JP4143210B2 - Reboiler - Google Patents

Reboiler Download PDF

Info

Publication number
JP4143210B2
JP4143210B2 JP07998599A JP7998599A JP4143210B2 JP 4143210 B2 JP4143210 B2 JP 4143210B2 JP 07998599 A JP07998599 A JP 07998599A JP 7998599 A JP7998599 A JP 7998599A JP 4143210 B2 JP4143210 B2 JP 4143210B2
Authority
JP
Japan
Prior art keywords
heat
condensate
heat medium
reboiler
downcomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07998599A
Other languages
Japanese (ja)
Other versions
JP2000271402A (en
Inventor
信二 酒井
裕隆 曹
研一 芳賀
昌司 田中
敦詞 内山
達春 島岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Tokyo Gas Co Ltd
Original Assignee
Chiyoda Corp
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Tokyo Gas Co Ltd filed Critical Chiyoda Corp
Priority to JP07998599A priority Critical patent/JP4143210B2/en
Publication of JP2000271402A publication Critical patent/JP2000271402A/en
Application granted granted Critical
Publication of JP4143210B2 publication Critical patent/JP4143210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蒸留塔の底部に一体に設けられるリボイラに関するものである。
【0002】
【従来の技術】
精密蒸留用の蒸留塔では、その最下部に凝縮液が滞留する液溜めを設け、ここに凝縮液を加熱蒸発させる加熱手段を設けた蒸留塔一体型のリボイラが一般的に採用されている。
【0003】
【発明が解決しようとする課題】
しかるに、蒸留塔の大型化等に応じてリボイラの蒸発能力を高めたい場合、必要な伝熱量を確保するために伝熱面積を大きくする必要があるが、これには従来、液溜めの容量を大きくすることで対応していた。ところが、液溜めの容量増大に伴い凝縮液の滞留量(ホールドアップ)も増大し、これにより立ち上げ所要時間が長くなる。これは、元来立ち上げに長時間を要する精密蒸留用蒸留塔では大きな問題となる。また、蒸発量の増大に伴って径の大きな沸騰気泡が発生することがあるが、これは激しい圧力変動を招いて蒸留塔の運転状態を不安定にさせる要因となり避けることが望ましい。
【0004】
本発明は、このような従来技術の問題点を解消するべく案出されたものであり、その主な目的は、凝縮液の滞留量を増大させることなく伝熱面積を拡大することが可能で、かつ径の大きな気泡の発生を抑えて安定した運転状態を確保し得るように構成されたリボイラを提供することにある。
【0005】
【課題を解決するための手段】
このような目的を果たすために、本発明においては、蒸留塔の底部に一体に設けられるリボイラにおいて、前記蒸留塔からの凝縮液を滞留させる液溜めが、蒸留塔に直結された上槽と、該上槽から垂下した複数の伝熱管と、該複数の伝熱管を集合する下槽と、前記上下の槽を連絡して凝縮液を循環させるダウンカマー(下降管)とからなり、当該液溜め内の凝縮液を外部の熱媒体により加熱するものとし、前記熱媒体は、液面を前記液溜めの下方に位置させるように該液溜めに併設された熱媒体槽に封入され、該熱媒体槽に設けられたヒータの加熱により生じた蒸気の凝縮潜熱によって前記液溜め内の凝縮液を加熱するようにし、前記ダウンカマーの外周に、前記熱媒体の蒸気と前記液溜め内の凝縮液との熱交換により生成する前記熱媒体の凝縮液が滞留する熱媒液滞留部を設けた。
【0006】
これによると、凝縮液の滞留量に対して伝熱面積を大きくとることが可能となり、所要の蒸発能力を小容量の液溜めで実現することができ、これにより立ち上げ所要時間を短縮することができる。その上、伝熱管を多数設けて伝熱管の径を小さくすることにより、スラグフローが形成された場合にも比較的小さな圧力脈動しか発生せず、しかも互いに打ち消し合うように作用するため、蒸留塔の運転状態を不安定にさせる不具合を解消することができる。
【0007】
なお、前記構成の液溜めでは、サーモサイホンの作用により伝熱管内で凝縮液が上向きに流通すると共にダウンカマー内で凝縮液が下向きに流通して循環流が形成されるが、これはカランドリア型熱交換器と同様な原理であり、ダウンカマーを大径に、伝熱管を小径にそれぞれ形成してダウンカマーでの断面積あたりの伝熱面積を伝熱管に比べて小さくする。これにより、ダウンカマー内に下向流が形成され、他方、伝熱管内では、その内面の境膜厚さが減少し、良好な伝熱性能が得られる。また、伝熱管の流量を均一化する上でダウンカマーを中心に配置することが望ましい。
【0008】
特に、前記熱媒体は、液面を前記液溜めの下方に位置させるように該液溜めに併設された熱媒体槽に封入され、該熱媒体槽に設けられたヒータの加熱により生じた蒸気の凝縮潜熱によって前記液溜め内の凝縮液を加熱するようにしたため、熱媒体の外部からの供給が不要となり、装置構成を簡略化して小型化を図ることができる。しかも、熱媒蒸気による間接加熱であるため、ヒータの発熱量の変動に対して平準化の効果が得られ、運転の安定性を向上させることができる。この場合、熱媒体に運転温度が沸点になるものを採用すれば良く、その簡単な例としては蒸留対象物と同一物質を挙げることができる。
【0009】
さらに、前記ダウンカマーの外周に、前記熱媒体の蒸気と前記液溜め内の凝縮液との熱交換により生成する前記熱媒体の凝縮液が滞留する熱媒液滞留部を設けたため、ダウンカマーの外周の熱媒凝縮液が、ダウンカマー内への侵入熱を低減する断熱層として作用し、侵入熱によりダウンカマーの内壁面近傍で生じる上昇流れを抑制して、ダウンカマー内の下向流を安定させることができ、これにより伝熱管内の上向流を安定させ、伝熱管内の境膜厚さの低減効果を増大させて伝熱性能を向上させることができる。
【0010】
【発明の実施の形態】
以下に添付の図面を参照して本発明の構成を詳細に説明する。
【0011】
図1は、本発明によるリボイラが適用された精密蒸留装置の概略構成を示している。この精密蒸留装置は、常温以下の温度条件で蒸留操作を行うものであり、本発明によるリボイラ1と、充填材が充填された複数の蒸留カラム2と、蒸留カラム2から上昇したガスを凝縮するコンデンサ3とを断熱容器4内に収容してなっている。リボイラ1、蒸留カラム2並びにコンデンサ3は図示しない支持部材を介して断熱容器4に支持される。
【0012】
リボイラ1においては、蒸留カラム2から流下した凝縮液Aの液溜め6が蒸留カラム2の底部に一体に設けられている。液溜め6の下方には、熱媒体が封入される熱媒体槽7が併設されており、この熱媒体槽7では、熱媒液Bの液面が液溜め6の下方に位置している。熱媒体槽7にはヒータ9が設けられており、このヒータ9により熱媒液Bが加熱され、これにより生じた蒸気の凝縮潜熱により液溜め6内の凝縮液Aを加熱するようになっている。熱媒には、沸点が運転温度になるものが採用される。
【0013】
コンデンサ3では、各蒸留カラム2の上端に設けられた凝縮管10がコンデンサ容器11内の冷媒液に浸漬され、蒸留カラム2から上昇した凝縮性ガスを凝縮するようになっている。凝縮管10内で生成した凝縮液は自然流下して蒸留カラム2に環流される。被蒸留物は、蒸留カラム2の中段に送入され、凝縮管10の頂部から低沸点成分が、リボイラ1の液溜め6から高沸点成分がそれぞれ引き抜かれる。
【0014】
リボイラ1の液溜め6は、図2に詳しく示すように、蒸留カラム2に直結された上槽13と、この上槽13から垂下した複数の伝熱管14と、この複数の伝熱管14を集合する下槽15と、上下の槽13・15を相互に連絡して凝縮液を循環させるダウンカマー16とからなっている。ダウンカマー16は、伝熱管14よりも大径に形成され、それらの中心部に配置されている。ダウンカマー16の外周には、熱媒体の凝縮液を滞留させる熱媒液滞留部として筒状のトラップ17が設けられている。このトラップ17の上部は開放されている。
【0015】
このように構成されたリボイラ1においては、前記のごとくヒータ9により熱媒体槽7内の熱媒液Bが加熱され、これにより生成した熱媒蒸気は、伝熱管14や下槽15の壁面で凝縮潜熱を放出して内部の凝縮液Aを加熱する。これにより、図2中に矢印で示すように伝熱管14内ではサーモサイホンの作用で凝縮液Aが上向きに流通し、ダウンカマー16内では凝縮液Aが下向きに流通して循環流が形成される。他方、凝縮液Aとの熱交換により液溜め6の外面に生成した熱媒凝縮液は、流れ落ちて再度ヒータ9により加熱されることになり、密閉された熱媒体槽7内で熱媒体が蒸発と凝縮とを繰り返す。
【0016】
また、ダウンカマー16の壁面では、上部の開口から入り込んだ熱媒蒸気が凝縮し、その熱媒凝縮液がダウンカマー16を筒状に取り囲むように滞留してダウンカマー16の断熱筒として機能し、ダウンカマー16内への入熱を低減してその内壁面近傍で生じる上昇流れを抑制する。
【0017】
以上、熱媒蒸気の凝縮潜熱を利用した間接加熱方式の例について説明したが、図3に示すように、熱媒液で直接加熱する方式も可能である。このリボイラ21においては、熱媒体槽22に熱媒液Bが充満し、熱媒液Bの供給管23並びに排出管24が設けられ、所定の温度に保持される。
【0018】
なお、前記実施形態においては、充填塔式の多数の蒸留カラムをリボイラに接続した構成を例に説明したが、本発明によるリボイラは蒸留塔の形式を選ぶものではなく、棚段式などこれ以外の形式の蒸留塔にも広く適用可能である。
【0019】
【発明の効果】
このように本発明によれば、凝縮液の滞留量を削減して立ち上げ所要時間を短縮すると共に、径の大きな気泡の発生を抑えて安定した運転状態を確保することができる。特に熱媒蒸気の凝縮潜熱を利用した間接加熱方式とすることにより、装置構成を簡略化して小型化を図ると共に、運転の安定性を向上させることができる。さらに、ダウンカマーの外周に熱媒凝縮液による断熱筒を形成することにより、液溜め内の循環流を安定させて伝熱性能を向上させることができる。
【図面の簡単な説明】
【図1】本発明によるリボイラが適用された蒸留装置の概略構成を示す断面図。
【図2】図1に示したリボイラの拡大断面図。
【図3】本発明によるリボイラの他の形態を示す図2と同様の断面図。
【符号の説明】
1 リボイラ
2 蒸留カラム
3 コンデンサ
4 断熱容器
6 液溜め
7 熱媒体槽
9 ヒータ
10 凝縮管
11 コンデンサ容器
13 上槽
14 伝熱管
15 下槽
16 ダウンカマー
17 トラップ
21 リボイラ
22 熱媒体槽
23 供給管
24 排出管
A 凝縮液
B 熱媒液
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reboiler provided integrally at the bottom of a distillation column.
[0002]
[Prior art]
In a distillation column for precision distillation, a reboiler integrated with a distillation column is generally employed in which a liquid reservoir in which condensate stays is provided at the bottom, and heating means for heating and condensing the condensate is provided here.
[0003]
[Problems to be solved by the invention]
However, in order to increase the reboiler's evaporation capacity in response to an increase in the size of the distillation column, etc., it is necessary to increase the heat transfer area in order to secure the necessary heat transfer amount. It was supported by increasing it. However, as the capacity of the liquid reservoir increases, the amount of condensate stay (hold-up) also increases, which increases the startup time. This is a serious problem in a precision distillation column that originally takes a long time to start up. In addition, boiling bubbles with a large diameter may be generated as the amount of evaporation increases, and this is a factor that causes severe pressure fluctuations and makes the operation state of the distillation column unstable, and is desirably avoided.
[0004]
The present invention has been devised to solve such problems of the prior art, and its main purpose is to expand the heat transfer area without increasing the condensate retention. Another object of the present invention is to provide a reboiler configured to suppress generation of bubbles having a large diameter and to ensure a stable operation state.
[0005]
[Means for Solving the Problems]
In order to achieve such an object, in the present invention, in the reboiler integrally provided at the bottom of the distillation column, a liquid reservoir for retaining the condensate from the distillation column is directly connected to the distillation column; A plurality of heat transfer pipes hanging from the upper tank, a lower tank that collects the plurality of heat transfer pipes, and a downcomer (downcomer pipe) that circulates the condensate by connecting the upper and lower tanks. The condensate inside is heated by an external heat medium, and the heat medium is sealed in a heat medium tank provided in the liquid reservoir so that the liquid level is positioned below the liquid reservoir. The condensate in the liquid reservoir is heated by the condensation latent heat of the steam generated by the heating of the heater provided in the tank, and the steam of the heat medium and the condensate in the liquid reservoir are placed on the outer periphery of the downcomer. Of the heat medium generated by heat exchange of Condensed liquid is provided heat medium liquid retaining part for retention.
[0006]
According to this, the heat transfer area can be increased with respect to the condensate retention amount, and the required evaporation capacity can be realized with a small-capacity liquid reservoir, thereby shortening the startup time. Can do. In addition, by providing a large number of heat transfer tubes and reducing the diameter of the heat transfer tubes, even when a slag flow is formed, only a relatively small pressure pulsation occurs, and they act to cancel each other out. The problem of making the operation state of the vehicle unstable can be solved.
[0007]
In the liquid reservoir having the above-described configuration, the condensate flows upward in the heat transfer tube by the action of the thermosiphon and the condensate flows downward in the downcomer to form a circulating flow. The principle is the same as that of a heat exchanger, and the downcomer is formed in a large diameter and the heat transfer tube is formed in a small diameter, so that the heat transfer area per cross-sectional area of the downcomer is made smaller than that of the heat transfer tube. As a result, a downward flow is formed in the downcomer, and on the other hand, in the heat transfer tube, the film thickness of the inner surface is reduced, and good heat transfer performance is obtained. In order to make the flow rate of the heat transfer tubes uniform, it is desirable to place the downcomer at the center.
[0008]
In particular, the heat medium is sealed in a heat medium tank provided adjacent to the liquid reservoir so that the liquid level is positioned below the liquid reservoir, and steam generated by heating of a heater provided in the heat medium tank. Since the condensate in the liquid reservoir is heated by the latent heat of condensation, it is not necessary to supply the heat medium from the outside, and the apparatus configuration can be simplified and the size can be reduced. And since it is indirect heating by a heat-medium vapor | steam, the effect of leveling can be acquired with respect to the fluctuation | variation of the emitted-heat amount of a heater, and the stability of driving | operation can be improved. In this case, a heat medium having a boiling point at the operating temperature may be employed, and a simple example thereof is the same substance as the distillation object.
[0009]
Further, the outer circumference of the downcomer, due to the provision of the heat medium liquid retaining part for condensate from staying in the heat medium generated by the heat exchange with the condensate in the reservoir the liquid and vapor of said heat medium, the downcomer The heat transfer medium condensate on the outer periphery acts as a heat insulation layer that reduces the heat that enters the downcomer, and suppresses the upward flow that occurs near the inner wall of the downcomer due to the intrusion heat. Thus, the upward flow in the heat transfer tube can be stabilized, the effect of reducing the film thickness in the heat transfer tube can be increased, and the heat transfer performance can be improved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.
[0011]
FIG. 1 shows a schematic configuration of a precision distillation apparatus to which a reboiler according to the present invention is applied. This precision distillation apparatus performs a distillation operation under a temperature condition of room temperature or lower, and condenses the reboiler 1 according to the present invention, a plurality of distillation columns 2 filled with a filler, and a gas rising from the distillation column 2. The capacitor 3 is accommodated in the heat insulating container 4. The reboiler 1, the distillation column 2, and the condenser 3 are supported by the heat insulating container 4 through a support member (not shown).
[0012]
In the reboiler 1, a reservoir 6 of the condensate A flowing down from the distillation column 2 is integrally provided at the bottom of the distillation column 2. A heat medium tank 7 in which a heat medium is enclosed is provided below the liquid reservoir 6, and in this heat medium tank 7, the liquid surface of the heat medium liquid B is located below the liquid reservoir 6. A heater 9 is provided in the heat medium tank 7, and the heat medium liquid B is heated by the heater 9, and the condensate A in the liquid reservoir 6 is heated by the condensation latent heat of the generated steam. Yes. A heating medium whose boiling point is the operating temperature is employed.
[0013]
In the condenser 3, a condenser tube 10 provided at the upper end of each distillation column 2 is immersed in the refrigerant liquid in the condenser container 11, and condensable gas rising from the distillation column 2 is condensed. The condensate produced in the condensing tube 10 flows naturally down to the distillation column 2. The product to be distilled is fed into the middle stage of the distillation column 2, and the low boiling point components are extracted from the top of the condenser tube 10 and the high boiling point components are extracted from the liquid reservoir 6 of the reboiler 1.
[0014]
As shown in detail in FIG. 2, the liquid reservoir 6 of the reboiler 1 collects an upper tank 13 directly connected to the distillation column 2, a plurality of heat transfer tubes 14 suspended from the upper tank 13, and the plurality of heat transfer tubes 14. And a downcomer 16 that connects the upper and lower tanks 13 and 15 to each other and circulates the condensate. The downcomer 16 is formed to have a larger diameter than the heat transfer tube 14 and is disposed at the center thereof. On the outer periphery of the downcomer 16, a cylindrical trap 17 is provided as a heat medium liquid retaining portion for retaining the condensate of the heat medium. The upper part of the trap 17 is open.
[0015]
In the reboiler 1 configured as described above, the heat medium liquid B in the heat medium tank 7 is heated by the heater 9 as described above, and the heat medium vapor generated thereby is generated on the wall surfaces of the heat transfer tube 14 and the lower tank 15. Condensation latent heat is released to heat the condensate A inside. As a result, as indicated by an arrow in FIG. 2, the condensate A circulates upward in the heat transfer tube 14 by the action of the thermosiphon, and the condensate A circulates downward in the downcomer 16 to form a circulation flow. The On the other hand, the heat medium condensate generated on the outer surface of the liquid reservoir 6 by heat exchange with the condensate A flows down and is heated again by the heater 9, and the heat medium evaporates in the sealed heat medium tank 7. And condensation.
[0016]
Further, on the wall surface of the downcomer 16, the heat medium vapor entering from the upper opening condenses, and the heat medium condensate stays so as to surround the downcomer 16 in a cylindrical shape and functions as a heat insulating cylinder for the downcomer 16. The heat input into the downcomer 16 is reduced to suppress the upward flow generated in the vicinity of the inner wall surface.
[0017]
As described above, the example of the indirect heating method using the latent heat of condensation of the heat medium vapor has been described. However, as shown in FIG. 3, a method of directly heating with the heat medium liquid is also possible. In the reboiler 21, the heat medium tank 22 is filled with the heat medium liquid B, and a supply pipe 23 and a discharge pipe 24 for the heat medium liquid B are provided and maintained at a predetermined temperature.
[0018]
In the above-described embodiment, a configuration in which a number of packed column type distillation columns are connected to a reboiler has been described as an example. However, the reboiler according to the present invention does not select the type of the distillation tower, but other than this, such as a plate type. It can be widely applied to a distillation column of the type.
[0019]
【The invention's effect】
As described above, according to the present invention, it is possible to reduce the amount of condensate staying and shorten the required startup time, and to suppress the generation of bubbles having a large diameter and to ensure a stable operation state. In particular, by employing an indirect heating method that utilizes the latent heat of condensation of the heat transfer medium vapor, it is possible to simplify the device configuration and reduce the size, and to improve operational stability. Further, by forming a heat insulating cylinder made of the heat medium condensate on the outer periphery of the downcomer, the circulation flow in the liquid reservoir can be stabilized and the heat transfer performance can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a schematic configuration of a distillation apparatus to which a reboiler according to the present invention is applied.
FIG. 2 is an enlarged cross-sectional view of the reboiler shown in FIG.
3 is a cross-sectional view similar to FIG. 2, showing another embodiment of the reboiler according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reboiler 2 Distillation column 3 Condenser 4 Heat insulation container 6 Liquid reservoir 7 Heat medium tank 9 Heater 10 Condensation pipe 11 Capacitor container 13 Upper tank 14 Heat transfer pipe 15 Lower tank 16 Downcomer 17 Trap 21 Reboiler 22 Heat medium tank 23 Supply pipe 24 Exhaust Tube A Condensate B Heat transfer fluid

Claims (1)

蒸留塔の底部に一体に設けられるリボイラであって、
前記蒸留塔からの凝縮液を滞留させる液溜めが、前記蒸留塔に接続された上槽と、該上槽から垂下した複数の伝熱管と、該複数の伝熱管を集合する下槽と、前記上下の槽を連絡して凝縮液を循環させるダウンカマーとからなり、当該液溜め内の凝縮液を外部の熱媒体により加熱するようにし
前記熱媒体は、液面を前記液溜めの下方に位置させるように該液溜めに併設された熱媒体槽に封入され、該熱媒体槽に設けられたヒータの加熱により生じた蒸気の凝縮潜熱によって前記液溜め内の凝縮液を加熱するようにし、
前記ダウンカマーの外周に、前記熱媒体の蒸気と前記液溜め内の凝縮液との熱交換により生成する前記熱媒体の凝縮液が滞留する熱媒液滞留部を設けたことを特徴とするリボイラ。
A reboiler provided integrally at the bottom of the distillation tower,
A liquid reservoir for retaining the condensate from the distillation tower is an upper tank connected to the distillation tower, a plurality of heat transfer tubes suspended from the upper tank, a lower tank for collecting the plurality of heat transfer tubes, It consists of a downcomer that connects the upper and lower tanks to circulate the condensate, and heats the condensate in the reservoir by an external heat medium ,
The heat medium is sealed in a heat medium tank attached to the liquid reservoir so that the liquid level is positioned below the liquid reservoir, and the latent heat of condensation of steam generated by heating of a heater provided in the heat medium tank To heat the condensate in the reservoir,
A reboiler characterized in that a heat medium liquid retention portion in which the condensate of the heat medium generated by heat exchange between the heat medium vapor and the condensate in the liquid reservoir is provided on the outer periphery of the downcomer. .
JP07998599A 1999-03-24 1999-03-24 Reboiler Expired - Fee Related JP4143210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07998599A JP4143210B2 (en) 1999-03-24 1999-03-24 Reboiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07998599A JP4143210B2 (en) 1999-03-24 1999-03-24 Reboiler

Publications (2)

Publication Number Publication Date
JP2000271402A JP2000271402A (en) 2000-10-03
JP4143210B2 true JP4143210B2 (en) 2008-09-03

Family

ID=13705617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07998599A Expired - Fee Related JP4143210B2 (en) 1999-03-24 1999-03-24 Reboiler

Country Status (1)

Country Link
JP (1) JP4143210B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102371076A (en) * 2010-08-20 2012-03-14 王仲明 Reboiler with large tube provided therein
JP2020096994A (en) * 2017-03-29 2020-06-25 住友精化株式会社 Rectification device
CN108529804A (en) * 2018-04-24 2018-09-14 浙江荣凯科技发展有限公司 A kind of dichloro-nicotinic acid production sewage treatment device

Also Published As

Publication number Publication date
JP2000271402A (en) 2000-10-03

Similar Documents

Publication Publication Date Title
US2490659A (en) Solar heated vacuum still
US3977364A (en) Apparatus for evaporating liquids
US3965970A (en) Control of two-phase thermosyphons
JPS6222060B2 (en)
RU2104456C1 (en) Thermosiphon
US4545217A (en) Steam generating and condensing apparatus
JP4143210B2 (en) Reboiler
JPH0672723B2 (en) Liquid heating system
JPS6242701A (en) Free flow type evaporator and evaporation of liquid
JP2663316B2 (en) Structure of evaporation part of loop type heat pipe
US4116167A (en) Methods and apparatus for heating a fluid by vapor condensation
US5791158A (en) Internally fired generator with improved solution flow
JPS6314293Y2 (en)
KR20210122722A (en) Cooling device for distiller
JP4189075B2 (en) Distillation equipment
US1754722A (en) Evaporating or degasifying apparatus
KR0147749B1 (en) Regenerator for absorptive airconditioner
JP4143209B2 (en) Capacitor
JPH0535355B2 (en)
JP3303498B2 (en) Top heat type heat pipe, cooling system and heating system
US2001142A (en) Intermittent absorption refrigerating apparatus and method
RU1806323C (en) Air heater
SU494591A1 (en) Thermostat
JP3617110B2 (en) Absorption refrigeration generator generator
JPH0743031A (en) Double-effect absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees