、16は減圧弁、21は熱伝導部材、24は巻回材、25は延設材である。
[0001]
[Industrial application fields]
The present invention relates to a generator applied to an absorption refrigeration apparatus, and more particularly, automatically adjusts the liquid level so that the liquid level of the working fluid stored in the liquid reservoir of the generator is always within a predetermined range. The present invention relates to a structure for controlling the operation.
[0002]
[Prior art]
FIG. 1 shows a system configuration of a general absorption refrigeration apparatus. This absorption refrigeration apparatus includes a condenser 2, an evaporator 3, an absorber 4, a pressure reducing valve 5, and an expansion valve 6 in addition to the generator 1 that is the subject of the present invention. Here, for convenience of explanation of the present invention, the operation of each member constituting the absorption refrigeration apparatus will be briefly described.
[0003]
The generator 1 includes a vertically long, sealed container-like container body 10, and a working liquid L (for example, an ammonia aqueous solution in which an ammonia solution as a refrigerant and water as an absorption liquid are mixed) is disposed at the bottom of the container body 10. While storing the liquid reservoir 13, a rectifier unit 11 and a condenser unit 12 are provided above the liquid reservoir 13. The liquid reservoir 13 is provided with a dilute solution take-out pipe 15 that opens to the bottom of the liquid reservoir 13, and a heating device 14 such as a gas burner is disposed below the liquid reservoir 13. Has been. Further, the generator 1 is supplied with a concentrated solution Ra having a high refrigerant concentration from the absorber 4.
[0004]
In the generator 1 having such a configuration, the hydraulic fluid L in the liquid reservoir 13 is heated by the heating device 14 to generate hydraulic fluid vapor of refrigerant and absorbing liquid from the hydraulic fluid L. In the ascending process, the working fluid vapor is first concentrated in the rectifier unit 11 in contact with the concentrated solution Ra from the absorber 4, and moisture is removed by cooling in the divider unit 12. is supplied to the condenser 2 side as the gas refrigerant Ga 1 high concentrations. On the other hand, the working fluid L in the liquid reservoir 13 gradually decreases in refrigerant concentration as the working fluid vapor is generated by heating to become a dilute solution Rb. The dilute solution Rb passes through the dilute solution take-out pipe 15. It is taken out and supplied to the absorber 4. Further, the amount of the hydraulic fluid L in the liquid reservoir 13 is sequentially replenished by the concentrated solution Ra refluxed from the absorber 4 through the pressure reducing valve 5.
[0005]
In the condenser 2, it is condensed gas refrigerant Ga 1 from the generator 1 and the liquid refrigerant Gb, and sends to the evaporator 3 via the expansion valve 6. The liquid refrigerant Gb evaporates in the evaporator 3 and becomes gas refrigerant Ga 2 again. Further, the gas refrigerant Ga 2 is supplied to the absorber 4, is sequentially absorbed by the dilute solution Rb supplied from the generator 1 to form a concentrated solution Ra, and is supplied to the generator 1 again.
[0006]
By the way, in the generator 1 in such an absorption refrigeration apparatus, the dilute solution having a low refrigerant concentration is sequentially supplied from the working liquid L stored in the liquid reservoir 13 of the container body 10 as described above to the dilute solution take-out pipe 15. In this case, the liquid level of the hydraulic fluid L in the liquid reservoir 13, that is, the amount of the hydraulic fluid L stored, is generated while preventing the so-called “empty”. It is very important from the viewpoint of ensuring the reliability of the vessel 1 and ensuring the smooth operation of the refrigeration system. For that purpose, the reflux amount of the concentrated solution Ra from the absorber 4 to the generator 1 and the generation thereof It is necessary to always maintain the liquid level of the working fluid L within a predetermined range by balancing with the amount of the dilute solution Rb taken out from the vessel 1 to the absorber 4.
[0007]
From this point of view, conventionally, as shown in FIG. 6, a liquid level gauge 31 is attached to the outside of the portion corresponding to the liquid reservoir 13 of the container body 10, and the flow rate of the dilute solution Rb is added to the dilute solution take-out pipe 15. An electromagnetic control valve 33 that performs adjustment is interposed, and a detection signal from the liquid level gauge 31 is input to the controller 32, and the controller 32 outputs an opening degree signal corresponding to the input signal to the control valve 33. The level of the hydraulic fluid L in the liquid reservoir 13 is always maintained within a predetermined range by adjusting the opening degree of the control valve 33 to increase or decrease.
[0008]
[Problems to be solved by the invention]
However, according to such a conventional liquid level maintenance method, since the liquid level gauge 31, the controller 32, and the control valve 33 are both expensive, there is a problem that the cost of the entire apparatus is increased. Since both the members are electrically operated, there is a fear that the operational reliability is impaired by the failure of the electric circuit.
[0009]
Therefore, the present invention has been made in the light of providing a generator for an absorption refrigeration apparatus having a simple and inexpensive structure and a liquid level maintaining function with high operational reliability.
[0010]
[Means for Solving the Problems]
In the present invention, the following configuration is adopted as a specific means for solving such a problem.
[0011]
In the first invention of the present application, as illustrated in FIGS. 2 to 5, the working liquid L that is a mixed solution of the refrigerant and the absorbing liquid stored in the liquid reservoir 13 located at the bottom of the container body 10 is described above. The working fluid vapor G is generated by heating by conduction heat from the container wall 10a of the container body 10, and a dilute solution outlet pipe 15 having a liquid outlet 15a opened at the bottom of the liquid reservoir 13 is provided. Absorption refrigeration apparatus in which a dilute solution Rb having a diluted refrigerant concentration due to the generation of the working fluid vapor G in the liquid L is taken out through the dilute solution take-out pipe 15 and supplied to the absorber 4 side. In the generator, the heat on the container wall 10a side is transferred to the dilute solution take-out tube 15 side by heat conduction at a position corresponding to the liquid reservoir 13 of the vessel body 10 in the vertical direction of the dilute solution take-out tube 15. The heat conduction member 21 that can be transmitted is provided. It is characterized in that was.
[0012]
In the second invention of the present application, as illustrated in FIG. 2 and FIG. 3, in the generator for an absorption refrigeration apparatus according to the first invention, the heat conducting member 21 is connected to the outer periphery of the dilute solution extraction pipe 15. Wrapping material 24 made of a good heat conductive material placed in contact with each other, and the wound material 24 and the container wall 10a of the container main body 10 are arranged so as to extend between them in contact with each other. It is characterized by comprising the extended material 25 made of a good heat conductive material.
[0013]
In the third invention of the present application, as illustrated in FIG. 4 and FIG. 5, in the generator for an absorption refrigeration apparatus according to the first invention, the heat conducting member 21 is connected to one of the dilute solution extraction pipes 15. The portion is constituted by a contact portion 15b brought into direct contact with the container wall 10a of the container main body 10.
[0014]
[Operation and effect of the invention]
In the present invention, the following operations and effects can be obtained by adopting such a configuration.
[0015]
(1) According to the generator for an absorption refrigeration apparatus according to the first invention of the present application, the container wall 10a side is located at a position corresponding to the liquid reservoir 13 of the container body 10 in the vertical direction of the dilute solution take-out pipe 15. A heat conducting member 21 is provided that can transfer heat to the dilute solution take-out pipe 15 side by heat conduction.
[0016]
First, as shown in FIGS. 2 and 4, when the liquid level La of the working fluid L is higher than that of the heat conducting member 21, that is, when the heat conducting member 21 is submerged in the working fluid L, heating is performed. Heat is transferred from the container wall 10a of the container main body 10 heated by the device 14 to the dilute solution take-out pipe 15 side through the heat conducting member 21, but the heat conducting member 21 itself is contained in the working liquid L. Therefore, the conduction heat is not transferred to the dilute solution take-out pipe 15 but is directly radiated to the hydraulic fluid L side. The dilute solution take-out pipe 15 itself also receives a cooling action from the working liquid L. Accordingly, in this case, the dilute solution taken out from the liquid reservoir 13 side through the dilute solution take-out pipe 15 has no internal boiling, so that it becomes a single-phase flow of only the liquid, and the pressure loss in the dilute solution take-out pipe 15 Is small and its flow rate increases. For this reason, the amount of the dilute solution taken out from the generator 1 via the dilute solution take-out pipe 15 is larger than the reflux amount of the concentrated solution from the absorber 4 to the generator 1. The liquid level of the working fluid L is gradually lowered.
[0017]
On the other hand, when the liquid level of the working liquid L is lowered by the promotion of the removal of the dilute solution through the dilute solution take-out pipe 15, and this is lower than the heat conducting member 21, as shown in FIGS. When the heat conducting member 21 is exposed upward from the hydraulic fluid L, the heat transmitted from the container wall 10a of the container body 10 to the heat conducting member 21 side by heat conduction is dissipated to the hydraulic fluid L. Without being directly transmitted to the dilute solution take-out pipe 15, it is heated. Therefore, the dilute solution flowing through the dilute solution take-out pipe 15 is boiled by heating from the dilute solution take-out pipe 15 side, and the flow becomes a two-phase flow of gas and liquid. The flow rate gradually decreases. For this reason, the reflux amount of the concentrated solution from the absorber 4 to the generator 1 exceeds the extraction amount of the diluted solution from the generator 1 via the diluted solution extraction tube 15, and the working liquid L in the liquid reservoir 13 is discharged. The liquid level is gradually raised.
[0018]
Thus, when the heat conducting member 21 is submerged in the working fluid L, the liquid level of the working fluid L is lowered, and when the heat conducting member 21 is exposed from the working fluid L, the working fluid L is liquid. By performing the surface level raising action alternately and repeatedly, the liquid level of the hydraulic fluid L is always maintained within a predetermined height range.
[0019]
That is, in the generator for an absorption refrigeration apparatus according to the first aspect of the present invention, it is extremely simple that the heat conducting member 21 is disposed between the container wall 10a of the container body 10 and the dilute solution take-out pipe 15. In addition, the liquid level of the hydraulic fluid L in the generator 1 can be always maintained within a predetermined range by an inexpensive structure. For example, an expensive liquid level gauge 31, a controller 32, and a control valve as in the prior art. Compared with the case where 33 is provided, the structure of the generator 1 can be simplified and the cost can be reduced. Further, the heat conducting member 21 achieves the initial purpose of maintaining the liquid level by utilizing the physical property of heat conduction, such as a failure as in the conventional case in which the purpose is achieved by electrical means. There is no occurrence of malfunction due to the above, and the operational reliability is improved accordingly.
[0020]
(2) According to the generator for an absorption refrigeration apparatus according to the second invention of the present application, in addition to the operational effect described in (1), the following specific operational effect can be obtained. That is, the heat conducting member 21 is connected to the winding material 24 made of a good heat conducting material disposed in contact with the outer periphery of the dilute solution take-out pipe 15, and the winding material 24 and the container wall 10 a of the container body 10. Since it is constituted by the extending material 25 made of a good heat conductive material extending and arranged between them in contact with each other, depending on the selection of the material of the winding material 24 and the extending material 25 The liquid level can be controlled with higher accuracy and higher sensitivity, and the existing generator 1 can be controlled without changing the specifications of the dilute solution take-out pipe 15 by selecting the shapes of the winding material 24 and the extending material 25. It is also applicable to.
[0021]
(3) According to the generator for an absorption refrigeration apparatus according to the third invention of the present application, in addition to the operational effect described in (1), the following specific operational effect can be obtained. That is, the heat conducting member 21 is constituted by a contact portion 15b in which a part of the dilute solution take-out pipe 15 is brought into direct contact with the container wall 10a of the vessel body 10, and the dilute solution take-out pipe 15 has its original structure. Since the liquid level control function is provided in addition to the function, the number of parts can be reduced and the structure can be simplified as compared with the case where a dedicated member is provided as the heat conducting member 21, for example.
[0022]
【Example】
Hereinafter, the generator for an absorption refrigeration apparatus of the present invention will be specifically described with reference to the accompanying drawings.
[0023]
First embodiment Figs. 2 and 3 show a main part of a generator 1 according to a first embodiment of the present invention. The generator 1 has the same basic structure as that of the generator 1 shown in FIG. 1, and forms a liquid reservoir 13 at the bottom of the container body 10 and is shown in FIGS. Is omitted, but a rectifier unit 11 and a condenser unit 12 are provided above the liquid reservoir 13. And this generator 1 heats the hydraulic fluid L stored in the said liquid storage part 13 by heating the bottom part of the container main body 10 with the heating apparatus 14 arrange | positioned in the downward side, and hydraulic fluid vapor | steam G from now on And the absorber 4 (see FIG. 1) from the liquid outlet 15a of the diluted solution outlet pipe 15 which opens the diluted solution whose refrigerant concentration is reduced by the generation of the working fluid vapor G in the vicinity of the bottom of the liquid reservoir 13. ) Side to take out. At the same time, the concentrated solution Ra is supplied from the absorber 4, and the storage of the working fluid L in the liquid reservoir 13 is balanced by taking out the diluted solution and supplying the concentrated solution, that is, The liquid level is always maintained in an appropriate range, and the smooth operation of the system is ensured.
[0024]
In order to maintain and control the liquid level of the hydraulic fluid L, in this embodiment, three parts described below are provided at predetermined intervals in the vertical direction at a portion corresponding to the liquid reservoir 13 of the dilute solution take-out pipe 15. The heat conducting members 21, 21, 21 are arranged. The heat conducting member 21 is formed into a tube having a predetermined axial length by a good heat conducting material such as copper or stainless steel, and is similar to the wound material 24 inserted in contact with the outside of the dilute solution outlet tube 15. It is formed in a plate shape with a good heat conductive material such as copper, and once constituted by the wound material 24 and the other end by an extending material 25 welded and fixed to the container wall 10a of the container body 10 respectively. ing.
[0025]
By attaching the heat conducting members 21, 21, 21 having such a structure to a predetermined position of the dilute solution take-out pipe 15, as described below, the liquid level of the working fluid L is automatically obtained without performing any special control. Is always maintained within a predetermined height range.
[0026]
First, as shown in FIG. 2, the liquid level La of the working fluid L is higher than that of the heat conducting member 21, and the heat conducting member 21 is in a high liquid level where it is submerged in the working fluid L. In this case, Heat is transferred by heat conduction from the container wall 10a of the container body 10 heated by the heating device 14 to the dilute solution take-out pipe 15 side via the heat conducting member 21. However, since the heat conducting member 21 itself is submerged in the hydraulic fluid L, the conduction heat is not transferred to the dilute solution extraction pipe 15 but is radiated to the hydraulic fluid L as it is. Further, since the dilute solution take-out pipe 15 itself is submerged in the hydraulic fluid L, it receives a cooling action from the hydraulic fluid L. Accordingly, in this case, internal boiling does not occur in the dilute solution taken out from the liquid reservoir 13 side through the dilute solution take-out pipe 15, and the flow is a single-phase flow of only the liquid. Accordingly, the pressure loss in the dilute solution take-out pipe 15 is reduced, and the flow rate is changed in the increasing direction. For this reason, the amount of the dilute solution taken out from the generator 1 through the dilute solution take-out pipe 15 is larger than the reflux amount of the concentrated solution from the absorber 4 to the generator 1. The liquid level of the hydraulic fluid L gradually decreases.
[0027]
On the other hand, the liquid level of the working liquid L is lowered by the promotion of the extraction of the dilute solution through the dilute solution take-out pipe 15, and the liquid level La becomes lower than the heat conducting member 21 as shown in FIG. Is exposed upward from the hydraulic fluid L, the heat transferred from the container wall 10a of the container body 10 to the heat conduction member 21 side by heat conduction is directly removed from the hydraulic fluid L without being dissipated to the hydraulic fluid L. It is transmitted to the tube 15 to heat it. Therefore, the dilute solution flowing through the dilute solution take-out pipe 15 is boiled by heating from the dilute solution take-out pipe 15 side, and the flow becomes a two-phase flow of gas and liquid. The flow rate gradually decreases. For this reason, the reflux amount of the concentrated solution from the absorber 4 to the generator 1 becomes larger than the extraction amount of the diluted solution from the generator 1 through the diluted solution extraction pipe 15, and the working fluid in the liquid reservoir 13. The liquid level of L gradually increases.
[0028]
Thus, when the heat conducting member 21 is submerged in the working fluid L, the liquid level of the working fluid L is lowered, and when the heat conducting member 21 is exposed from the working fluid L, the working fluid L is liquid. By performing the surface level raising action alternately and repeatedly, the liquid level of the hydraulic fluid L is always maintained within a predetermined height range.
[0029]
Therefore, in the generator 1 according to this embodiment, the heat conducting member 21 is disposed between the container wall 10a of the container main body 10 and the dilute solution take-out pipe 15, so that the generation is performed by an extremely simple and inexpensive structure. The liquid level of the hydraulic fluid L in the vessel 1 can always be maintained within a predetermined range. For example, compared with the case where an expensive liquid level gauge 31, a controller 32, and a control valve 33 are provided as in the prior art. Thus, the structure of the generator 1 can be simplified and the cost can be reduced. Further, the heat conducting member 21 achieves the initial purpose of maintaining the liquid level by utilizing the physical property of heat conduction, such as a failure as in the conventional case in which the purpose is achieved by electrical means. There is no occurrence of malfunction due to the above, and the operational reliability is improved accordingly.
[0030]
Furthermore, the liquid level can be controlled with higher accuracy and sensitivity by appropriately setting the heat conduction performance of the heat conduction member 21 by selecting the material of the winding material 24 and the extending material 25. In addition, by appropriately selecting the shapes of the winding material 24 and the extending material 25, it can be easily applied to the existing generator 1 without changing the specifications of the dilute solution take-out pipe 15, and is highly versatile. The property is ensured.
[0031]
In addition, the installation number, installation interval, etc. of the said heat conductive member 21 can be suitably set according to conditions, such as the capability of the generator 1. FIG.
[0032]
Second embodiment Figs. 4 and 5 show a generator 1 according to a second embodiment of the present invention. The generator 1 of this embodiment has the same basic structure as that of the generator 1 of the first embodiment. The difference from this is that the heat conducting member 21 of the first embodiment is different. Is formed separately from the dilute solution take-out pipe 15, whereas in this embodiment, the heat conducting member 21 is constituted by the dilute solution take-out pipe 15 itself. Specifically, the portion 15b corresponding to the liquid reservoir 13 of the dilute solution take-out pipe 15 is bent into a substantially flat mountain shape, and this is brought into direct contact with the container wall 10a of the container body 10 to thereby make the contact. The part 15b is made to function as the heat conducting member 21.
[0033]
Also in this embodiment, first, as shown in FIG. 4, the container wall of the container body 10 is at the high liquid level when the heat conducting member 21, that is, the contact portion 15 b is submerged in the hydraulic fluid L. The heat of 10a is not transmitted to the dilute solution take-out tube 15 side but is directly radiated to the hydraulic fluid L side at the contact portion 15b. The dilute solution take-out pipe 15 itself also receives a cooling action from the working liquid L. Therefore, since the diluted solution in the diluted solution take-out pipe 15 is not heated, the flow becomes a single-phase flow of only the liquid, the pressure loss in the tube is reduced, and the increase in the flow rate causes the working liquid L in the liquid reservoir 13 to flow. The liquid level gradually decreases.
[0034]
On the other hand, as shown in FIG. 5, when the contact portion 15b of the dilute solution take-out pipe 15 is exposed upward from the hydraulic fluid L, it is transmitted from the container wall 10a of the container body 10 to the contact portion 15b by heat conduction. The generated heat directly heats the dilute solution inside the dilute solution take-out pipe 15 without releasing heat to the working liquid L. Accordingly, the dilute solution flowing in the dilute solution take-out pipe 15 boils inside and the flow becomes a two-phase flow of gas and liquid, and the flow rate gradually decreases due to an increase in pressure loss in the tube, and the liquid reservoir The level of the hydraulic fluid L in the portion 13 gradually increases.
[0035]
Thus, when the contact portion 15b of the dilute solution take-out pipe 15 is submerged in the hydraulic fluid L, the lowering of the liquid level of the hydraulic fluid L and the liquid of the hydraulic fluid L when it is exposed from the hydraulic fluid L By performing the surface level raising action alternately and repeatedly, the liquid level of the hydraulic fluid L is always maintained within a predetermined height range.
[0036]
In this case, particularly in this embodiment, a part of the dilute solution take-out pipe 15 is bent and brought into direct contact with the container wall 10a of the container main body 10, thereby making the contact portion 15b a heat conducting member 21. Therefore, the number of parts can be reduced and the structure can be simplified as compared with the case where a dedicated member is provided as the heat conducting member 21, for example.
[0037]
The number of contact portions 15b forming the heat conducting member 21 and the formation interval can be appropriately set according to conditions such as the capability of the generator 1.
[Brief description of the drawings]
FIG. 1 is a general system configuration diagram of an absorption refrigeration apparatus.
FIG. 2 is a cross-sectional view of a main part of a generator according to a first embodiment of the present invention.
FIG. 3 is a state change diagram of the generator shown in FIG. 2;
FIG. 4 is a cross-sectional view of a main part of a generator according to a second state of the present invention.
FIG. 5 is a state change diagram of the generator shown in FIG. 4;
FIG. 6 is a cross-sectional view of a main part of a conventional generator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 is a generator, 2 is a condenser, 3 is an evaporator, 4 is an absorber, 5 is a pressure reducing valve, 6 is an expansion valve, 10 is a container main body, 11 is a rectifier part 1, 12 is a condenser part, Reference numeral 13 is a liquid reservoir, 14 is a heating device, 15 is a dilute solution take-out pipe, 16 is a pressure reducing valve, 21 is a heat conducting member, 24 is a wound material, and 25 is an extending material.

Claims (3)

容器本体(10)の底部に位置する液溜部(13)に貯留された冷媒と吸収液との混合溶液である作動液(L)を上記容器本体(10)の容器壁(10a)からの伝導熱により加熱して作動液蒸気(G)を発生させる一方、
上記液溜部(13)の底部に液取出口(15a)を開口させた希溶液取出管(15)を備え、上記作動液(L)のうち上記作動液蒸気(G)の発生により冷媒濃度が希薄となった希溶液(Rb)を上記希溶液取出管(15)を介して取り出してこれを吸収器(4)側へ供給するようにした吸収式冷凍装置用発生器であって、
上記希溶液取出管(15)の上下方向において上記容器本体(10)の上記液溜部(13)に対応する位置に、上記容器壁(10a)側の熱を熱伝導により上記希溶液取出管(15)側へ伝達可能とされた熱伝導部材(21)が備えられていることを特徴とする吸収式冷凍装置用発生器。
From the container wall (10a) of the said container main body (10), the hydraulic fluid (L) which is a mixed solution of the refrigerant | coolant and absorption liquid stored by the liquid storage part (13) located in the bottom part of a container main body (10) is sent. While heated by conduction heat to generate hydraulic fluid vapor (G),
A dilute solution take-out pipe (15) having a liquid take-out port (15a) opened at the bottom of the liquid reservoir (13) is provided, and a refrigerant concentration is generated by generating the working liquid vapor (G) in the working liquid (L). A generator for an absorption refrigeration apparatus in which the diluted solution (Rb) is diluted through the diluted solution take-out pipe (15) and is supplied to the absorber (4).
In the vertical direction of the dilute solution take-out pipe (15), the dilute solution take-out pipe is transferred by heat conduction to the container wall (10a) side at a position corresponding to the liquid reservoir (13) of the vessel body (10). (15) A generator for an absorption refrigeration apparatus, comprising a heat conducting member (21) capable of being transmitted to the side.
請求項1において、上記熱伝導部材(21)が、上記希溶液取出管(15)の外周に接触配置された良熱伝導材からなる巻回材(24)と、該巻回材(24)と上記容器本体(10)の容器壁(10a)とにそれぞれ接触状態でこれらの間に跨がって延設配置された良熱伝導材からなる延設材(25)とで構成されていることを特徴とする吸収式冷凍装置用発生器。The winding material (24) according to claim 1, wherein the heat conducting member (21) is made of a good heat conducting material disposed in contact with the outer periphery of the dilute solution take-out pipe (15), and the winding material (24). And an extending member (25) made of a good heat conductive material extending and arranged between them in contact with the container wall (10a) of the container body (10). A generator for an absorption refrigeration apparatus. 請求項1において、上記熱伝導部材(21)が、上記希溶液取出管(15)の一部を上記容器本体(10)の容器壁(10a)に直接接触させてなる接触部(15b)で構成されていることを特徴とする吸収式冷凍装置用発生器。In Claim 1, the said heat conductive member (21) is a contact part (15b) formed by making a part of said dilute solution extraction pipe | tube (15) contact the container wall (10a) of the said container main body (10) directly. A generator for an absorption refrigeration apparatus, characterized in that it is configured.
JP08957395A 1995-04-14 1995-04-14 Absorption refrigeration generator generator Expired - Fee Related JP3617110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08957395A JP3617110B2 (en) 1995-04-14 1995-04-14 Absorption refrigeration generator generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08957395A JP3617110B2 (en) 1995-04-14 1995-04-14 Absorption refrigeration generator generator

Publications (2)

Publication Number Publication Date
JPH08285403A JPH08285403A (en) 1996-11-01
JP3617110B2 true JP3617110B2 (en) 2005-02-02

Family

ID=13974552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08957395A Expired - Fee Related JP3617110B2 (en) 1995-04-14 1995-04-14 Absorption refrigeration generator generator

Country Status (1)

Country Link
JP (1) JP3617110B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111931276B (en) * 2020-07-27 2022-09-30 四川农业大学 Method for rapidly optimizing body type of threshold-falling stilling pool

Also Published As

Publication number Publication date
JPH08285403A (en) 1996-11-01

Similar Documents

Publication Publication Date Title
US2343727A (en) Vaporizing device
TWM628465U (en) A two-phase immersion cooling apparatus with movable second condenser
US2212281A (en) Refrigeration
JP3617110B2 (en) Absorption refrigeration generator generator
US2581347A (en) Absorption refrigeration apparatus and heating arrangement therefor
KR20190081999A (en) Loop Type Heat Pipe
JPH0338487B2 (en)
US2202360A (en) Refrigeration
US2156053A (en) Vapor heat transfer system
JP4143210B2 (en) Reboiler
US2721455A (en) Absorption refrigeration
US2333780A (en) Continuous absorption refrigerating system
JPS5840104B2 (en) absorption refrigerator
JPS63247595A (en) Thermosyphon
JPS625572Y2 (en)
JP2957905B2 (en) High temperature regenerator of absorption refrigerator
KR200218928Y1 (en) Steam boiler
JPH0460384A (en) Controlling method for heat accumulation type hot water supplying apparatus and heat accumulation type hot water supplying apparatus for executing the same
US2338018A (en) Device for transmission of heat
JPH0113963Y2 (en)
JPH07104065B2 (en) Absorption heat pump device
RU2015456C1 (en) Electrode heater
US2748575A (en) Absorption refrigeration
JPS621591Y2 (en)
JPS636241B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees