JPH06105649B2 - Liquid filling device - Google Patents

Liquid filling device

Info

Publication number
JPH06105649B2
JPH06105649B2 JP2120741A JP12074190A JPH06105649B2 JP H06105649 B2 JPH06105649 B2 JP H06105649B2 JP 2120741 A JP2120741 A JP 2120741A JP 12074190 A JP12074190 A JP 12074190A JP H06105649 B2 JPH06105649 B2 JP H06105649B2
Authority
JP
Japan
Prior art keywords
oil
temperature
liquid
surface position
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2120741A
Other languages
Japanese (ja)
Other versions
JPH0415904A (en
Inventor
秀雄 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2120741A priority Critical patent/JPH06105649B2/en
Publication of JPH0415904A publication Critical patent/JPH0415904A/en
Publication of JPH06105649B2 publication Critical patent/JPH06105649B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Housings And Mounting Of Transformers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば油入変圧器のような液体入機器、特
に、その液面の監視に関するものである。
TECHNICAL FIELD The present invention relates to a liquid-filled device such as an oil-filled transformer, and more particularly to monitoring of the liquid level thereof.

〔従来の技術〕 近年、諸設備の省力化、無人化が進められており、例え
ば変電所の主要機器である変圧器においても、従来の人
による監視から自動監視へ移行している。この自動監視
の一項目として、油入変圧器の油漏れの早期発見のため
に油面位置の監視が考えられている。これは後述するよ
うに、正常な油面位置を算出するために、絶縁油の温度
による膨張収縮を考慮して油温度の関数の形で予め演算
式を設定しておき、そして、実際の油温度と油面位置と
を検出し、この油温度を用いて上記演算式により正常油
面位置を算出するとともに、この正常油面位置と上記の
検出された実際の油面位置とを比較することにより、こ
の実際の油面位置に異常がないかどうかを判断するもの
である。このようにして、もし異常があれば警報を出
し、油漏れが進行して絶縁破壊などの重大な事故に至る
のを未然に防止する。
[Prior Art] In recent years, labor saving and unmanned operation of various equipments have been promoted, and for example, even in a transformer which is a main device of a substation, the conventional human monitoring is shifted to automatic monitoring. As one of the items of this automatic monitoring, monitoring of the oil level is considered for early detection of oil leakage in the oil-filled transformer. As will be described later, in order to calculate the normal oil surface position, an arithmetic expression is set in advance in the form of a function of the oil temperature in consideration of expansion and contraction due to the temperature of the insulating oil, and the actual oil Detecting the temperature and the oil level position, using this oil temperature to calculate the normal oil level position by the above equation, and comparing this normal oil level position with the detected actual oil level position. By this, it is judged whether or not there is any abnormality in the actual oil level position. In this way, if there is an abnormality, an alarm is issued to prevent the oil leakage from proceeding to a serious accident such as dielectric breakdown.

第3図は従来の液体入機器の説明図であり、液体として
絶縁油が用いられている送油風冷/油入風冷式の変圧器
の場合を示す。図において、(1)は機器本体である変
圧器本体、(2)は変圧器本体(1)内で生じた熱を放
散する冷却装置で、変圧器本体(1)と冷却装置(2)
とは上部配管(3)と下部配管(4)で互いにつながっ
ていて、共に絶縁油が充填されている。(5)は図示し
ない冷却フィンなどが設けられた冷却器、(6)は変圧
器本体(1)と冷却器(5)との間で絶縁油を循環させ
る送油ポンプ、(7)は冷却器(5)に風を送る冷却フ
ァンであり、(5)〜(7)で冷却装置(2)を構成し
ている。(9)は変圧器本体(1)の上方に設けられた
コンサベータで、変圧器全油量の8〜10%程度の容積を
有し、変圧器本体(1)とは接続管(10)でつながって
いる。コンサベータ(9)は第3図で断面が示されてい
て、その内部には変圧器本体(1)と共通の絶縁油(1
1)が入っており、(12)はその油面である。(13)は
コンサベータ(9)に取付けられて液面位置である油面
位置を検出する油面検出部、(14)は変圧器本体(1)
の上部に取付けられてその内部の絶縁油の温度(以下、
油温度と称す)を検出する油温検出部である。
FIG. 3 is an explanatory view of a conventional liquid-filled device, showing a case of an oil-feeding air-cooled / oil-filled air-cooled transformer in which insulating oil is used as the liquid. In the figure, (1) is a transformer body which is a device body, (2) is a cooling device for dissipating heat generated in the transformer body (1), the transformer body (1) and the cooling device (2)
Are connected to each other by an upper pipe (3) and a lower pipe (4), and both are filled with insulating oil. (5) is a cooler provided with cooling fins (not shown), (6) is an oil pump for circulating insulating oil between the transformer body (1) and the cooler (5), and (7) is cooling It is a cooling fan that sends air to the container (5), and the cooling device (2) is configured by (5) to (7). (9) is a conservator provided above the transformer body (1) and has a volume of about 8 to 10% of the total oil amount of the transformer, and the connecting pipe (10) is connected to the transformer body (1). Connected by. A cross section of the conservator (9) is shown in Fig. 3, and inside the conservator (9) is the same insulating oil (1) as the transformer body (1).
1) is contained, and (12) is the oil level. (13) is an oil level detector attached to the conservator (9) to detect the oil level position which is the liquid level position, and (14) is the transformer body (1)
Installed on top of the temperature of the insulating oil inside (below,
This is an oil temperature detection unit that detects the oil temperature).

第4図は変圧器本体(1)の断面図であり、(16)は外
壁であるタンク、(17)、(18)はタンク(16)内に設
けられたコイルと鉄心で、両者は互いに鎖交するように
配置されている。
FIG. 4 is a cross-sectional view of the transformer body (1). (16) is a tank which is an outer wall, (17) and (18) are coils and iron cores provided in the tank (16), both of which are mutually It is arranged so as to interlink.

第3図に戻り、(20)は油面検出部(13)からの信号を
変換する油面信号変換器、(21)は油温検出部(14)か
らの信号を変換する油温信号変換器、(22)は正常油面
位置を算出するための演算式が設定された演算部であ
り、検出された油温度から上記演算式により絶縁油(1
1)の膨張収縮量を計算してその体積を求め、更に、こ
の体積から油面位置を計算するものである。(23)は油
面信号変換器(20)と演算部(22)の両出力信号を比較
する判断部で、後者よりも前者の出力信号の示す油面位
置が低くてその差が所定値を越えたときに信号を出す。
(24)は判断部(23)からの信号により警報を発する警
報出力部である。
Returning to FIG. 3, (20) is an oil level signal converter that converts the signal from the oil level detection section (13), and (21) is an oil temperature signal conversion that converts the signal from the oil temperature detection section (14). An instrument (22) is an arithmetic unit in which an arithmetic expression for calculating the normal oil surface position is set, and the insulating oil (1
The amount of expansion and contraction in 1) is calculated to find the volume, and the oil surface position is calculated from this volume. (23) is a judging section for comparing the output signals of the oil level signal converter (20) and the calculating section (22). The oil level position indicated by the former output signal is lower than that of the latter, and the difference is a predetermined value. Signal when crossing.
Reference numeral (24) is an alarm output unit for issuing an alarm in response to a signal from the judgment unit (23).

次に動作について説明する。変圧器の運転時にはコイル
(17)や鉄心(18)などで熱が発生するのでこれを絶縁
油(11)で冷却する。絶縁油(11)はそのため温度が上
昇するが、冷却装置(2)で冷却されて変圧器本体
(1)へ戻される。変圧器の負荷が大きいときは送油ポ
ンプ(6)が運転されて絶縁油(11)が強制循環され、
第4図の矢印で示すように、変圧器本体(1)の下部
(26)から中部(27)へ流れ、ここでコイル(17)や鉄
心(18)などから熱を奪って自らは温度上昇しながら上
方へ流れ、変圧器本体(1)の上部(28)に達する。上
部(28)から絶縁油(11)は上部配管(3)を経て冷却
装置(2)へ送られて、冷却ファン(7)の風により大
気中へ放熱し、冷却された絶縁油(11)が下部配管
(4)を経て変圧器本体(1)の下部(26)へ戻され
る。
Next, the operation will be described. Since heat is generated in the coil (17) and the iron core (18) during operation of the transformer, this is cooled by the insulating oil (11). The insulating oil (11) thus rises in temperature, but is cooled by the cooling device (2) and returned to the transformer body (1). When the load of the transformer is large, the oil transfer pump (6) is operated and the insulating oil (11) is forcedly circulated.
As shown by the arrow in Fig. 4, it flows from the lower part (26) of the transformer body (1) to the middle part (27), where it draws heat from the coil (17) and the iron core (18) and rises in temperature. While flowing upward, it reaches the upper part (28) of the transformer body (1). The insulating oil (11) is sent from the upper part (28) to the cooling device (2) through the upper pipe (3), and the insulating fan (7) radiates heat to the atmosphere to cool the insulating oil (11). Is returned to the lower part (26) of the transformer body (1) through the lower pipe (4).

変圧器の負荷が小さいときは、補機損軽減のために送油
ポンプ(6)の運転を停止する。送油ポンプ(6)の停
止時でも絶縁油(11)の通路を確保する構造になってい
て、自然対流により上記と同様の経路で絶縁油(11)を
循環させることにより、コイル(17)や鉄心(18)を冷
却する。強制循環の場合に比べて冷却能力が低いが、負
荷が小さいのでコイル(17)の発熱量も小さく、支障な
い。
When the load of the transformer is small, the operation of the oil feed pump (6) is stopped in order to reduce the loss of auxiliary machinery. The structure is such that the passage of the insulating oil (11) is secured even when the oil feed pump (6) is stopped, and the insulating oil (11) is circulated in the same route as above by natural convection, so that the coil (17) And cool the iron core (18). The cooling capacity is lower than in the case of forced circulation, but the load is small, so the amount of heat generated by the coil (17) is also small, and there is no problem.

変圧器本体(1)の下部(26)と上部(28)では発熱が
あまりなく、殆んどの発熱は中部(27)で生じるので、
絶縁油(11)の上下方向の温度分布は、下部(26)にお
いて油温度が最低であり、中部(27)においてこの最低
油温から位置が上昇するにしたがって温度が上昇して最
高油温に至る。上部(28)では最高油温になっている。
従って、油温検出部(14)は最高油温部分で測定してお
り、油温度が異常に高くないかどうかを監視するのにも
用いられている。
The lower part (26) and the upper part (28) of the transformer body (1) do not generate much heat, and most heat is generated in the middle part (27).
Regarding the temperature distribution of the insulating oil (11) in the vertical direction, the oil temperature is the lowest in the lower part (26), and the temperature rises from this lowest oil temperature to the highest oil temperature in the middle part (27). Reach The upper part (28) has the highest oil temperature.
Therefore, the oil temperature detector (14) measures the maximum oil temperature and is also used to monitor whether the oil temperature is abnormally high.

変圧器本体(1)からの発熱量は負荷に応じて変化し、
また、冷却装置(2)からの放熱量が冷却装置(2)の
運転、停止によって代わり、更に、周囲温度も変動する
ので、これらにより油温度が変化する。この油温度の変
化により絶縁油(11)が膨張、収縮し、その体積が変動
するが、コンサベータ(9)内の絶縁油(11)の量が変
動してこれを吸収する。つまり、油温度の変化によりコ
ンサベータ(9)内の油面(12)の位置が変動する。
The amount of heat generated from the transformer body (1) changes according to the load,
Further, the amount of heat radiated from the cooling device (2) changes depending on the operation and stop of the cooling device (2), and the ambient temperature also fluctuates, so that the oil temperature changes. Due to this change in oil temperature, the insulating oil (11) expands and contracts, and its volume fluctuates, but the amount of the insulating oil (11) in the conservator (9) fluctuates and is absorbed. That is, the position of the oil level (12) in the conservator (9) changes due to the change in the oil temperature.

第5図は油温度対油面位置の関係を示すグラフであり、
コンサベータ(9)の形状などによって変わるが、正常
な場合の曲線が、例えばAであるとする。曲線Bは曲線
Aを△Hだけ下方へ移動させたものであり、もし、検出
された実際の油面位置が曲線Bよりも下方の領域Cにあ
れば、漏油などの異常が発生したものと判断される。△
Hは油温度、油面位置の検出誤差などを勘案して設定さ
れた許容差である。
FIG. 5 is a graph showing the relationship between oil temperature and oil level position,
It is assumed that the curve in a normal case is A, for example, though it varies depending on the shape of the conservator (9). Curve B is obtained by moving curve A downward by ΔH. If the detected actual oil surface position is in area C below curve B, an abnormality such as oil leakage has occurred. Is judged. △
H is a tolerance set in consideration of an oil temperature, an oil level position detection error, and the like.

第3図において、油温検出部(14)により油温度が検出
されると、その信号が油温信号変換器(21)で変換され
て、演算部(22)へ入力するのに適した信号(例えば電
圧信号)となる。演算部(14)では予め設定されている
演算式により、入力信号の示す油温度に対応する正常油
面位置HNを計算し、信号を判断部(23)へ送る。
In FIG. 3, when the oil temperature is detected by the oil temperature detection unit (14), the signal is converted by the oil temperature signal converter (21) and is a signal suitable for input to the calculation unit (22). (For example, a voltage signal). The calculation unit (14) calculates a normal oil surface position H N corresponding to the oil temperature indicated by the input signal by a preset calculation formula, and sends the signal to the judgment unit (23).

一方、油面検出部(13)により実際の油面位置Hが検出
され、その信号が油面信号変換器(20)で変換されて、
判断部(23)へ入力するのに適した信号となる。判断部
(23)へは油面信号変換器(20)と演算部(22)から信
号が入力され、両者が比較される。もし、HN−H>△H
となって、検出された実際の油面位置Hが許容差△Hを
経過して低下しておれば、つまり、第5図の領域Cに入
っておれば異常、そうでなければ正常と判断される。異
常であれば警報出力部(24)へ信号を送り、ここから警
報が発せられる。
On the other hand, the actual oil level position H is detected by the oil level detector (13), and the signal is converted by the oil level signal converter (20),
The signal is suitable for input to the judging section (23). A signal is input from the oil level signal converter (20) and the calculation unit (22) to the determination unit (23), and both are compared. If H N −H> ΔH
Therefore, if the detected actual oil surface position H has decreased after passing the tolerance ΔH, that is, if it is within the area C in FIG. 5, it is judged as abnormal, and if not, it is judged as normal. To be done. If it is abnormal, a signal is sent to the alarm output section (24), and an alarm is issued from here.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来の液体入機器は以上のように構成されているので、
空間的分布を持った液体温度のうちの代表値、例えば最
高液体温度をもとに正常液面位置を算出する。
Since the conventional liquid-filled device is configured as described above,
The normal liquid surface position is calculated based on a representative value of the liquid temperatures having a spatial distribution, for example, the maximum liquid temperature.

例えば変圧器の場合、送油ポンプの運転時には絶縁油の
循環量が多いので、変圧器本体の上部と下部の油温度差
はせいぜい2〜3degC程度であり、最高油温から正常油
面位置を計算しても誤差は小さく、ほぼ正しい値が得ら
れる。ところが、送油ポンプ停止時は自然対流により絶
縁油を循環させるので循環量が少なく、変圧器本体の上
部と下部の油温度差が20degC以上になることがある。最
高油温を用いて正常油面位置を計算した場合、一例を示
すと、平均油温が最高油温より約10degC低くなり、正常
油面位置の計算誤差が大きくなる。また、送油ポンプ停
止時は、最高油温が同じ値であっても周囲温度が高いと
きは低いときに比べて平均油温が高く、そのため上記誤
差が大きく変動する。
For example, in the case of a transformer, since the circulating amount of insulating oil is large when the oil pump is operating, the difference in oil temperature between the upper and lower parts of the transformer body is at most about 2 to 3 degC, and the normal oil surface position from the maximum oil temperature can be changed. Even if the calculation is performed, the error is small and almost correct value can be obtained. However, since the insulating oil is circulated by natural convection when the oil feed pump is stopped, the amount of circulation is small, and the oil temperature difference between the upper part and the lower part of the transformer body may be 20 degC or more. When the normal oil surface position is calculated using the maximum oil temperature, as an example, the average oil temperature is about 10 degC lower than the maximum oil temperature, and the calculation error of the normal oil surface position is large. Further, when the oil feed pump is stopped, even if the maximum oil temperature is the same value, the average oil temperature is higher when the ambient temperature is higher than when the ambient temperature is low, so that the above error fluctuates greatly.

液面位置の異常の有無を判断するとき、正常液面位置と
の間の許容差が小さく設定されていると、上記誤差があ
るために油漏れなどの異常がないにもかかわらず警報を
発したり、あるいは、このような誤報を防止するため
に、逆に許容差が大きく設定されていると油漏れが生じ
てもこれがかなり進行するまで警報が出ず、異常の検知
が遅れたりするなどの問題点があった。
When judging whether there is an abnormality in the liquid surface position, if the tolerance between the normal liquid surface position and the normal liquid surface position is set to a small value, an alarm will be issued even if there is no abnormality such as oil leakage due to the above error. Or, in order to prevent such false alarms, conversely if a large tolerance is set, even if an oil leak occurs, the alarm will not be issued until this progresses considerably, and the detection of abnormalities may be delayed. There was a problem.

この発明は上記のような問題点を解消するためになされ
たもので、液体の温度が位置により大きく異なるような
温度分布を有している場合でも、正常液面位置を正しく
計算することにより、実際の液面位置の異常の有無を誤
りなく、かつ早期に検知できる液体入機器を得ることを
目的とする。
The present invention has been made to solve the above problems, by correctly calculating the normal liquid surface position even if the temperature of the liquid has a temperature distribution that greatly differs depending on the position, An object of the present invention is to obtain a liquid-filled device that can detect whether or not there is an abnormality in the actual liquid surface position without error and at an early stage.

〔課題を解決するための手段〕[Means for Solving the Problems]

この発明に係る液体入機器は、機器本体で加熱された状
態における液体の温度と、冷却装置で冷却された状態に
おける液体の温度とを検出し、これらの両温度から正常
液面位置を算出して、実際の液面位置と比較することに
より異常の有無を判断するようにしたものである。
The liquid-filled device according to the present invention detects the temperature of the liquid in the state of being heated by the device body and the temperature of the liquid in the state of being cooled by the cooling device, and calculates the normal liquid surface position from both of these temperatures. Then, the presence or absence of abnormality is judged by comparing with the actual liquid surface position.

〔作用〕[Action]

この発明における液体入機器は、機器本体で加熱された
液体の最高温度部分と、冷却装置で冷却された液体の最
低温度部分との両温度を検出するようになっているの
で、液体の膨張収縮を正しく求めて正常液面位置の計算
誤差を小さくすることができる。また、そのため異常の
有無の判断における許容差を小さくでき、異常を早期に
検知できる。
Since the liquid-filled device according to the present invention is adapted to detect both the maximum temperature part of the liquid heated by the device body and the minimum temperature part of the liquid cooled by the cooling device, the expansion and contraction of the liquid Can be obtained correctly to reduce the calculation error of the normal liquid surface position. Therefore, the tolerance in determining whether or not there is an abnormality can be reduced, and the abnormality can be detected early.

〔発明の実施例〕Example of Invention

以下、この発明の一実施例を図について説明する。第1
図は、この発明の一実施例による液体入機器の説明図で
あり、第3図と同様の変圧器の場合を示す。図におい
て、(1)〜(13),(16),(20),(23),(24)
は第3図の場合と同様であるので説明を省略する。(3
1),(32)はそれぞれ上部配管(3),下部配管
(4)に取付けられて内部の絶縁油の温度を検出する上
部油温検出部と下部油温検出部、(21)は上部および下
部油温検出部(31),(32)からの信号を変換する2つ
の油温信号変換器、(33)は正常油面位置を算出するた
めの演算式が設定された演算部であり、上記演算式によ
り、検出された2つの油温度から絶縁油の膨張収縮量を
計算してその体積を求め、更に、この体積から油面位置
を計算するものである。なお、変圧器本体(1)の内部
は従来例と同様に第4図のようになっている。
An embodiment of the present invention will be described below with reference to the drawings. First
The figure is an explanatory view of a liquid-filled device according to an embodiment of the present invention, and shows the case of a transformer similar to that in FIG. In the figure, (1) to (13), (16), (20), (23), (24)
Is the same as in the case of FIG. 3, and its explanation is omitted. (3
1) and (32) are attached to the upper pipe (3) and the lower pipe (4), respectively, and detect the temperature of the insulating oil inside. Two oil temperature signal converters that convert the signals from the lower oil temperature detection units (31) and (32), and (33) is a calculation unit in which a calculation formula for calculating the normal oil surface position is set, According to the above arithmetic expression, the amount of expansion and contraction of the insulating oil is calculated from the two detected oil temperatures to obtain the volume, and the oil surface position is calculated from this volume. The inside of the transformer body (1) is as shown in FIG. 4 as in the conventional example.

次に動作について説明する。従来例と同様に、変圧器本
体(1)内では絶縁油(11)が第4図の矢印で示すよう
に、下から上へ流れてコイル(17)や鉄心(18)を冷却
して上部(28)で最高油温になり、上部配管(3)を経
由して冷却装置(2)へと流れる。冷却装置(2)で冷
却された絶縁油(11)は最低油温になって下部配管
(4)を経由して変圧器本体(1)の下部へ戻される。
上部油温検出部(31)は上部配管(3)に取付けられて
いるので、変圧器本体(1)で加熱された絶縁油の温
度、つまり最高油温を検出し、また、下部油温検出部
(32)は下部配下(4)に取付けられているので、冷却
装置で冷却された絶縁油の温度、つまり最低油温を検出
する。
Next, the operation will be described. Similar to the conventional example, in the transformer body (1), the insulating oil (11) flows from bottom to top to cool the coil (17) and the iron core (18) as shown by the arrow in FIG. The maximum oil temperature is reached at (28) and flows to the cooling device (2) via the upper pipe (3). The insulating oil (11) cooled by the cooling device (2) reaches the minimum oil temperature and is returned to the lower part of the transformer body (1) via the lower pipe (4).
Since the upper oil temperature detector (31) is attached to the upper pipe (3), it detects the temperature of the insulating oil heated in the transformer body (1), that is, the maximum oil temperature, and also detects the lower oil temperature. Since the part (32) is attached to the lower subordinate (4), the temperature of the insulating oil cooled by the cooling device, that is, the minimum oil temperature is detected.

変圧器本体(1)の上部(28)と上部配管(3)内の絶
縁油の温度は最高油温(以下、θaと表わす)になって
おり、この部分の絶縁油の量をVaとし、また、最低油温
(以下、θbと表わす)になっている変圧器本体(1)
の下部(26)と下部配管(4)内の絶縁油の量をVbとす
る。変圧器本体(1)の中部(27)と冷却装置(2)内
ではθbからθaまで傾斜した温度分布になっていてそ
の平均値θcは θc=(θa+θb)/2 …………(1) とみなすことができ、この部分の絶縁油の量をVcとする
と、ある基準油温度θoにおける絶縁油量からの膨張収
縮量△Vは △V=β{Va(θa−θo) +Vb(θb−θo)+Vc(θc−θo)} …………
(2) となる。ただし、βは絶縁油の膨張係数である。
The temperature of the insulating oil in the upper part (28) of the transformer body (1) and the upper pipe (3) is the maximum oil temperature (hereinafter referred to as θa), and the amount of insulating oil in this part is Va. In addition, the transformer body (1) that has the lowest oil temperature (hereinafter referred to as θb)
Let Vb be the amount of insulating oil in the lower part (26) and the lower pipe (4). In the middle part (27) of the transformer body (1) and the cooling device (2), the temperature distribution is inclined from θb to θa, and the average value θc is θc = (θa + θb) / 2 ………… (1) If the amount of insulating oil in this portion is Vc, the amount of expansion / contraction ΔV from the amount of insulating oil at a certain reference oil temperature θo is ΔV = β {Va (θa−θo) + Vb (θb− θo) + Vc (θc−θo)} …………
(2) However, β is the expansion coefficient of insulating oil.

第2図は絶縁油の膨張収縮量対油面位置の関係を示すグ
ラフであり、絶縁油が膨張(図では+で表わす)したと
きは基準油温度に対応する基準油面位置H0からH2に向っ
て上昇し、逆に収縮(図では−で表わす)したときはH1
に向って下降する。
FIG. 2 is a graph showing the relationship between the expansion / contraction amount of the insulating oil and the oil surface position. When the insulating oil expands (represented by + in the figure), the reference oil surface positions H 0 to H corresponding to the reference oil temperature. H 1 when rising toward 2 and contracting (represented by − in the figure)
Descend towards.

演算部(33)では、(1)式、(2)式および第2図を
数式化した演算式が予め設定されている。θa,θbを検
出した上部および下部油温検出部(31),(32)からの
信号が、油温信号変換器(21)によって演算部(33)へ
入力するに適した信号(例えば、電圧信号)に変換さ
れ、演算部(33)で2つの温度θa,θbをもとに計算が
行なわれ、その結果が正常油面位置HNとして判断部(2
3)へその信号が送られる。一方、油面検出部(13)で
検出された実際の油面位置Hを示す信号が油面信号変換
器(20)を経由して判断部(23)へ送られ、ここで両者
が比較される。許容差を△Hとして、もし、HN−H>△
Hならば異常と判断し、警報出力部(24)から警報を発
する。
In the calculation unit (33), the formulas (1), (2) and the formulas shown in FIG. 2 are preset. Signals from the upper and lower oil temperature detection units (31) and (32) that detect θa and θb are suitable for input to the calculation unit (33) by the oil temperature signal converter (21) (for example, voltage Signal), and the calculation unit (33) performs calculation based on the two temperatures θa and θb, and the result is determined as the normal oil level position H N by the determination unit (2
The signal is sent to 3). On the other hand, a signal indicating the actual oil level position H detected by the oil level detection section (13) is sent to the determination section (23) via the oil level signal converter (20), and the two are compared here. It If the tolerance is ΔH, if H N −H> △
If it is H, it is judged to be abnormal and an alarm is issued from the alarm output section (24).

上記動作は送油ポンプ(6)の運転、停止のいかんにか
かわらず同様に行なわれる。絶縁油の膨張収縮量が正し
く計算されるので、許容差△Hを大きく設定する必要は
ない。
The above operation is similarly performed regardless of whether the oil feed pump (6) is operated or stopped. Since the expansion / contraction amount of the insulating oil is calculated correctly, it is not necessary to set the tolerance ΔH large.

なお、上記実施例では上部、下部油温検出部(31),
(32)を上部、下部配管(3),(4)に設けたが、最
高、最低油温部分なら他の位置でもよく、例えばタンク
(16)の天板と底部近辺に設けてもよい。また、絶縁油
入の変圧器の例を示したが、合成油を用いた電気機器な
ど、他の機器にも適用できる。
In the above embodiment, the upper and lower oil temperature detection parts (31),
Although (32) is provided in the upper and lower pipes (3) and (4), it may be provided in other positions as long as it is the highest and lowest oil temperature portions, for example, in the vicinity of the top plate and bottom of the tank (16). Further, although an example of a transformer containing insulating oil is shown, it can be applied to other devices such as electric devices using synthetic oil.

〔発明の効果〕 以上のように、この発明によれば機器本体で加熱された
液体の温度と、冷却装置で冷却された液体の温度とを検
出して、これらの両温度から液体の膨張収縮量を正しく
計算するので、正常液面位置の計算誤差が小さくなっ
て、異常の有無の判断における許容差を小さく設定する
ことができ、異常の有無を誤りなく、かつ、早期に検知
できる。
As described above, according to the present invention, the temperature of the liquid heated in the device body and the temperature of the liquid cooled in the cooling device are detected, and the expansion and contraction of the liquid are detected from these two temperatures. Since the amount is calculated correctly, the calculation error of the normal liquid surface position becomes small, the tolerance in the judgment of the presence or absence of abnormality can be set small, and the presence or absence of abnormality can be detected without error and at an early stage.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例による液体入機器の説明
図、第2図は第1図の液体入機器における絶縁油の膨張
収縮量対油面位置の関係を示すグラフ、第3図は従来の
液体入機器の説明図、第4図は第1図および第3図の液
体入機器における変圧器本体の断面図、第5図は第3図
の液体入機器における油温度対油面位置の関係を示すグ
ラフである。 これらの図において、(1)は変圧器本体、(2)は冷
却装置、(13)は油面検出部、(31),(32)はぞれぞ
れ上部および下部油温検出部である。 なお、各図中同一符号は同一または相当部分を示す。
1 is an explanatory view of a liquid-filled device according to an embodiment of the present invention, FIG. 2 is a graph showing the relationship between the expansion / contraction amount of insulating oil and the oil surface position in the liquid-filled device of FIG. 1, and FIG. FIG. 4 is an explanatory view of a conventional liquid-filled device, FIG. 4 is a cross-sectional view of a transformer body in the liquid-filled device of FIGS. 1 and 3, and FIG. 5 is an oil temperature-oil surface position in the liquid-filled device of FIG. It is a graph which shows the relationship of. In these figures, (1) is a transformer main body, (2) is a cooling device, (13) is an oil level detection unit, and (31) and (32) are upper and lower oil temperature detection units, respectively. . In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】発熱する機器本体を液体で冷却し、この液
体を冷却装置へ循環させて冷却するものにおいて、上記
機器本体で加熱された状態における液体の温度と、上記
冷却装置で冷却された状態における液体の温度とを検出
し、これらの両温度から上記液体の正常液面位置を算出
すると共に、上記液体の実際の液面位置を検出して上記
正常液面位置と比較することにより、上記実際の液面位
置に異常がないかどうかを判断するようにしたことを特
徴とする液体入機器。
1. A device for cooling a heat-generating device body with a liquid, and circulating this liquid to a cooling device for cooling, wherein the temperature of the liquid in a state of being heated by the device body and the liquid cooled by the cooling device. By detecting the temperature of the liquid in the state, and calculating the normal liquid surface position of the liquid from these both temperatures, by detecting the actual liquid surface position of the liquid and comparing with the normal liquid surface position, A liquid-filled device characterized in that it is determined whether or not there is any abnormality in the actual liquid surface position.
JP2120741A 1990-05-09 1990-05-09 Liquid filling device Expired - Lifetime JPH06105649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2120741A JPH06105649B2 (en) 1990-05-09 1990-05-09 Liquid filling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2120741A JPH06105649B2 (en) 1990-05-09 1990-05-09 Liquid filling device

Publications (2)

Publication Number Publication Date
JPH0415904A JPH0415904A (en) 1992-01-21
JPH06105649B2 true JPH06105649B2 (en) 1994-12-21

Family

ID=14793837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2120741A Expired - Lifetime JPH06105649B2 (en) 1990-05-09 1990-05-09 Liquid filling device

Country Status (1)

Country Link
JP (1) JPH06105649B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035896A (en) * 2005-07-27 2007-02-08 Mitsubishi Electric Corp Monitoring apparatus for on-load tap changer
JP2007035895A (en) * 2005-07-27 2007-02-08 Mitsubishi Electric Corp Apparatus for monitoring on-load tap changer
JP2007273646A (en) * 2006-03-30 2007-10-18 Toshiba Corp On-load tap switch

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6016736A (en) * 1983-03-16 1985-01-28 エステイーシー・ピーエルシー Communication equipment
JPH0373128A (en) * 1989-05-22 1991-03-28 Canon Inc Eye refractometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6016736A (en) * 1983-03-16 1985-01-28 エステイーシー・ピーエルシー Communication equipment
JPH0373128A (en) * 1989-05-22 1991-03-28 Canon Inc Eye refractometer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035896A (en) * 2005-07-27 2007-02-08 Mitsubishi Electric Corp Monitoring apparatus for on-load tap changer
JP2007035895A (en) * 2005-07-27 2007-02-08 Mitsubishi Electric Corp Apparatus for monitoring on-load tap changer
JP4627695B2 (en) * 2005-07-27 2011-02-09 三菱電機株式会社 On-load tap changer monitoring device
JP2007273646A (en) * 2006-03-30 2007-10-18 Toshiba Corp On-load tap switch

Also Published As

Publication number Publication date
JPH0415904A (en) 1992-01-21

Similar Documents

Publication Publication Date Title
EP3299783B1 (en) Thermal monitoring of a power device
US4440717A (en) Heated junction thermocouple level measurement apparatus
CN102192845B (en) Diagnosis method for heat radiation system
US2917701A (en) Forced-cooled transformer having winding temperature relay
US6401518B1 (en) Fluid filled electrical device with diagnostic sensor located in fluid circulation flow path
CN104198068A (en) Temperature monitoring device and temperature monitoring method for winding of oil immersed transformer
US20170027025A1 (en) Power conversion apparatus and power conversion method
JPH06105649B2 (en) Liquid filling device
US20180348063A1 (en) Variable frequency drive temperature determination
JP2018042355A (en) Electric power conversion system and electric power conversion method
JP6029796B1 (en) Power converter
JP2019047641A (en) Power conversion system and controller
US3849705A (en) Fluid-cooled transformer having a temperature responsive indicating and controlling device
JP2024003916A (en) Power conversion device
JPH05182838A (en) Abnormality monitoring device of oil-immersed electric equipment
EP3435049A1 (en) Thermal monitoring of a power device
KR102003346B1 (en) Cooling device for dry transformer
KR200491175Y1 (en) Temperature and 2 channel slope monitoring system for Bus duct
JPH047811A (en) Monitoring device for liquid level of liquid-immersed equipment
CN113966461B (en) Method for measuring the quantity of liquid in a liquid-insulated electrical component, liquid-insulated electrical component and railway vehicle having a liquid-insulated electrical component
JP2708341B2 (en) Water-cooled thyristor valve
CN102202484B (en) Diagnosis method for heat radiation system
JPH0523487B2 (en)
Ellsworth Jr et al. Design and Control of the IBM Power 775 Supercomputer Water Conditioning Unit
Qiu et al. Single-Phase and Two-Phase Liquid Immersion Cooling of Data Center Power Supply Units for Heat Capture