JPS59122871A - Method of preventing crystallization of absorption refrigerator - Google Patents

Method of preventing crystallization of absorption refrigerator

Info

Publication number
JPS59122871A
JPS59122871A JP22757982A JP22757982A JPS59122871A JP S59122871 A JPS59122871 A JP S59122871A JP 22757982 A JP22757982 A JP 22757982A JP 22757982 A JP22757982 A JP 22757982A JP S59122871 A JPS59122871 A JP S59122871A
Authority
JP
Japan
Prior art keywords
temperature
solution
generator
concentration
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22757982A
Other languages
Japanese (ja)
Other versions
JPH0320671B2 (en
Inventor
修行 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP22757982A priority Critical patent/JPS59122871A/en
Publication of JPS59122871A publication Critical patent/JPS59122871A/en
Publication of JPH0320671B2 publication Critical patent/JPH0320671B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/001Crystallization prevention

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、吸収冷凍機において溶液の結晶化を防止する
方法に関するものである。なお本明細書においては、「
吸収冷凍機」なる用語は、低温部から熱を汲み上げて高
温部に供給するいわゆる狭義のヒートポンプも含むもの
とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing crystallization of a solution in an absorption refrigerator. In this specification, "
The term "absorption refrigerator" also includes a so-called heat pump in a narrow sense, which pumps up heat from a low-temperature section and supplies it to a high-temperature section.

吸収冷凍機においては、例えば冷却水温度の変化の天外
い場合、或いは凝縮温度の変化が大きい場合は溶液が結
晶化するおそれがある。
In an absorption refrigerator, for example, if the cooling water temperature changes unexpectedly, or if the condensation temperature changes significantly, there is a risk that the solution will crystallize.

、冷却水温度変化が大きい例を挙げれば、狭義のヒート
ポンプとして用いるとき、起動時の冷却水温度は、定常
運転時の冷却水温度とは大幅に異なる。このため同一熱
源温度、例えば同一蒸気温度を用いても、発生器の伝熱
量が大どく異なり、起動時には多量の冷媒が発生器より
放出され、発生器出口の溶液は非常に高濃度となり結晶
の危険がある。
To give an example of a large change in cooling water temperature, when used as a heat pump in the narrow sense, the cooling water temperature at startup is significantly different from the cooling water temperature during steady operation. For this reason, even if the same heat source temperature, for example the same steam temperature, is used, the amount of heat transfer in the generator will be significantly different, and at startup, a large amount of refrigerant will be released from the generator, and the solution at the generator outlet will have a very high concentration of crystals. There is a danger.

例えば、第1図に示す例において、凝縮温度80℃、発
生器出口溶液温度 140℃程度で設計されたLiBr−820系の吸収式
ヒートポンプでは、定常運転ではAの如きサイクルとな
り、発生器出口溶液は63%の濃度でバランスする。起
動後にもしばらくの間冷動水温度が低く(特に蓄熱槽を
用いている場合や冷却水、即ち温水保有量の多い場合に
は長時間かかる)、凝縮温度が40℃程度までしか上昇
していない場合に、熱源が同一で、例えば蒸気圧が一定
なるときに、発生器出口温度が120℃以上になると、
サイクルはBの如くなり、発生器出口では溶液濃度が7
0%を越え73%程度にもなり、吸収器に戻るまでに結
晶線Kに達して結晶してしまう。
For example, in the example shown in Figure 1, in a LiBr-820 absorption heat pump designed with a condensation temperature of 80°C and a generator outlet solution temperature of about 140°C, the cycle A is shown in steady operation, and the generator outlet solution temperature is about 140°C. balances at a concentration of 63%. Even after startup, the chilled water temperature remains low for a while (especially when a heat storage tank is used or when there is a large amount of cooled water, i.e. hot water, it takes a long time), and the condensing temperature rises only to about 40℃. If not, when the heat source is the same and the steam pressure is constant, if the generator outlet temperature becomes 120°C or higher,
The cycle is as shown in B, and the solution concentration at the generator outlet is 7.
It exceeds 0% and reaches about 73%, reaching the crystal line K and crystallizing before returning to the absorber.

凝縮温度変化の大きい例を挙げれば、冷却水系が汚れて
いて、多量のスケールの付着が予想される場合、スケー
ルが付着している状態で所定の能力が出るように冷凍機
が設計されている。このような場合スケール付着の前後
で凝縮温度の変化が大きく、据付当初又はスケール除去
直後は凝縮温度が低く冷媒が多量に発生し溶液濃度が高
くなり結晶の危険を招く。
To give an example of a large change in condensing temperature, if the cooling water system is dirty and a large amount of scale is expected to adhere, the refrigerator is designed to produce the specified capacity even with scale attached. . In such cases, there is a large change in condensing temperature before and after scale adhesion, and at the beginning of installation or immediately after scale removal, the condensing temperature is low and a large amount of refrigerant is generated, increasing the solution concentration and causing the risk of crystal formation.

また、発生器の加熱用熱源温度の変化が激しい場合も、
激しい加熱の折に冷媒が多量に発生し溶液濃度が高まり
結晶の危険を招く。
Also, if the temperature of the heating source for the generator changes drastically,
During intense heating, a large amount of refrigerant is generated, which increases the concentration of the solution and poses a danger of crystal formation.

本発明は、従来の方法の上記の欠点を除島、起動時や、
据”付当初など過負荷がかがって溶液が過濃縮されるこ
とを防ぎ、結晶のおそれをなくすことができる吸収冷凍
機の結晶防止方法を提供することを目的とするものであ
る。
The present invention eliminates the above-mentioned drawbacks of the conventional method, and
The object of the present invention is to provide a method for preventing crystallization in an absorption refrigerator, which can prevent a solution from being overconcentrated due to overload at the time of installation, and can eliminate the risk of crystallization.

本発明は、吸収器、発生器、凝縮器、蒸発器溶液熱交換
器及びこれらの機器を接続する溶液経路、冷媒経路を有
し、発生器における加熱用の熱源熱量を制御する熱源熱
量制御弁を有する吸収冷凍機の結晶防止方法において、
前記発生器出口溶液濃度を直接又は間接的に検出し、そ
の検出値が設定値を越えたときに、熱源熱量制御弁の開
度を制限することを特徴とする吸収冷凍機の結晶防止方
法である。
The present invention provides a heat source heat amount control valve that has an absorber, a generator, a condenser, an evaporator solution heat exchanger, and a solution path and a refrigerant path that connect these devices, and that controls the heat source heat amount for heating in the generator. In a method for preventing crystallization in an absorption refrigerator having
A method for preventing crystallization in an absorption refrigerator, characterized in that the concentration of the solution at the generator outlet is detected directly or indirectly, and when the detected value exceeds a set value, the opening degree of the heat source heat amount control valve is limited. be.

本発明の実施例を図面を用いて説明すれば、第2図に示
す如く、吸収器A、発生器G、凝縮器C2蒸発器E、溶
液熱交換器X、溶液ポンプSP、冷媒ポンプRPが備え
られ、溶液経路として配管1.2.3.4.5、スプレ
ー管6、オーバー70−管7を備え、冷媒経路として配
管8.9、スプレー管10、配管11が上述の機器を接
続して冷凍サイクルを形成している。
An embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 2, an absorber A, a generator G, a condenser C2, an evaporator E, a solution heat exchanger It is equipped with pipe 1.2.3.4.5, spray pipe 6, and over pipe 7 as a solution path, and pipe 8.9, spray pipe 10, and pipe 11 as a refrigerant path to connect the above-mentioned equipment. to form a refrigeration cycle.

12は加熱管、13は熱源熱量調節弁である。12 is a heating tube, and 13 is a heat source heat amount control valve.

冷却水系統としては、冷却水ポンプ14、配管15、冷
却水管16、配管17、冷却水管18、配管19が備え
られ、吸収器A及び凝縮器Cを冷却するようになってい
る。冷却水に代えて空気で冷却する方法もある。この場
合冷却水ポンプ14の代りに冷却ファンを用いる。20
は冷水管で、配管21.22により蒸発器Eに冷水を導
くものである。
The cooling water system includes a cooling water pump 14, piping 15, cooling water pipe 16, piping 17, cooling water pipe 18, and piping 19, and is configured to cool the absorber A and the condenser C. There is also a method of cooling with air instead of cooling water. In this case, a cooling fan is used instead of the cooling water pump 14. 20
is a cold water pipe which leads cold water to the evaporator E through pipes 21 and 22.

23は冷水出口温度を検出する温度検出器、24は凝縮
器Cの冷却水の出口温度を検出する温度検出器、26は
凝縮器Cにおける凝縮温度を検出する温度検出器ζ25
は、温度検出器23.24.26からの信号を受けて熱
源熱量調節弁13を操作する制御器である。
23 is a temperature detector that detects the cold water outlet temperature, 24 is a temperature detector that detects the outlet temperature of the cooling water of the condenser C, and 26 is a temperature detector ζ 25 that detects the condensation temperature in the condenser C.
is a controller that operates the heat source heat amount control valve 13 in response to signals from the temperature detectors 23, 24, and 26.

この制御機構の作用につき説明する。例えば冷房サイク
ルを行なう場合、定常運転時においては温度検出器23
による冷水出口温度の信号により制御器25を介しで熱
源熱量調節弁13の開度を調節して冷水の温度制御を行
なう。暖房時、或いはヒートポンプ運転時には温度検出
器24からの温水小口温度の信号により温水の温度制御
を行なう。
The operation of this control mechanism will be explained. For example, when performing a cooling cycle, the temperature sensor 23
The temperature of the cold water is controlled by adjusting the opening degree of the heat source heat amount control valve 13 via the controller 25 based on the signal of the cold water outlet temperature. During heating or heat pump operation, the temperature of hot water is controlled by a signal of the hot water outlet temperature from the temperature detector 24.

起動時や据付当初などにおいて前述の如く、冷却水温度
が低カリたり、冷却水管18の伝熱係数が高かったりし
て過負荷がかがると、凝縮器Cにおける冷媒凝縮量が増
大し溶液濃度が増大する。
As mentioned above, when the cooling water temperature is low or the heat transfer coefficient of the cooling water pipe 18 is high, as described above, and an overload occurs at startup or at the beginning of installation, the amount of refrigerant condensed in the condenser C increases and the solution Concentration increases.

このとき、発生器Gの溶液出口濃度を直接又は間接めに
とらえて結晶の危険があれば熱源熱量調節弁13を閉じ
る方向に操作して加熱量を減少せしめる。
At this time, the concentration of the solution at the outlet of the generator G is directly or indirectly detected, and if there is a risk of crystal formation, the heat source heat amount control valve 13 is operated in the direction of closing to reduce the amount of heating.

この場合、ハンティングを防ぐため、設定値に成る幅Δ
ξを持たせる二層が好ましい。このΔξの幅の範囲内で
は、制御器25は、入力信号にょり弁の閉じ方向の操作
は行なうが、開方向の操作は行なわないようにすれば一
層安全となる。
In this case, to prevent hunting, the width Δ
Two layers with ξ are preferred. Within this range of Δξ, the controller 25 operates the valve in the closing direction according to the input signal, but it will be safer if it does not operate the valve in the opening direction.

溶液の濃度を検出する場所としては発生器Cの出口付近
が好ましい。蒸発器Eの液面高さよりサイクル濃度を推
定する方法があるが、この方法は平均濃度が推定される
に過ぎない。結晶の回避を考えるには濃度の高い場所の
局所的な濃度が必要となり、発生器出口はその条件を満
足し、さらに現時点での濃度を示しているので一層好ま
しい。
The preferred location for detecting the concentration of the solution is near the outlet of the generator C. There is a method of estimating the cycle concentration from the liquid level height in the evaporator E, but this method only estimates the average concentration. Considering the avoidance of crystals, local concentrations in areas with high concentrations are required, and the generator outlet satisfies this condition and is even more preferable because it shows the current concentration.

濃度の検出方法としては、 (1)比重計による比重と温度とにより濃度を求める(
発生器出口系統) (2)飽和圧力(又は飽和圧力に対する露点、即ち圧力
に対する飽和温度)と溶液温度とにより濃度を求める(
発生器出口)。
The concentration detection method is as follows: (1) Determine the concentration using the specific gravity and temperature using a hydrometer (
Generator outlet system) (2) Calculate the concentration from the saturation pressure (or the dew point relative to the saturation pressure, i.e. the saturation temperature relative to the pressure) and the solution temperature (
generator outlet).

などが考えられるが、(2)について説明する。etc., but (2) will be explained.

発生出口溶液は、圧力と溶液温度とがほぼ平衡している
。従ってこの関係から濃度が分る。露点と凝縮温度はほ
ぼ同一である。
The generated outlet solution has approximately equilibrium pressure and solution temperature. Therefore, the concentration can be determined from this relationship. The dew point and condensing temperature are almost the same.

LiBr−820系の場合、溶液濃度が、ξ=0.60
〜0.70(LiBr/LiBr+H20)の範囲では
、 T : 溶液温度 ℃、 W : 露点、で表わされる
。T=20〜170℃ の範囲で、誤差は ±o、oo
s  程度である。
In the case of LiBr-820 system, the solution concentration is ξ=0.60
In the range of ~0.70 (LiBr/LiBr+H20), T: solution temperature °C, W: dew point. In the range of T=20~170℃, the error is ±o, oo
It is about s.

また、濃度を求める簡易法として、溶液温度Tと露点(
凝縮温度)Wとの差、 ΔT=T−W  を基にした下
表が考えられる。
In addition, as a simple method for determining the concentration, the solution temperature T and dew point (
The table below can be considered based on the difference from the condensation temperature) W, ΔT=T−W.

即ち、温度差ΔTを検知し、これを基に八T又は ′濃
度が所寓の設定値を越えないよう熱源熱量制御弁13の
開度に制限を加える方法を簡易法として用いてもよい。
That is, a simple method may be used in which the temperature difference ΔT is detected and, based on this, the opening degree of the heat source heat amount control valve 13 is limited so that the 8T or 1 concentration does not exceed a predetermined set value.

許容濃度の限界としての設定値の定め方として次の如外
方法が用いられる。
The following method is used to determine the set value as the limit of permissible concentration.

(1)設定値として固定値(例えば66%)を用いる。(1) A fixed value (for example, 66%) is used as the setting value.

(2)第3図に示す如く溶液熱交換器Xの加熱側溶液の
出口温度 t を基に、予め与えられている結晶線Kに
より結晶温度ξ0を求め、余裕Δξを持たせて e、=1.− Δξ を設定値ξ1として用い、直接又は間接的に求められた
濃度ξと比較し、 ξ ≦ ξ0 なる如く制御する。
(2) As shown in Fig. 3, based on the outlet temperature t of the solution on the heating side of the solution heat exchanger 1. - Use Δξ as the set value ξ1, compare it with the directly or indirectly determined concentration ξ, and control so that ξ ≦ ξ0.

Δξとしては、例えば0.5〜I  IIIt% 程度
が用いられる。
As Δξ, for example, about 0.5 to IIIt% is used.

結晶ラインにの代り9こ余裕を見たラインに゛を用い、
余裕Δξ“を用いて ξ1 = ξ。。−Δξ゛ として設定値を求めてもよい。
Instead of the crystal line, use ゛ for the line with 9 margins,
The setting value may be determined using the margin Δξ'' as ξ1 = ξ..−Δξ゛.

(3)二重効用の場合、シリーズ70−のものに対して
は、第4図に示す如く低温発生器出口で溶液温度T(G
)と凝縮温度T(C)とにより間接的にξを求めて検出
値となし低温溶液熱交換器の出口温度 t がらξ。を
知り ξ。−Δξにより設定値ξ1 を求める。
(3) In the case of double effect, for series 70-, the solution temperature T (G
) and the condensation temperature T(C) to indirectly determine ξ and use it as the detected value. Know ξ. Find the set value ξ1 from −Δξ.

(4)二重効用の分岐フローの場合は、第5図に示す如
く、高温発生器の出口でT(G)とT(C)とにより間
接的にξを求めて検出値となし、高温溶液熱交換器の出
口温度 t がらξ。を知り ξ。−Δξ により設定
値ξ、を求める。
(4) In the case of a double-effect branch flow, as shown in Figure 5, ξ is indirectly determined from T (G) and T (C) at the outlet of the high temperature generator and used as the detected value. The outlet temperature t of the solution heat exchanger is ξ. Know ξ. Find the set value ξ from −Δξ.

さらに低温側に対しても同様に低温熱交換器の出口温度
 t゛ からξ。゛を知り、ξ。−Δξ゛により設定値
ξ1゛を求めるようにしてもよい本発明により、起動時
や据付当初など、過負荷による溶液濃度の上昇を抑制し
、結晶のおそれがなく安全な吸収冷凍機の結晶防止方法
を提供することができ、実用上極めて大なる効果を有す
る。
Furthermore, for the low-temperature side, the outlet temperature of the low-temperature heat exchanger t゛ to ξ. Knowing ゛, ξ. -Δξ゛ may be used to determine the set value ξ1゛The present invention suppresses the increase in solution concentration due to overload at startup or at the beginning of installation, and prevents crystallization in absorption refrigerators that are safe and free from the risk of crystallization. This method can be provided and has extremely great practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は吸収冷凍機のサイクル線図、第2図は本発明の
実施例のフロー図、第3図、第4図、第5図は設定値を
求める方法を示す線図である。 A・・吸収器、G・・発生器、C・・凝縮器、E・・蒸
発器、X・・溶液熱交換器、SP・・溶液ポンプ、RP
・・冷媒ポンプ、1.2.3.4.5・・配管、6・・
スプレー管、7・・オーバー7C1−管、8.9・・配
管、10・・スプレー管、11・・配管、12・・加熱
管、13・・熱源熱量調節弁、14・・冷却水ポンプ、
15・・配管、16・・冷却水管、17・・配管、18
・・冷却水管、19・・配管、20・・冷水管、21.
22・・配管、23.24・・温度検出器、25・・制
御器、26・・温度検出器。 特許出願人  株式会社 荏原製作所 代理人弁理士 千  1)    稔
FIG. 1 is a cycle diagram of an absorption refrigerator, FIG. 2 is a flow diagram of an embodiment of the present invention, and FIGS. 3, 4, and 5 are diagrams showing a method for determining set values. A...Absorber, G...Generator, C...Condenser, E...Evaporator, X...Solution heat exchanger, SP...Solution pump, RP
・・Refrigerant pump, 1.2.3.4.5・・Piping, 6・・
Spray pipe, 7... Over 7C1-pipe, 8.9... Piping, 10... Spray pipe, 11... Piping, 12... Heating pipe, 13... Heat source heat amount control valve, 14... Cooling water pump,
15...Piping, 16...Cooling water pipe, 17...Piping, 18
・・Cooling water pipe, 19.・Piping, 20.・Cold water pipe, 21.
22...Piping, 23.24...Temperature detector, 25...Controller, 26...Temperature detector. Patent applicant Minoru Sen 1) Patent attorney representing Ebara Corporation

Claims (1)

【特許請求の範囲】 1、吸収器、発生器、凝縮器、蒸発器溶液熱交換器及び
これらの機器を接続する溶液経路、冷媒経路を有し、発
生器1″、おける加熱用の熱源熱量を制御する熱源熱量
制御弁を有する吸収冷凍機の結晶防止方法において、前
記発生器出口溶液濃度を直接又は間接的に検出し、その
検出値が設定値を越えたときに、熱源熱量制御弁の開度
を制限することを特徴とする吸収冷凍機の結晶防止方法
。 2、前記発生器出口溶液濃度の間接的な検出が、前記発
生器出口温度と前記凝縮器の凝縮温度とに基づき濃度を
求めることにより行なわれる特許請求の範囲第1項記載
の方法。 3、前記発生器出口溶液濃度の間接的な検出が、前記発
生器出口温度と前記凝縮器の凝縮温度との差に基づb濃
度を求めることにより行なわれる特許請求の範囲第1項
記載の方法。 4、前記設定値が、前記溶液熱交換器の加熱側溶液の出
口温度を検出することにより決められる特許請求の範囲
第1項記載の方法。
[Claims] 1. An absorber, a generator, a condenser, an evaporator solution heat exchanger, a solution path connecting these devices, and a refrigerant path, and a heat source heat amount for heating in the generator 1''. In a method for preventing crystallization of an absorption refrigerator having a heat source heat amount control valve that controls A method for preventing crystallization in an absorption refrigerator, characterized by limiting the opening degree. 2. The indirect detection of the concentration of the solution at the outlet of the generator determines the concentration based on the temperature at the outlet of the generator and the condensation temperature of the condenser. 3. The method of claim 1, wherein the indirect detection of the generator outlet solution concentration is based on the difference between the generator outlet temperature and the condensing temperature of the condenser. The method according to claim 1, which is carried out by determining the concentration.4. The method according to claim 1, wherein the set value is determined by detecting the outlet temperature of the solution on the heating side of the solution heat exchanger. The method described in section.
JP22757982A 1982-12-28 1982-12-28 Method of preventing crystallization of absorption refrigerator Granted JPS59122871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22757982A JPS59122871A (en) 1982-12-28 1982-12-28 Method of preventing crystallization of absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22757982A JPS59122871A (en) 1982-12-28 1982-12-28 Method of preventing crystallization of absorption refrigerator

Publications (2)

Publication Number Publication Date
JPS59122871A true JPS59122871A (en) 1984-07-16
JPH0320671B2 JPH0320671B2 (en) 1991-03-19

Family

ID=16863124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22757982A Granted JPS59122871A (en) 1982-12-28 1982-12-28 Method of preventing crystallization of absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS59122871A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370952A (en) * 1989-08-11 1991-03-26 Sanyo Electric Co Ltd Noncondensable gas discharge device for absorption type refrigerator
JPH03294758A (en) * 1990-04-10 1991-12-25 Kawaju Reinetsu Kogyo Kk Cycle controlling method for absorption refrigerator, cold/hot water apparatus
JPH0914785A (en) * 1995-06-27 1997-01-17 Sanyo Electric Co Ltd Heat input controlling method for absorption refrigerator
JP2018141565A (en) * 2017-02-27 2018-09-13 矢崎エナジーシステム株式会社 Absorption type refrigeration system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370952A (en) * 1989-08-11 1991-03-26 Sanyo Electric Co Ltd Noncondensable gas discharge device for absorption type refrigerator
JPH03294758A (en) * 1990-04-10 1991-12-25 Kawaju Reinetsu Kogyo Kk Cycle controlling method for absorption refrigerator, cold/hot water apparatus
JPH0914785A (en) * 1995-06-27 1997-01-17 Sanyo Electric Co Ltd Heat input controlling method for absorption refrigerator
JP2018141565A (en) * 2017-02-27 2018-09-13 矢崎エナジーシステム株式会社 Absorption type refrigeration system

Also Published As

Publication number Publication date
JPH0320671B2 (en) 1991-03-19

Similar Documents

Publication Publication Date Title
JPS59122871A (en) Method of preventing crystallization of absorption refrigerator
JPH0421110B2 (en)
JPH0688653A (en) Method for preventing crystallization of absorption refrigerating machine
JPS6248786B2 (en)
JPS59119161A (en) Method of preventing crystallization of absorption refrigerator
JPH0240948B2 (en)
JPS6210349B2 (en)
JP2639969B2 (en) Absorption refrigerator
JP2664436B2 (en) Control method of absorption refrigerator
CN212457500U (en) Absorption type refrigerating unit
JP5388660B2 (en) Operation method of absorption chiller water heater
JPH06347126A (en) Absorption freezer
JPH0416694B2 (en)
JPH0749894B2 (en) Absorption refrigerator control method
JP3164839B2 (en) Absorption refrigerator and absorption liquid dilution operation method
JPH0478903B2 (en)
JPS58160783A (en) Controller for absorption refrigerator
JP2708881B2 (en) Absorption refrigerator
JP2785143B2 (en) Operating method of absorption refrigerator
JP2001317837A (en) Absorption refrigerator and method for controlling absorption refrigerator
JP2771626B2 (en) Absorption refrigerator
JPS6249162A (en) Flow controller for cooling water of absorption refrigerator
JPH0236868B2 (en) KYUSHUREITOKISEIGYOSOCHI
JPH0243109B2 (en)
JPS6115983B2 (en)